Changelog

2022-11-02: simple blocking - expanded: correct typo of premature ' $\mathrm{i}+=2$ ' for ' $\mathrm{i}+=1$ '

2022-11-05: simple blocking - counting loads: also correct typo of premature $\mathrm{i}+=2$ for $\mathrm{i}+=1$

last time

counting cache misses in C code

mapping of arrays to sets
alignment (or not?)
analyzing sets separately
approximate miss counting
assessing locality (spatial/temporal)
look at innermost loop, accesses to array
same as previous access: 0% chance of miss adjacent: 1 (elems per block) chance of miss non-adjacent, not accessed recently: 100% chance of miss

quiz Q2

normal version:
hit detection + data extraction take 5 cycles
+100 cycles on miss $=$ miss penalty
105 cycles miss time
optimized version
hit detection takes 2 cycles
data extraction takes 5 cycles (done in parallel with hit detection)
+100 cycles after hit detection on miss
102 cycle miss time
$90 \% \cdot \mathrm{c}+10 \% \cdot 102=14.7$ cycle AMAT

quiz Q3 (1)

```
for (int j = 0; j < 2; j += 1) {
            for (int i = 0; i < 4; i += 1) {
                        if (sum > array[i * 3 + j]) {
                            sum += array[i * 3 + j];
            }
    }
}
accesses index \(0,3,6,9,1,4,7,10\)
```


quiz Q3 (2)

0 miss: set 0 \{ $0+1,--\}$; set 1 \{--, --$\}$
3 miss: set $0\{0+1,--\} ;$ set $1\{2+3,--\}$
6 miss: set $1\{0+1,--\}$; set $1\{2+3,6+7\}$
9 miss: set $0\{0+1,8+9\}$; set $1\{2+3,6+7\}$
1 hit
4 miss: set $0\{0+1,4+5\}$; set $1\{2+3,6+7\}$
7 hit
10 miss

quiz Q5

```
/* version A */
for (int i = 0; i < N; i += 1) {
        for (int j = 0; j < i; j += 1) {
            A[i*N + j] = D[j*N + i] + B[i] * C[j];
        }
}
when }\textrm{i}=1\mathrm{ : B index 1
when }\textrm{i}=2: \textrm{B}\mathrm{ index 2, 2
when }\textrm{i}=3:\textrm{B}\mathrm{ index 3, 3, 3
```

only first access to B for each i should be miss first access only miss if not in same block as element of B from prior i

quiz Q5 part 2

when $\mathrm{i}=1: \mathrm{B}$ index 1
when $\mathrm{i}=2$: B index 2,2
when $\mathrm{i}=3: \mathrm{B}$ index $3,3,3$
only first access to B for each i should be miss
first access only miss if not in same block as element of B from prior i
N possible i
$1 / 4$ chance of i and $i+1$ being in different blocks
total misses $N / 4$

quiz Q6

```
/* version A */
for (int i = 0; i < N; i += 1) {
        for (int j = 0; j < i; j += 1) {
            A[i*N + j] = D[j*N + i] + B[i] * C[j];
        }
}
when }\textrm{i}=1:\textrm{D}\mathrm{ index 1
when i = 2: D index 2,N+2
when }\textrm{i}=3:\textrm{D}\mathrm{ index 3,N+3, 2N+3
```

when $\mathrm{i}=\mathrm{K}: \mathrm{D}$ index $\mathrm{K}, \mathrm{N}+\mathrm{K}, 2 \mathrm{~N}+\mathrm{K}, \ldots(\mathrm{K}-1) \mathrm{N}+\mathrm{K}$

quiz Q6 part 2

```
when }\textrm{i}=1\mathrm{ : D index 1
when i = 2: D index 2,N+2
when i = 3: D index 3,N+3, 2N+3
when i = K: D index K, N+K, 2N+K, ..(K-1)N+K
```

once i gets big enough, accessing lots of elements in inner loop once i gets big enough, not access same block without lots of accesses in between so, except every access to D to be miss once once i big enough total number of accesses to D is about $N(N-1) / 2 \approx N^{2} / 2$ since N is laros comnared to cache excent most of them to be

