CS 3330 — Computer Architecture

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sxTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sxTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

why C?

almost a subset of C4++

notably removes classes, new/delete, iostreams
other changes, too, so C code often not valid C++ code

direct correspondence to assembly

why C?

almost a subset of C4++

notably removes classes, new/delete, iostreams
other changes, too, so C code often not valid C++ code

direct_correspondence to assembly

Should help you understand machinel!
Manual translation to assembly

why C?

almost a subset of C4++

notably removes classes, new/delete, iostreams
other changes, too, so C code often not valid C++ code

direct_correspondence to assembly

But “clever” (optimizing) compiler
might be confusingly indirect instead

homework: C environment
get Unix-like environment with a C compiler

will have department accounts, hopefully by end of week

SSH to portal.cs.virginia.edu — remote terminal

NX — remote desktop to a department Linux machine
instructions off course website (Collab)

also some other options

homework: C environment

officially supported: department machines (SSH [terminal] or NX
[remote desktop])

some other options (fOF most assignments):
Linux (native or VM)
2150 VM image should work

most assignments can Windows Subsystem for Linux natively
most assignments can use OS X natively

notable exception: next week's lab+homework

assignment compatibility
supported platform: department machines

many use laptops

trouble? we'll say to use department machines

most assignments: C and Unix-like environment
also: tool written in Rust — but we'll provide binaries

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sixTeEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

X86-64 assembly
in theory, you know this (CS 2150)

in reality, ..

x86-64 assembly translation?

int x, y, z;

int get_sum() {
return x + y + z;

}

equivalent assembly:

// Intel syntax
get_sum:
/\ mov RAX, [x]
add RAX, [RAX+y]
add RAX, [RAX+z]
ret

// Intel syntax
get_sum:
Eg mov RAX, [x]
add RAX, [y]
add RAX, [z]
ret

C. both A and B

// AT&T syntax
get_sum:
mov X, %rax

add y(%rax), %rax
add z(%rax), %rax

ret
// AT&T syntax
get_sum:

mov x, %rax
add y, %rax
add z, %rax
ret

D. neither A nor B

10

explanation

mov RAX, [x] /mov x, %rax
RAX < memory[address of x]

add RAX, [RAX+y] /add y(%rax), %rax
RAX <= RAX + memory[RAX + address of y]
(if y is an array of long, similar effect to RAX < y[RAX/sizeof(long)])

add RAX, [y] /add y, %rax
RAX + RAX + memory[address of y|

12

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sixTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

13

Y86-6477

Y86: our textbook's X86-64 subset
hope: leverage 2150 assembly knowledge

much simpler than real X86-64 encoding
(which we will not cover)

not as simple as 2150's IBCM
variable-length encoding
more than one register
full conditional jumps
stack-manipulation instructions

14

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sixTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

15

textbook

Computer Systems: A Programmer’s Perspective
HCL assignments follow pretty closely

(useful, but less important for other topics)

BRYANT ¢ O'HALLARON

16

processors and memory (physically)

CPU

memory

17

processors and memory (connection)

CPU

memory

18

processors and memory (connection)

program
counter

CPU memory

processors and memory (connection)

CPU: what's at Ox40437

program
counter

Ox4043

CPU

Wi

memory

18

processors and memory (connection)

register
file

CPU: what's at Ox40437

counter

Wi

MEM: 0x4043 is
mov $0x42, %rax

CPU

>

memory

18

processors and memory (connection)

register
file

%rax: 42

CPU: what's at Ox40437

counter

Wi

MEM: 0x4043 is
mov $0x42, %rax

CPU

>

memory

18

processors and memory (connection)

register
file

%rax: 42

CPU: what's at Ox40437

program OXAHE43

counter Ox404a

Wi

MEM: 0x4043 is
mov $0x42, %rax

CPU

>

memory

18

processors and memory (connection)

register
file

%rax: 42

CPU: what's at Ox40437

program OXAHE43

counter Ox404a

CPU: what's at Ox404a?

CPU

MEM: 0x4043 is
mov $0x42, %rax
B

\ >

memory

18

processors and memory (connection)

register
file

%rax: 42

CPU: what's at Ox40437

/

MEM: 0x4043 is

mov $0x42, %rax

>

—\

\

program OXAHE43

counter Ox404a

CPU:

what's at Ox404a?

CPU

pus

1\
MEM: 0x404a is

%rax

memory

18

processors and memory (connection)

file
%rsp:
%rax:

register

FFF8
42

program
counter

D3

Ox404a

I
CPU: what's at Ox40437

MEM: 0x4043 is
mov $0x42, %rax

e §$\ \x >

CPU: what's at Ox404a?

