
cache performance 1

1

changelog
25 Oct 2022: cache tradeoffs: change ‘increase block size’ effect
on hit time to ‘?’ instead of ‘bad’

26 Oct 2022: undo that change (after looking up paper on the
subject)

2

last time
replacement policies

when set is full, what to replace?
assume locality? least recently used or approx.
simpler? first-in, first-out; random

write policies: on a write should cache
store new block? write-allocate (v. write-no-allocate)
update next level immediately? write-through (v. write-back)

average memory access time (start)
hit time + miss rate · miss penalty
miss penalty = miss time - hit time

≈ extra time after checking for + not having hit

3

quiz Q1
tag 0xC20: 1100 0010 0000

set index 1 (4 sets total = 2 set index bits): 01

2nd byte in block – offset (8 bytes in block = 3 block offset bits):
001

1 1000 0100 0000 1001 = 0x18409

4

quiz Q2
value being replaced — goes in full set

if set 0: [TAG]00[OFFSET]
offset: any 3 bits
tag: anything but 0xA20 and 0xC20

if set 2: [TAG]10[OFFSET]
offset: any 3 bits
tag: anything but 0xC20 and 0x332

5

quiz Q3 [writes]
writes don’t affect what’s in cache + always go to next level

40 writes total go to next level

6

quiz Q3 [mapping]
2-byte blocks → cache blocks start at even addresses

if A[0] is at even address:
{A[0], A[1]} are together in a block (in set 0/1)
{A[2], A[3]} are together in a block (in set 1/0)

if A[0] is at odd address:
{*A[-1], A[0]} are together in a block (in set 0/1)
{A[1], A[2]} are together in a block (in set 1/0)
{A[3], *A[4]} are together in a block (in set 0/1)

will talk more about this issue later today

7

quiz Q3 [reads, even]
if A start at multiple of 4 address, 2 reads total:

set 0 set 1
(empty) empty

read A[0] A[0],A[1] — +1 read next level
read A[1] A[0],A[1] —
read A[2] A[0],A[1] A[2],A[3] +1 read next level
read A[3] A[0],A[1] A[2],A[3]
… … …
read A[0] A[0],A[1] A[2],A[3]
read A[1] A[0],A[1] A[2],A[3]
read A[2] A[0],A[1] A[2],A[3]
read A[3] A[0],A[1] A[2],A[3]
… … …

8

quiz Q3 [reads, odd]
if A start at odd address, 3 + 2 · 9 = 21 reads

set 0 set 1
(empty) (empty)

read A[0] A[-1],A[0] — +1 read
read A[1] A[-1],A[0] A[1],A[2] +1 read
read A[2] A[-1],A[0] A[1],A[2]
read A[3] A[3],A[4] A[1],A[2] +1 read
… … …
read A[0] A[-1],A[0] A[1],A[2] +1 read
read A[1] A[-1],A[0] A[1],A[2]
read A[2] A[-1],A[0] A[1],A[2]
read A[3] A[3],A[4] A[1],A[2] +1 read
… … …

9

quiz Q3 overall
A, B both at even addresses

40 (writes) + 2 (read A) + 2 (read B) = 44

A at odd address, B at even:
40 (writes) + 21 (read A) + 2 (read B) = 63

A at even address, B at odd:
40 (writes) + 2 (read A) + 3 (read B) = 45

A, B both at odd addresses
40 (writes) + 20 (read A) + 3 (read B) = 64

10

quiz Q4
4MB (data size) = 222 byte

64 byte blocks → 6 block offset bits

222 ÷ (4 · 64) = 214 sets → 14 set index bits

64 - (14 + 6) = 44 tag bits per block

214 (sets) ·4 (blocks/set) = 216 blocks

44 · 216 = 2 883 584 bits of tags stored

11

quiz Q5-6 (pt 1)
write 0x4444000 set 0x1100, tag 0x44 +valid, +dirty

(valid b/c write-allocate)
(dirty b/c write-back)

write 0x4444008 set 0x1100, tag 0x44 already in cache
read 0x4444000 set 0x1100, tag 0x44 already in cache
read 0x4444800 set 0x1120, tag 0x44 +valid
read 0x4444320 set 0x10cc, tag 0x44 +valid
write 0x4445000 set 0x1140, tag 0x44 +valid (write-allocate), +dirty (write-back)
read 0x8445000 set 0x1140, tag 0x84 +valid

(same set as before
but only using 2 of 4 ways)

5 valid bits set
2 dirty bits set

12

average memory access time
AMAT = hit time + miss penalty × miss rate

or AMAT = hit time × hit rate + miss time × miss rate

effective speed of memory

13

AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?

to miss rate of 2/30 → to approx 93% hit rate

14

AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?

to miss rate of 2/30 → to approx 93% hit rate

14

AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?
to miss rate of 2/30 → to approx 93% hit rate 14

exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?