locality exercise (2)

```
/* version 2 */
for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 3 */
for (int ii = 0; ii < N; ii += 32)
    for (int jj = 0; jj < N; jj += 32)
        for (int i = ii; i < ij + 32; ++i)
        for (int j = jj; j < jj + 32; ++j)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

a transformation

for (int $k=0 ; k<N ; k+=1)$
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i * N+j]+=A[i * N+k]$ * $B[k * N+j] ;$
for (int $k k=0 ; k k<N ; k k+=2$)
for (int $k=k k ; k<k k+2 ;++k)$
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
split the loop over k - should be exactly the same (assuming even N)

a transformation

for (int k = 0; k < N ; k += 1)
for (int i $=0$; i < N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)
$C[i * N+j]+=A[i * N+k]$ * $B[k * N+j] ;$
for (int kk = 0; kk < N; kk += 2)

```
    for (int \(k=k k ; k<k k+2 ;++k)\)
        for (int i = 0; i < N; ++i)
        for (int \(j=0 ; j<N ;++j)\)
        \(C[i * N+j]+=A[i * N+k]\) * \(B[k * N+j] ;\)
```

split the loop over k - should be exactly the same (assuming even N)

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
            /* load Aik, Aik+1 into cache and process: */
        for (int k = kk; k < kk + 2; ++k)
        C[i*N+j] += A[i*N+k] * B[k*N+j];
```

now reorder split loop — same calculations

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        /* load Aik, Aik+1 into cache and process: */
        for (int k = kk; k < kk + 2; ++k)
        C[i*N+j] += A[i*N+k] * B[k*N+j];
```

now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int \(k=k k ; k<k k+2 ;++k\) ) */
        for (int \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
        for (int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        /* load Aik, Aik+1 into cache and process: */
        for (int \(k=k k ; k<k k+2 ;++k\) )
        \(C[i * N+j]+=A[i * N+k]\) * \(B[k * N+j] ;\)
```

now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```


simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
Temporal locality in \(C_{i j} \mathrm{~S}\)
```


simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

More spatial locality in $A_{i k}$

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

Still have good spatial locality in $B_{k j}, C_{i j}$

recall: counting misses (kij-order)

```
for (int \(k=0 ; k<N ;++k)\)
    for (int i = 0; i < N; ++i)
        for (int \(j=0 ; j<N ;++j)\)
            \(C[i * N+j]+=A[i * N+k] * B[k * N+j] ;\)
```

for A : about 1 misses per j-loop total misses: N^{2}
for B: about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size
for C : about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size

counting misses for $\mathbf{A}(1)$

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
        C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
        C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)

counting misses for \mathbf{A} (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$
$A\left[0^{*} N+2\right], A\left[0^{*} N+3\right], A\left[0^{*} N+2\right], A[0 * N+3] \ldots$

counting misses for \mathbf{A} (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$
$A\left[0^{*} N+2\right], A\left[0^{*} N+3\right], A\left[0^{*} N+2\right], A[0 * N+3] \ldots$

counting misses for \mathbf{A} (2)

$\mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)

counting misses for \mathbf{A} (2)

$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+0], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+1], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+0], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+1] \ldots$ $A[0 * N+2], A[0 * N+3], A[0 * N+2], A[0 * N+3] \ldots$
likely cache misses: only first iterations of j loop how many cache misses per iteration? usually one $\mathrm{A}[0 * \mathrm{~N}+0]$ and $\mathrm{A}[0 * \mathrm{~N}+1]$ usually in same cache block

counting misses for \mathbf{A} (2)

$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$ $A[0 * N+2], A[0 * N+3], A\left[0^{*} N+2\right], A[0 * N+3] \ldots$
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one
$\mathrm{A}[0 * \mathrm{~N}+0]$ and $\mathrm{A}[0 * \mathrm{~N}+1]$ usually in same cache block
about $\frac{N}{2} \cdot N$ misses total

counting misses for B (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
        C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
        C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
```