1\
MEM: 0x404a is

CPU

push %rax

memory

CPU: set OXFFFO to Ox42

processors and memory (connection)

register
- file
%rsp: OXFFFO
%rax: 42

counter OX#€4

I
CPU: what's at Ox40437

>

D\

CPU: what's at Ox404a?

MEM: 0x4043 is
mov $0x42, %rax
B

1\
MEM: 0x404a is

CPU

push %rax

memory

CPU: set OXFFFO to Ox42

I

CPU: what is at Ox404c?

18

processors and memory (memory really?)

register
file

program
counter

0x00000
0x00001
0x00002
0x00003
0x00004
0x00005
0x00006
0x00007
0x00008
0x00009

0x44

0Ox47

Ox37

0x0D

0x13

OXAF

0x45

0x41

Ox60

Ox73

CPU

memory

19

processors and memory and 1/0

register
file

program
counter

CPU

/O
bridge

!

1/O devices
keyboard, network, display, ..

memory

20

processors and memory and 1/0 [alternate

register
file

program
counter

CPU

design presented in textbook
<< >
memory
1/O devices

keyboard, network, display, ..

21

exercise

suppose a processor is executing the following instruction
movqg 0x123400, %rax (AT&T syntax)
MOV RAX, [0x123400] (Intel syntax)

which moves the value at memory location 0x123400 to %rax

in the processor + memory bus model, how many times is a
message sent from the processor to the memory?

23

exercise

suppose a processor is executing the following instruction
movqg 0x123400, %rax (AT&T syntax)
MOV RAX, [0x123400] (Intel syntax)

which moves the value at memory location 0x123400 to %rax

in the processor + memory bus model, how many times is a
message sent from the processor to the memory?

answer: 2

CPU — MEM: What's at (instruction address)?
MEM — CPU: It's (the machine code for the mov)?
CPU — MEM: What's at 0x1234007

MEM — CPU: It's (the value)

24

exercise

suppose a processor is executing the following instruction
movqg 0x123400, %rax (AT&T syntax)
MOV RAX, [0x123400] (Intel syntax)

which moves the value at memory location 0x123400 to %rax

in the processor + memory bus model, how many times is a
message sent from the processor to the memory?

answer: 2

CPU — MEM: What's at (instruction address)?
MEM — CPU: It's (the machine code for the mov)?
CPU — MEM: What's at 0x1234007

MEM — CPU: It's (the value)

(next instruction)
CPU — MEM: What's at (next instruction address)?

24

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

25

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

26

program performance

naive model:
one instruction = one time unit

number of instructions matters, but ..

27

program performance: issues

parallelism

fast hardware is parallel
needs multiple things to do

caching

accessing things recently accessed is faster
need reuse of data/code

(more in other classes: algorithmic efficiency)

28

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

29

what compilers are/do
understanding weird compiler/linker rrors
if you want to make compilers

debugging applications

30

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

31

weird program behaviors

what is a segmentation fault really?

how does the operating system interact with programs?

if you want to handle them — writing OSs

32

lectures and labs attendance

we won't check lecture/lab attendance

lectures will be recorded (assuming not tech. difficulties)

remote submission of labs is possible

33

not attending lectures?

if you rely on the lecture recordings, | recommend...

a regular schedule of watching them

pausing—+trying to answer in-lecture questions

writing down questions you have
..and asking them in Piazza and/or office hours and/or lab

34

coursework

labs — grading: full credit if threshold amount completed
none this week

intended: can reliably get 100% within lab time proper
threshold often somewhat less than full lab
collaboration permitted

due by 11:59pm lab day

homework assignments — introduced by lab (mostly)

due at 9:30am lab day
complete individually

weekly quizzes

final exam

35

coursework

labs — grading: full credit if threshold amount completed
none this week

intended: can reliably get 100% within lab time proper
threshold often somewhat less than full lab
collaboration permitted

due by 11:59pm lab day

homework assignments — introduced by lab (mostly)

due at 9:30am lab day
complete individually

weekly quizzes

final exam

35

textbook

Computer Systems: A Programmer’s Perspective
recommended — HCL assignments follow pretty closely

(useful, but less important for other topics)

rrrrrrrrrrr

zzzzzzzzzzzzzzzzzzzzzz

BRYANT ¢ O'HALLARON

36

on lecture/lab/HW synchronization

labs/HWs not quite synchronized with lectures

main problem: want to cover material before you need it in
lab/HW

37

quizzes?
linked off course website (demo Thursday)

released Thursday night, due Tuesday before first lecture

from lecture that week

two lowest quiz grades dropped

38

late policy

exceptional circumstance? contact us.

otherwise, for homeworks only:
-10% O to 48 hours late
-15% 48 to 72 hours late
-100% otherwise

late quizzes, labs: no

we release answers
talk to me if illness, etc.

