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last time
what stalling for jXX, ret would look like

branch prediction
guess where conditional jump will go
if wrong — undo guessed instructions
trick: undo (“squash”) by clearing pipeline registers

logic for stalling/squashing
stall_X/write disable on pipeline regs: keep old stage
bubble_X/reset on pipeline regs: reset to default (nop)
check icodes in pipeline to decide when to stall/forward

stalling involves both stall_X and bubble_X
repeat decode? keep PC same AND stall_D AND bubble_E
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implementing stalling + prediction
need to handle updating PC:

stalling: retry same PC
prediction: use predicted PC
misprediction: correct mispredicted PC

need to updating pipeline registers:
repeat stage in stall: keep same values
don’t go to next stage in stall: insert nop values
ignore instructions from misprediction: insert nop values
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building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len

(2) immediate: call/jmp, and prediction for cond. jumps
(3) repeat previous PC for stalls (load/use hazard, halt, ret?)
(4) correct for misprediction of conditional jump
(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump
return address from ret

via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs
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PC update overview
predict based on instruction length + immediate

override prediction with stalling sometimes
correct when prediction is wrong just before fetching

retrieve corrections from pipeline register outputs for jCC/ret instruction

above is what textbook does
alternative: could instead correct prediction just before setting PC
register

retrieve corrections into PC cycle before corrections used
moves logic from beginning-of-fetch to end-of-previous-fetch

I think this is more intuitive, but consistency with textbook is less confusing…
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after forwarding/prediction
where do we still need to stall?

memory output needed in fetch
ret followed by anything

memory output needed in exceute
mrmovq or popq + use
(in immediatelly following instruction)
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overall CPU
5 stage pipeline

1 instruction completes every cycle — except hazards

most data hazards: solved by forwarding

load/use hazard: 1 cycle of stalling

jXX control hazard: branch prediction + squashing
2 cycle penalty for misprediction
(correct misprediction after jXX finishes execute)

ret control hazard: 3 cycles of stalling
(fetch next instruction after ret finishes memory)
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missing pieces
multi-cycle memories

beyond pipelining: out-of-order, multiple issue
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multi-cycle memories
ideal case for memories: single-cycle

achieved with caches (next topic)
fast access to small number of things

typical performance:
90+% of the time: single-cycle

sometimes many cycles (3–400+)
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variable speed memories
cycle # 0 1 2 3 4 5 6 7 8

mrmovq 0(%rbx), %r8 F D E M W
mrmovq 0(%rcx), %r9 F D E M W
addq %r8, %r9 F D D E M W

mrmovq 0(%rbx), %r8 F D E M M M M M W
mrmovq 0(%rcx), %r9 F D E E E E E M M M M M
addq %r8, %r9 F D D D D D D D D D D

memory is fast: (cache “hit”; recently accessed?)

memory is slow: (cache “miss”)
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missing pieces
multi-cycle memories

beyond pipelining: out-of-order, multiple issue
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beyond pipelining: multiple issue
start more than one instruction/cycle

multiple parallel pipelines; many-input/output register file

hazard handling much more complex
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r10, %r11 F D E M W
xorq %r9, %r11 F D E M W
subq %r10, %rbx F D E M W
…
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beyond pipelining: out-of-order
find later instructions to do instead of stalling

lists of available instructions in pipeline registers
take any instruction with available values

provide illusion that work is still done in order
much more complicated hazard handling logic

cycle # 0 1 2 3 4 5 6 7 8 9 10 11
mrmovq 0(%rbx), %r8 F D E M M M W C
subq %r8, %r9 F D E W C
addq %r10, %r11 F D E W C
xorq %r12, %r13 F D E W C
…
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stalling/misprediction and latency
hazard handling where pipeline latency matters
longer pipeline — larger penalty
part of Intel’s Pentium 4 problem (c. 2000)

on release: 50% higher clock rate, 2-3x pipeline stages of competitors

out-of-order, multiple issue processor
first-generation review quote:

Review quote: Anand Lai Shimpi, “Intel Pentium 4 1.4 & 1.5 GHz”, AnandTech, 20 November 2000 15



recall: data/instruction memory
model in CPU: one cycle per access

but earlier — had to talk to memory on different chip

can’t do that in one cycle

solution: keep copies of part of memory (“cache”)
copy can be accessed quickly
hope: almost always use copy?
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2004 CPU

Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 17
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cache: real memory

Data Memory
AKA

L1 Data Cache

address

input (if writing)
write enable

value

ready?

L2 Cache
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the place of cache

CPU Cache

RAM
or

another
cache

read 0xABCD?
read 0x1234?

0xABCD is 1000
0x1234 is 4000

read 0xABCD?