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[2^{*} N+0\right], B[3 * N+0], \ldots B[2 * N+(N-1)], B\left[3^{*} N+(N-1)\right]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}\left[3^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[4^{*} \mathrm{~N}+0\right], \mathrm{B}\left[5^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[4^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[5^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}\left[3^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$
likely cache misses: any access, each time

counting misses for B (2)

access pattern for B :
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B[1 * N+(N-1)]$
likely cache misses: any access, each time
how many cache misses per iteration? equal to \# cache blocks in 2 rows

counting misses for B (2)

access pattern for B :
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B[0 * N+(N-1)], B\left[1^{*} N+(N-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B[1 * N+(N-1)]$
likely cache misses: any access, each time
how many cache misses per iteration? equal to \# cache blocks in 2 rows
about $\frac{N}{2} \cdot N \cdot \frac{2 N}{\text { block size }}=N^{3} \div$ block size misses

simple blocking - counting misses

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
```

$\frac{2}{2} \cdot N$ j-loop executions and (assuming N large):
about 1 misses from A per j-loop
$N^{2} / 2$ total misses (before blocking: N^{2})
about $2 N \div$ block size misses from B per j-loop
$N^{3} \div$ block size total misses (same as before blocking)
about $N \div$ block size misses from C per j-loop
$N^{3} \div\left(2 \cdot\right.$ block size) total misses (before: $N^{3} \div$ block size)

simple blocking - counting misses

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
```

$\frac{2}{2} \cdot N$ j-loop executions and (assuming N large):
about 1 misses from A per j-loop
$N^{2} / 2$ total misses (before blocking: N^{2})
about $2 N \div$ block size misses from B per j-loop
$N^{3} \div$ block size total misses (same as before blocking)
about $N \div$ block size misses from C per j-loop
$N^{3} \div\left(2 \cdot\right.$ block size) total misses (before: $N^{3} \div$ block size)

improvement in read misses

simple blocking (2)

same thing for i in addition to k ?

```
for (int kk = 0; kk < N; kk += 2) {
    for (int ii = 0; ii < N; ii += 2) {
            for (int j = 0; j < N; ++j) {
            /* process a "block": */
            for (int k = kk; k < kk + 2; ++k)
            for (int i = 0; i < ii + 2; ++i)
                        C[i*N+j] += A[i*N+k] * B[k*N+j];
        }
    }
}
```


simple blocking - locality

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
                Ci+0,j}+=\mp@subsup{A}{i+0,k+0}{*}\mp@subsup{B}{k+0,j}{
                C i+0,j += A
                Ci+1,j += A
                C
        }
    }
}
```


simple blocking - locality

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
                Ci+0,j}+=\mp@subsup{A}{i+0,k+0}{*}\mp@subsup{B}{k+0,j}{
                C
                C
                C
        }
    }
}
```

now: more temporal locality in B previously: access $B_{k j}$, then don't use it again for a long time

simple blocking - counting misses for A

for (int $k=0 ; k<N ; k+=2)$
for (int i = 0; i < N; i += 2)
for (int j $=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$) \{
$C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j}$
$C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j}$
$C_{i+1, j}+=A_{i+1, k+0} * B_{k+0, j}$
$C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j}$

$$
\text { \} }
$$

$\frac{N}{2} \cdot \frac{N}{2}$ iterations of j loop
likely 2 misses per loop with A (2 cache blocks)
total misses: $\frac{N^{2}}{2}$ (same as only blocking in K)

simple blocking - counting misses for B

```
for (int k = 0; k < N; k += 2)
    for (int i = 0; i < N; i += 2)
        for (int j = 0; j < N; ++j) {
            C}\mp@subsup{C}{i+0,j}{+=}\mp@subsup{A}{i+0,k+0}{* * B B+0,j
        C Ci+0,j += A Ai+0,k+1 * B B 
        C}\mp@subsup{C}{i+1,j}{+=}\mp@subsup{A}{i+1,k+0}{** B
        C}\mp@subsup{C}{i+1,j}{+=}\mp@subsup{A}{i+1,k+1}{** B
        }
```