39

getting help tools
non-real-time help: Piazza (discussion forum)
labs: in person, specified location

office hours: specified on website, calendar
some in-person, some remote
online queue for TA help (may not be used for in-person OH)

40

office hour format

current plan: some in-person and some remote

which is when be noted on schedule
never in-person-+remote at same time

remote times mostly late times or lower-demand days

41

on the office hour queue

for remote and some in-person office hours

sorted by last time helped
but hope to have enough help that it doesn't matter much

first approx 3 slots may be first-come first-served

we may reset those first three slots between office hours

goal 1: being on the queue overnight won't help you

goal 2: try to spread out the TA help

42

your TODO list

department account and/or C environment working
should have department account if you were registered yesterday

before lab next week

43

upcoming lab/HW
bomblab/hw:

using debugger /disassembler,
figure out “correct” input for a program

may want to review x86-64 assembly from CS 2150
(or see textbook chapter/writeup linked off assignment)

44

grading
Quizzes: 30%
Homeworks: 40%
Labs: 15%

Final Exam: 15%

45

46

quiz demo

47

processors and memory

register
file

program
counter

CPU

/O
bridge

!

1/O devices
keyboard, network, display, ..

memory

48

memory

address
OXFFFFFFFF
OXFFFFFFFE
OXFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
0x00000001
Ox00000000

value

Ox14

Ox45

OxDE

0x06

Ox05

Ox04

0x03

Ox02

Ox01

0x00

0x03

OXx60

OxFE

OXEO

OxAO

49

memory

address
OXFFFFFFFF
OXFFFFFFFE
OXFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
0x00000001
Ox00000000

value

Ox14

Ox45

OxDE

array of bytes (byte = 8 bits)
CPU interprets based on how accessed

0x06

Ox05

Ox04

0x03

Ox02

Ox01

0x00

0x03

OXx60

OxFE

OXEO

OxAO

49

memory

address
OXFFFFFFFF
OXFFFFFFFE
OXFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
0x00000001
Ox00000000

value

Ox14

Ox45

OxDE

0x06

Ox05

Ox04

0x03

Ox02

Ox01

0x00

0x03

0x60

OXFE

OXEO

OxAO

address
Ox00000000
0x00000001
Ox00000002

OXO0041FFE
OXOO0041FFF
0x00042000
0x00042001
0x00042002
0x00042003
0x00042004
0x00042005
Ox00042006

OxFFFFFFFD
OxFFFFFFFE
OxFFFFFFFF

value

OxA0

OXEO

OXFE

OX60

0x03

0x00

Ox01

Ox02

0x03

Ox04

Ox05

0x06

OxDE

0Ox45

Ox14

49

endianness

address
OxFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
Ox00000001
Ox00000000

value

Ox14

0x45

OxDE

Ox06

Ox05

Ox04

Ox03

Ox02

Ox01

0Xx00

0x03

0x60

OXFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

50

endianness

address
OxFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
Ox00000001
Ox00000000

value

Ox14

0x45

OxDE

Ox06

Ox05

Ox04

Ox03

Ox02

Ox01

Ox00
Ox03

0x60

OXFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

50

endianness

address value int *x = (intx)0x42000;

OXFFFFFFFF [OX14 : o
9 SOF
OXFFFFFFFE [Ox45 printf("%d\n'", *x);

OXFFFFFFFD [GxDE

0x03020100 = 50462976

0x00042006 [Ox06
0x00042005 [Ox05
0x00042004 _[Ox04
0x00042003 |[Ox03
0x00042002 |[Ox02 Ox00010203 = 66051
0x00042001 |[Ox01
0x00042000 |[Ox00
OXO0041FFF [0OX03
OX00041FFE [Ox60

Ox00000002 OXFE
Ox00000001 OXEO
Ox00000000 OXxAQ

endianness

address
OxFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
Ox00000001
Ox00000000

value

Ox14

0x45

OxDE

Ox06

Ox05

Ox04

Ox03

Ox02

Ox01

Ox00
Ox03

0x60

OXFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

Ox03020100 =

little endian

(least significant byte has lowest address)

0x00010203 =
big endian

(most significant byte has lowest address)

50462976

66051

50

endianness

address
OxFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
Ox00000001
Ox00000000

value

Ox14

0x45

OxDE

Ox06

Ox05

Ox04

Ox03

Ox02

Ox01

Ox00
Ox03

0x60

OXFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

Ox03020100 =

little endian

(least significant byte has lowest address)