3 + 0.1 · (10 + 0.2 · 100) = 6 cycles
L1 miss penalty is 10 + 0.2 · 100 = 30 cycles

15

exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?
3 + 0.1 · (10 + 0.2 · 100) = 6 cycles

L1 miss penalty is 10 + 0.2 · 100 = 30 cycles

15

exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?
3 + 0.1 · (10 + 0.2 · 100) = 6 cycles
L1 miss penalty is 10 + 0.2 · 100 = 30 cycles 15

cache miss types
common to categorize misses:

roughly “cause” of miss assuming cache block size fixed

compulsory (or cold) — first time accessing something
adding more sets or blocks/set wouldn’t change

conflict — sets aren’t big/flexible enough
a fully-associtive (1-set) cache of the same size would have done better

capacity — cache was not big enough

16

prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?

17

prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?

17

common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

18

common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

18

prefetching idea
look for sequential accesses

bring in guess at next-to-be-accessed value

if right: no cache miss (even if never accessed before)

if wrong: possibly evicted something else — could cause more
misses

fortunately, sequential access guesses almost always right

19

making any cache look bad
1. access enough blocks, to fill the cache

2. access an additional block, replacing something

3. access last block replaced

4. access last block replaced

5. access last block replaced

…

but — typical real programs have locality

20

cache optimizations
(assuming typical locality + keeping cache size constant if possible…)

miss rate hit time miss penalty
increase cache size better worse —
increase associativity better worse worse?
increase block size depends worse worse
add secondary cache — — better
write-allocate better — ?
writeback — — ?
LRU replacement better ? worse?
prefetching better — —
prefetching = guess what program will use, access in advance

average time = hit time + miss rate × miss penalty

21

cache optimizations by miss type
(assuming other listed parameters remain constant)

capacity conflict compulsory
increase cache size fewer misses fewer misses —
increase associativity — fewer misses —
increase block size more misses? more misses? fewer misses

LRU replacement — fewer misses —
prefetching — — fewer misses

22

cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 23

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 23

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

cache accesses and C code (1)
int scaleFactor;

int scaleByFactor(int value) {
return value * scaleFactor;

}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?

4-byte read of scaleFactor
8-byte read of return address

24

cache accesses and C code (1)
int scaleFactor;

int scaleByFactor(int value) {
return value * scaleFactor;

}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?
4-byte read of scaleFactor
8-byte read of return address

24

possible scaleFactor use
for (int i = 0; i < size; ++i) {

array[i] = scaleByFactor(array[i]);
}

25

misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag
index
offset

26

misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag 0xfffffffc 0xd7
index 0x10e 0x10e
offset 0x38 0x20

26

misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag 0xfffffffc 0xd7
index 0x10e 0x10e
offset 0x38 0x20

26

conflict miss coincidences?
obviously I set that up to have the same index

have to use exactly the right amount of stack space…

but gives one possible reason for conflict misses:

bad luck giving the same index for unrelated values

more direct reason: values related by power of two
some examples later, probably

27

C and cache misses (warmup 1)
int array[4];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

28

some possiblities

… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!

if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

29

some possiblities

… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!

if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

30

some possiblities

… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!
if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

31

some possiblities

… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!
if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

32

aside: alignment
compilers and malloc/new implementations usually try align values

align = make address be multiple of something

most important reason: don’t cross cache block boundaries

33

C and cache misses (warmup 2)
int array[4];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
odd_sum += array[1];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

Assume array[0] at beginning of cache block.

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

34

C and cache misses (warmup 3)
int array[8];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
even_sum += array[4];
odd_sum += array[5];
even_sum += array[6];
odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

Assume array[0] at beginning of cache block.
How many data cache misses on a 2-set direct-mapped cache with
8B blocks? 36

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

38

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

38

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

38

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

39

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

39

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

39

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

39

C and cache misses (warmup 4)
int array[8];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
even_sum += array[4];
even_sum += array[6];
odd_sum += array[1];
odd_sum += array[3];
odd_sum += array[5];
odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?

40

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]} 42

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]} 42

exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]} 42

arrays and cache misses (1)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

43

arrays and cache misses (2)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtiave cache be better?

44

backup slides

45

exercise (1)
initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

46

exercise (2)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

47

exercise (3)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

48

split caches; multiple cores
instr.
cache

(core 1)

data
cache

(core 1)

instr.
cache

(core 1)

instr.
cache

(core 2)

data
cache

(core 2)

unified
L2 cache
(core 1)

unified
L2 cache
(core 2)

L3 cache
(shared between cores)

49

hierarchy and instruction/data caches
typically separate data and instruction caches for L1

(almost) never going to read instructions as data or vice-versa

avoids instructions evicting data and vice-versa

can optimize instruction cache for different access pattern

easier to build fast caches: that handles less accesses at a time

50

inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2

probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

51

inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2

probably evicting from L1 adds to L2

L1 cache

L2 cache
inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

51

inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2

probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

51

	last time
	AMAT
	exercise: AMAT (simple case)
	exercise: multi-level cache AMAT
	miss types
	misc cache optimizations: prefetching

	cache tradeoffs
	benchmarking and cache results

	misses in C, and intuition behind conflicts
	array misses warmup
	array misses and cache results
	backup slides
	varying parameters exercise
	on split data/instruction caches and hierarchy