$\frac{N}{2} \cdot \frac{N}{2}$ iterations of j loop
likely $2 \div$ block size misses per iteration with B
total misses: $\frac{N^{3}}{2 \cdot \text { block size }}$ (before: $\frac{N^{3}}{\text { block size }}$)

simple blocking - counting misses for C

$$
\begin{aligned}
& \text { for (int } \mathrm{k}=0 ; \mathrm{k}<\mathrm{N} ; \mathrm{k}+=2 \text {) } \\
& \text { for (int } \mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}+=2 \text {) } \\
& \text { for (int } \mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}) \text {) } \\
& C_{i+0, j}+=A_{i+0, k+0} \star B_{k+0, j} \\
& C_{i+0, j}+=A_{i+0, k+1} \star B_{k+1, j} \\
& C_{i+1, j}+=A_{i+1, k+0} \star B_{k+0, j} \\
& \text { \} } C_{i+1, j}+=A_{i+1, k+1} \star B_{k+1, j}
\end{aligned}
$$

$\frac{N}{2} \cdot \frac{N}{2}$ iterations of j loop
likely $\frac{2}{\text { block size }}$ misses per iteration with C
total misses: $\frac{N^{3}}{2 \cdot \text { block size }}$ (same as blocking only in K)

simple blocking - counting misses (total)

for (int $k=0 ; k<N ; k+=2)$
for (int i = 0; i < N; i += 2)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j})$ \{
$C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j}$
$C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j}$
$C_{i+1, j}+=A_{i+1, k+0} * B_{k+0, j}$
$C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j}$
\}
before:
A: $\frac{N^{2}}{2} ; \mathrm{B}: \frac{N^{3}}{1 \cdot \text { block size }} ; \mathrm{C} \frac{N^{3}}{1 \cdot \text { block size }}$
after:
A: $\frac{N^{2}}{2} ; \mathrm{B}: \frac{N^{3}}{2 \cdot \text { block size }} ; \mathrm{C} \frac{N^{3}}{2 \cdot \text { block size }}$

generalizing: divide and conquer

```
partial_matrixmultiply(float *A, float *B, float *C
                int startI, int endI, ...) {
    for (int i = startI; i < endI; ++i) {
        for (int j = startJ; j < endJ; ++j) {
            for (int k = startK; k < endK; ++k) {
}
matrix_multiply(float *A, float *B, float *C, int N) {
    for (int ii = 0; ii < N; ii += BLOCK_I)
    for (int jj = 0; jj < N; jj += BLOCK_J)
    for (int kk = 0; kk < N; kk += BLOCK_K)
                            /* do everything for segment of A, B, C
                that fits in cache! */
                partial_matmul(A, B, C,
                        ii, ii + BLOCK_I, jj, jj + BLOCK_J,
                        kk, kk + BLOCK_K)
```


array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
inner loops work on "matrix block" of A, B, C rather than rows of some, little blocks of others blocks fit into cache (b/c we choose I, K, J) where previous rows might not

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
now (versus loop ordering example) some spatial locality in A, B, and C some temporal locality in A, B, and C

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
$C_{i j}$ calculation uses strips from A, B K calculations for one cache miss good temporal locality!

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$A_{i k}$ used with entire strip of $B J$ calculations for one cache miss good temporal locality!

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

(approx.) $K I J$ fully cached calculations
for $K I+I J+K J$ values need to be lodaed per "matrix block" (assuming everything stays in cache)

cache blocking efficiency

for each of $N^{3} / I J K$ matrix blocks:
load $I \times K$ elements of $A_{i k}$:
$\approx I K \div$ block size misses per matrix block
$\approx N^{3} /(J \cdot$ blocksize $)$ misses total
load $K \times J$ elements of $B_{k j}$:
$\approx N^{3} /(I \cdot$ blocksize $)$ misses total
load $I \times J$ elements of $C_{i j}$:
$\approx N^{3} /(K \cdot$ blocksize $)$ misses total
bigger blocks - more work per load!
catch: $I K+K J+I J$ elements must fit in cache otherwise estimates above don't work

cache blocking rule of thumb

fill the most of the cache with useful data
and do as much work as possible from that
example: my desktop 32 KB L1 cache
$I=J=K=48$ uses $48^{2} \times 3$ elements, or 27 KB .
assumption: conflict misses aren't important

exercise: miss estimating (3)

$$
\begin{aligned}
& \text { for (int kk = 0; kk < 1000; kk += 10) } \\
& \text { for (int jj = 0; jj < 1000; jj += 10) } \\
& \text { for (int i = 0; i < 1000; i += 1) } \\
& \text { for (int } \mathrm{j}=\mathrm{jj} ; \mathrm{j}<\mathrm{jj}+10 \text {; } \mathrm{j}+=1 \text {) } \\
& \text { for (int } k=k k ; k<k k+10 ; k+=1) \\
& A[k * N+j]+=B[i * N+j] ;
\end{aligned}
$$