0x00010203 =
big endian

(most significant byte has lowest address)

50462976

66051

50

exercise buffer

unsigned char buffer[8] = (T T T T 111]
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678;
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1];

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

51

exercise buffer

unsigned char buffer[8] = CT T T T T 111
{o,o0, /* ..., %/ 01}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678;
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1];

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

51

exercise buffer
0x12345678 Ox9ABCDEFO
unsigned char buffer[8] = (T T T T 111]
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678;
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuell[i];
buffer[i+4] = ptr_value2[i];

b

for (int i = 05 1
ptr_valuell[i]

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. O0x9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

< 4; ++i) { /* copy buffer[1..5] into valuel */
= buffer[i+1];

51

exercise buffer
0x12345678 Ox9ABCDEFO
unsigned char buffer[8] = [T 1 1 []
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678; valuel
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1];

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

exercise buffer
0x12345678 0x9ABCDEFO
unsigned char buffer[8] = [T 1 1 []
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678; valuel
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 05 1
ptr_valuell[i]

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

< 4; ++i) { /* copy buffer[1..5] into valuel */
= buffer[i+1];

exercise visualization

valuel (bytesin hex) Vvalue2 (bytes in hex) buffer

|78]56[34[12] [FOIDE[BCI9A] [2 [2]2 [2?2[2]2[2]72]
o 1T 2 3 0 1 2 3 0 1 2 3 4 5 6 17

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuel[i]; buffer[i+4] = ptr_value2[i];

}
valuel value2 buffer
|78]56[34[12] [FO[DE[BCJ[9A] [78]56[34[12[FO|DE[BCJ[9A]
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1l];

}
valuel value2 buffer
[56[34]12[F0] [FO[DE[BC[9A] [78]56[34[12[FO|DE[BCJ[9A]
o 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

OxFO0123456 Ox9ABCDEFO

exercise visualization

valuel (bytesin hex) Vvalue2 (bytes in hex) buffer

|78]56[34[12] [FOIDE[BCI9A] [2 [2]2 [2?2[2]2[2]72]
o 1T 2 3 0 1 2 3 0 1 2 3 4 5 6 17

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuel[i]; buffer[i+4] = ptr_value2[i];

}
valuel value2 buffer
|78]56[34[12| [FO|DE|BC|9A]| [78]56[34[12|FO|[DE|BC[9A]
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1l];

}
valuel value2 buffer
[56[34]12[F0] [FO[DE[BC[9A] [78]56[34[12[FO|DE[BCJ[9A]
o 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

OxFO0123456 Ox9ABCDEFO

52

exercise visualization

valuel (bytesin hex) Vvalue2 (bytes in hex) buffer

|78]56[34[12] [FOIDE[BCI9A] [2 [2]2 [2?2[2]2[2]72]
o 1T 2 3 0 1 2 3 0 1 2 3 4 5 6 17

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuel[i]; buffer[i+4] = ptr_value2[i];

}
valuel value2 buffer
|78]56[34[12] [FO[DE[BCJ[9A] [78]56[34[12[FO|DE[BCJ[9A]
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1l];

}
valuel value2 buffer
[56[34]12[F0]| [FOIDE[BC[9A] [78[56[34[12[FO|DE[BC[9A]
o 1 2 3 0 1 2 3 0 1 2 3 4 5 6 71

OxFO0123456 Ox9ABCDEFO

52

exercise visualization

valuel (bytesin hex) Vvalue2 (bytes in hex) buffer

|78]56[34[12] [FOIDE[BCI9A] [2 [2]2 [2?2[2]2[2]72]
o 1T 2 3 0 1 2 3 0 1 2 3 4 5 6 17

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuel[i]; buffer[i+4] = ptr_value2[i];

}
valuel value2 buffer
|78]56[34[12] [FO[DE[BCJ[9A] [78]56[34[12[FO|DE[BCJ[9A]
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

0x12345678 Ox9ABCDEFO

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1l];

}
valuel value2 buffer
[56]34[12[F0] [FO|IDE|[BC[9A] [78]56[34[12[FO[DE[BC]9A]
o 1 2 3 0 1 2 3 0 1 2 3 4 5 6 17

OxF0123456 Ox9ABCDEFO

52

backup slides

53

	Course Introduction
	layers of abstraction
	C
	assembly
	exercise?

	machine code
	what the processor does
	exercise

	Goals (if you don't care about HW)

	Logistics
	Backup slides
	Memory and Endianness
	exercise
	explanation

	backup slides