0xABCD is 1000
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memory hierarchy goals
performance of the fastest (smallest) memory

hide 100x latency difference? 99+% hit (= value found in cache) rate

capacity of the largest (slowest) memory
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memory hierarchy assumptions
temporal locality
“if a value is accessed now, it will be accessed again soon”

caches should keep recently accessed values

spatial locality
“if a value is accessed now, adjacent values will be accessed soon”

caches should store adjacent values at the same time

natural properties of programs — think about loops
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locality examples
double computeMean(int length, double *values) {

double total = 0.0;
for (int i = 0; i < length; ++i) {

total += values[i];
}
return total / length;

}

temporal locality: machine code of the loop

spatial locality: machine code of most consecutive instructions

temporal locality: total, i, length accessed repeatedly

spatial locality: values[i+1] accessed after values[i]
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building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
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cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)
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terminology
row = set

preview: change how much is in a row
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Tag-Index-Offset (TIO)

index valid tag value
00 1 000 00 11
01 1 001 AA BB
10 0 -- -- --
11 1 001 EE FF

2 byte blocks, 4 sets

index valid tag value
0 1 000 00 11 22 33
1 1 001 CC DD EE FF

4 byte blocks, 2 sets

index valid tag value
000 1 00 00 11
001 1 01 F1 F2
010 0 -- -- --
011 0 -- -- --
100 0 -- -- --
101 1 00 AA BB
110 0 -- -- --
111 1 00 EE FF

2 byte blocks, 8 sets

address 001111 (stores value 0xFF)
cache tag index offset
2 byte blocks, 4 sets
2 byte blocks, 8 sets
4 byte blocks, 2 sets

2 = 21 bytes in block
1 bit to say which byte4 = 22 bytes in block

2 bits to say which byte

22 = 4 sets
2 bits to index set23 = 8 sets

3 bits to index set
21 = 2 sets
1 bit to index set

tag — whatever is left over
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Tag-Index-Offset formulas (direct-mapped
only)

m memory addreses bits (Y86-64: 64)

S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

t = m− (s + b) tag bits

C = B × S cache size (if direct-mapped)
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TIO: exercise
64-byte blocks, 128 set cache

stores 64× 128 = 8192 bytes (of data)

if addresses 32-bits, then how many tag/index/offset bits?

which bytes are stored in the same block as byte from 0x1037?
A. byte from 0x1011
B. byte from 0x1021
C. byte from 0x1035
D. byte from 0x1041
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backup slides
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split caches; multiple cores
instr.
cache
(core 1)

data
cache
(core 1)

instr.
cache
(core 1)

instr.
cache
(core 2)

data
cache
(core 2)

unified
L2 cache
(core 1)

unified
L2 cache
(core 2)

L3 cache
(shared between cores)
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hierarchy and instruction/data caches
typically separate data and instruction caches for L1

(almost) never going to read instructions as data or vice-versa

avoids instructions evicting data and vice-versa

can optimize instruction cache for different access pattern

easier to build fast caches: that handles less accesses at a time
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inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore
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stalling: bubbles + stall
cycle # 0 1 2 3 4 5 6 7 8

mrmovq 0(%rax), %rbx F D E M W
subq %rbx, %rcx F D D E M W
inserted nop E M W
irmovq $10, %rbx F F D E M W
…

keep same instruction in cycle 3
during cycle 2:
stall_D = 1
stall_F = 1 or extra f_pc MUX

insert nop in cycle 3
during cycle 2:
bubble_E = 1

need way to keep pipeline register unchanged to repeat a stage
(and to replace instruction with a nop)
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jump misprediction: bubbles
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
jle target (not taken) F D E M W
target: xorq %rax, %rax (mispredicted) F D -
inserted nop E M W
andq %rbx, %rcx (mispredicted) F -
inserted nop D E M W
subq %r9, %r10 (instr. after jle) F D E M W

need option: replace instruction with nop (“bubble”)
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squashing with stall/bubble
time fetch decode execute memory writeback

1 subq

2 jne subq

3 addq [?] jne subq (set ZF)

4 rmmovq [?] addq [?] jne (use ZF) subq

5 xorq nothing nothing jne (done) subq
stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

N N

N N N

*** B B N N
can compute bubble signal based on execute phase
won’t even start CC write for addq
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squashing HCLRS
just_detected_mispredict =

e_icode == JXX && !e_branchTaken;
bubble_D = just_detected_mispredict || ...;
bubble_E = just_detected_mispredict || ...;
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ret bubbles
cycle # 0 1 2 3 4 5 6 7 8 9

addq %r8, %r9 F D E M W
ret F D E M W
??? F
inserted nop D E M W
??? F
inserted nop D E M W
??? F
inserted nop D E M W
rrmovq %rax, %r8 (return address) F D E M W

need option: replace instruction with nop (“bubble”)
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ret stall
time fetch decode execute memory writeback
0 call

1 ret call

2 wait for ret ret call

3 wait for ret nothing ret call (store)

4 wait for ret nothing nothing ret (load) call

5 addq nothing nothing nothing ret

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

*** N N

*** B N N

*** B N N N

B N N N
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HCLRS bubble example
register fD {

icode : 4 = NOP;
rA : 4 = REG_NONE;
rB : 4 = REG_NONE;
...

};
wire need_ret_bubble : 1;
need_ret_bubble = ( D_icode == RET ||

E_icode == RET ||
M_icode == RET );

bubble_D = ( need_ret_bubble ||
... /* other cases */ );
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