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements, but big enough to hold 500 or so
estimate: approximately how many misses for A, B ?
hint 1: part of A, B loaded in two inner-most loops only needs to be loaded once

loop ordering compromises

loop ordering forces compromises:
for k : for i : for $j: c[i, j]+=a[i, k] * b[j, k]$
perfect temporal locality in $a[i, k]$
bad temporal locality for $c[i, j], b[j, k]$
perfect spatial locality in $c[i, j]$
bad spatial locality in $b[j, k], a[i, k]$

loop ordering compromises

loop ordering forces compromises:
for k : for i : for $\mathrm{j}: c[i, j]+=a[i, k] * b[j, k]$
perfect temporal locality in $a[i, k]$
bad temporal locality for $c[i, j], b[j, k]$
perfect spatial locality in $c[i, j]$
bad spatial locality in $b[j, k], a[i, k]$
cache blocking: work on blocks rather than rows/columns have some temporal, spatial locality in everything

cache blocking pattern

no perfect loop order? work on rectangular matrix blocks
size amount used in inner loops based on cache size
in practice:
test performance to determine 'size' of blocks

sum array ASM (gcc 8.3 -Os)

```
long sum_array(long *values, int size) {
    long sum = 0;
    for (int i = 0; i < size; ++i) {
        sum += values[i];
    }
    return sum;
}
sum_array:
        xorl %edx, %edx
        // i = 0
        xorl %eax, %eax
        // sum = 0
loop:
        cmpq %edx, %esi
        jle endOfLoop
        addq (%rsi,%rdx,8), %rax
        incq %rdx
    jmp loop
endOfLoop:
    ret
```


loop unrolling (ASM)

```
loop:
    cmpl %edx, %esi
    jle endOfLoop // if (i < size) break
    addq (%rdi,%rdx,8),%rax // sum += values[i]
    incq %rdx
    jmp loop
endOfLoop:
loop:
            cmpl %edx, %esi
    jle endOfLoop
    addq (%rdi,%rdx, 8), %rax
    // if (i < size) break
    8(%rdi,%rdx,8), %rax // sum += values[i+1]
    addq $2, %rdx
    // i += 2
    jmp loop
    // plus handle leftover?
endOfLoop:
```


loop unrolling (ASM)

```
loop:
    cmpl %edx, %esi
    jle endOfLoop // if (i < size) break
    addq (%rdi,%rdx,8), %rax // sum += values[i]
    incq %rdx
    jmp loop
endOfLoop:
size iterations > 5 instructions
loop:
                cmpl %edx, %esi
                jle endOfLoop
            addq (%rdi,%rdx, 8), %rax
            addq 8(%rdi,%rdx,8),%rax
            addq $2, %rdx
            jmp loop
    // plus handle leftover?
endOfLoop:
size }\div2\mathrm{ iterations }\times6\mathrm{ instructions
```


loop unrolling (C)

```
for (int i = 0; i < N; ++i)
        sum += A[i];
```

```
int i;
for (i = 0; i + 1 < N; i += 2) {
    sum += A[i];
    sum += A[i+1];
}
// handle leftover, if needed
if (i < N)
    sum += A[i];
```


more loop unrolling (C)

```
int i;
for (i = 0; i + 4 <= N; i += 4) {
    sum += A[i];
    sum += A[i+1];
    sum += A[i+2];
    sum += A[i+3];
}
// handle leftover, if needed
for (; i < N; i += 1)
    sum += A[i];
```


loop unrolling performance

on my laptop with 992 work/loop iteration (fits in L1 cache) cycles/element	instructions/element	
1	1.33	4.02
2	1.03	2.52
4	1.02	1.77
8	1.01	1.39
16	1.01	1.21
32	1.01	1.15
1.01 cycles/element	- latency bound	

loop unrolling on MM

original code:

```
for (int k = 0; k < N; ++k)
    for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j) {
        C[i*N+j] += A[i*N+k] * B[k*N+j];
    }
```

loop unrolling in j loop (not cache blocking)
for (int $k=0 ; k<N ;++k)$
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int j $=0 ; j<N ; j+=2$) \{
$C[i \star N+j]+=A[i \star N+k]$ * $B[k * N+j] ;$
$C[i * N+j+1]+=A[i * N+k] * B[k * N+j+1] ;$
\}

loop unrolling on MM

original code:

 for \((i n t \quad j=0 ; j<N ;++j)\{\)
 \(C\left[i^{*} N+j\right]+=A\left[i^{*} N+k\right] * B[k * N+j] ;\)
 \}
 loop unrolling in j loop (not cache blocking)
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int j $=0 ; j<N ; j+=2)$ \{
$C\left[i^{*} N+j\right]+=A[i \star N+k] \quad A\left[k^{*} N+j\right] ;$
$C\left[i^{*} N+j+1\right]+=A\left[i^{*} N+k\right] * B[k * N+j+1] ;$
\}

$$
\begin{aligned}
& \text { access order: } \\
& k=i=j=0: C\left[0^{*} N+0\right], A\left[0^{*} N+0\right], B\left[0^{*} N+0\right] \\
& \quad C\left[0^{*} N+1\right], A\left[0^{*} N+0\right], B\left[0^{*} N+1\right] \\
& k=i=0, \\
& \quad C=2: C\left[0^{*} N+2\right], A\left[0^{*} N+0\right], B\left[0^{*} N+2\right] \\
& C+3], A\left[0^{*} N+0\right], B\left[0^{*} N+3\right]
\end{aligned}
$$

access order:

$\mathrm{k}=\mathrm{i}=\mathrm{j}=0: \mathrm{C}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{A}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{B}\left[0^{*} \mathrm{~N}+0\right]$
$k=i=0, j=1: C\left[0^{*} N+1\right], A\left[0^{*} N+0\right], B\left[0^{*} N+1\right]$
$k=i=0, j=2: C\left[O^{*} N+2\right], A\left[O^{*} N+0\right], B\left[O^{*} N+2\right]$
$k=i=0, j=3: C[0 * N+3], A\left[O^{*} N+0\right], B[0 * N+3]$

loop unrolling on MM

original code:

 for \((i n t \quad j=0 ; j<N ;++j)\{\)
 \(C[i \star N+j]+=A[i \star N+k] * B[k \star N+j] ;\)
 \}
 loop unrolling in j loop (not cache blocking)
for (int $k=0 ; k<N ;++k$)
for (int $i=0 ; i<N ;++i)$
for (int j $=0 ; j<N ; j+=2)$ \{
$C\left[i^{*} N+j\right]+=A[i \star N+k] \quad A\left[k^{*} N+j\right] ;$
$C\left[i^{\star N}+j+1\right]+=A\left[i^{\star} N+k\right] \quad * B\left[k^{\star} N+j+1\right]$;
\}

$$
\begin{aligned}
& \text { access order: } \\
& k=i=j=0: C\left[0^{*} N+0\right], A\left[0^{*} N+0\right], B\left[0^{*} N+0\right] \\
& \quad C\left[0^{*} N+1\right], A\left[0^{*} N+0\right], B\left[0^{*} N+1\right] \\
& k=i=0, \\
& \quad C=2: C\left[0^{*} N+2\right], A\left[0^{*} N+0\right], B\left[0^{*} N+2\right] \\
& C\left[0^{*} N+3\right], A\left[0^{*} N+0\right], B\left[0^{*} N+3\right]
\end{aligned}
$$

access order:

$\mathrm{k}=\mathrm{i}=\mathrm{j}=0: \mathrm{C}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{A}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{B}\left[0^{*} \mathrm{~N}+0\right]$
$\mathrm{k}=\mathrm{i}=0, \mathrm{j}=1: C\left[0^{*} \mathrm{~N}+1\right], A\left[0^{*} \mathrm{~N}+0\right], B\left[0^{*} \mathrm{~N}+1\right]$
$k=i=0, j=2: C\left[O^{*} N+2\right], A\left[O^{*} N+0\right], B\left[O^{*} N+2\right]$
$k=i=0, j=3: C[0 * N+3], A\left[O^{*} N+0\right], B[0 * N+3]$

loop unrolling on MM

original code:

 for \((i n t j=0 ; j<N ;++j)\{\)
 \(C\left[i^{\star N}+j\right]+=A\left[i^{\star} N+k\right] \quad \star B\left[k^{\star N+j}\right] ;\)
 \}
 loop unrolling in j loop (not cache blocking)
for (int $k=0 ; k<N ;++k$)
for (int $i=0 ; i<N ;++i)$
for (int j $=0 ; j<N ; j+=2)$ \{
$C\left[i^{*} N+j\right]+=A[i \star N+k] \quad A\left[k^{*} N+j\right] ;$
$C\left[i^{*} N+j+1\right]+=A\left[i^{*} N+k\right] * B[k * N+j+1]$;
\}

$$
\begin{aligned}
& \text { access order: } \\
& k=i=j=0: C\left[0^{*} N+0\right], A\left[0^{*} N+0\right], B\left[0^{*} N+0\right] \\
& \quad C\left[0^{*} N+1\right], A\left[0^{*} N+0\right], B\left[0^{*} N+1\right] \\
& k=i=0, \\
& \quad \mathrm{j}=2: C\left[0^{*} N+2\right], A\left[0^{*} N+0\right], B\left[0^{*} N+2\right] \\
& C\left[0^{*} N+3\right], A\left[0^{*} N+0\right], B\left[0^{*} N+3\right]
\end{aligned}
$$

access order:

$\mathrm{k}=\mathrm{i}=\mathrm{j}=0: \mathrm{C}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{A}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{B}\left[0^{*} \mathrm{~N}+0\right]$
$k=i=0, j=1: C\left[0^{*} N+1\right], A\left[0^{*} N+0\right], B\left[0^{*} N+1\right]$
$k=i=0, j=2: C\left[O^{*} N+2\right], A\left[O^{*} N+0\right], B\left[O^{*} N+2\right]$
$\mathrm{k}=\mathrm{i}=0, \mathrm{j}=3: \mathrm{C}\left[\mathrm{O}^{*} \mathrm{~N}+3\right], \mathrm{A}\left[\mathrm{O}^{*} \mathrm{~N}+0\right], \mathrm{B}\left[\mathrm{O}^{*} \mathrm{~N}+3\right]$

partial cache blocking in MM

original code:

```
for (int k = 0; k < N; ++k)
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j) {
        C[i*N+j] += A[i*N+k] * B[k*N+j];
        }
```

(incomplete) cache blocking with only k :
changes locality \mathbf{v}. original (order of $\mathrm{A}, \mathrm{B}, \mathbf{C}$ accesses)
for (int kk = 0; kk < N; kk += BLOCK_SIZE)
for (int i $=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $\left.k=k k ; k<k k+B L O C K _S I Z E ;++k\right)$
$C[i \star N+j]+=A[i \star N+k+0] * B[k * N+j] ;$

loop unrolling v cache blocking (0)

cache blocking for k only: (with teeny 1 by 1 by 2 matrix blocks) changes locality v. original (order of A, B, C accesses)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for(int k = kk; k < kk + 2; ++k)
        C[i*N+j] += A[i*N+k] * B[(k)*N+j];
```

with loop unrolling added afterwards:
same order of A, B, C accesses as above
for (int $k=0 ; k<N ; k+=2$)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N ; ++j) \{
$C[i * N+j]+=A[i * N+k+0]$ * $B[(k+0) * N+j] ;$
$C[i * N+j]+=A[i * N+k+1]$ * $B[(k+1) * N+j] ;$
\}

loop unrolling v cache blocking (0)

cache blocking for k only: (with teeny 1 by 1 by 2 matrix blocks) changes locality \mathbf{v}. original (order of $\mathrm{A}, \mathrm{B}, \mathbf{C}$ accesses)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for(int k = kk; k < kk + 2; ++k)
        C[i*N+j] += A[i*N+k] * B[(k)*N+j];
```

with loop unrolling added afterwards:
same order of A, B, C accesses as above
for (int $k=0 ; k<N ; k+=2$)
for (int i = 0; i < N; ++i)
for (int $j=0 ; j<N ;++j)\{$
$\quad C[i \star N+j]+=A[i * N+k+0] \star B[(k+0) \star N+j] ;$
$C[i * N+j]+=A[i * N+k+1] * B[(k+1) * N+j] ;$

loop unrolling v cache blocking

cache blocking for k only ($1 \times 1 \times 2$ blocks) and then loop unrolling

```
for (int k = 0; k < N; k += 2)
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+k+0] * B[(k+0)*N+j];
            C[i*N+j] += A[i*N+k+1] * B[(k+1)*N+j];
    }
```

versus pretty useless loop unrolling in k-loop same order of A, B, C accesses as original
for (int $k=0 ; k<N ; k+=2$) \{
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k+0]$ * $B[(k+0) * N+j] ;$
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for (int j $=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C\left[i^{*} N+j\right]+=A\left[i^{\star} N+k+1\right] * B[(k+1) \star N+j] ;$

loop unrolling v cache blocking (1)

cache blocking for k, i only: (1 by 2 by 2 matrix blocks)
for (int $k=0 ; k<N ; k+=2)$
for (int i = 0; i < N; i += 2)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)
for (int kk = k; kk < k + 2; ++kk)
for (int ii = i; ii < i + 2; ++ii)
C [ii*N+j] += A[ii*N+kk] * B[(kk)*N+j];
cache blocking for k, i and loop unrolling for i :
for (int k = 0; k < N; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
for (int kk $=k$; $k k<k+2$; ++kk) \{
$C[(i+0) * N+j]+=A[(i+0) * N+k k]$ * $B[(k k) * N+j] ;$
$C[(i+1) * N+j]+=A[(i+1) * N+k k]$ * $B[(k k) * N+j] ;$ \}

interlude: real CPUs

modern CPUs:
execute multiple instructions at once
execute instructions out of order - whenever values available

beyond pipelining: multiple issue

start more than one instruction/cycle multiple parallel pipelines; many-input/output register file hazard handling much more complex

	cycle \#	0	1	2	3	4	5	6	7

beyond pipelining: out-of-order

find later instructions to do instead of stalling
lists of available instructions in pipeline registers take any instruction with available values
provide illusion that work is still done in order much more complicated hazard handling logic

out-of-order and hazards

out-of-order execution makes hazards harder to handle
problems for forwarding:
value in last stage may not be most up-to-date
older value may be written back before newer value?
problems for branch prediction:
mispredicted instructions may complete execution before squashing
which instructions to dispatch?
how to quickly find instructions that are ready?

out-of-order and hazards

out-of-order execution makes hazards harder to handle
problems for forwarding:
value in last stage may not be most up-to-date
older value may be written back before newer value?
problems for branch prediction:
mispredicted instructions may complete execution before squashing
which instructions to dispatch?
how to quickly find instructions that are ready?

read-after-write examples (1)

addq \%r10, \%r8 addq \%r11, \%r8 addq \%r12, \%r8

normal pipeline: two options for \%r8?
choose the one from earliest stage because it's from the most recent instruction

read-after-write examples (1)

register version tracking

goal: track different versions of registers
out-of-order execution: may compute versions at different times only forward the correct version
strategy for doing this: preprocess instructions represent version info
makes forwarding, etc. lookup easier

rewriting hazard examples (1)

addq $\% r 10$, $\%$ r 8 addq $\% r 10, \% r 8_{v 1} \rightarrow \% r 8_{v 2}$
addq $\% r 11, \% r 8$ addq $\% r 11, \% r 8_{v 2} \rightarrow \% r 8_{v 3}$
addq \%r12, $\% r 8$ addq $\% r 12, \% r 8_{v 3} \rightarrow \% r 8_{v 4}$
read different version than the one written
represent with three argument psuedo-instructions
forwarding a value? must match version exactly
for now: version numbers
later: something simpler to implement

write-after-write example

write-after-write example

out-of-order execution:
if we don't do something, newest value could be overwritten!

write-after-write example

addq \%r10, \%r8
rmmovq \%r8, (\%rax) F
D E M W
rrmovq \%r11, \%r8
rmmovq \%r8, 8(\%rax)
F D E M W
F F D E M W
D E M W
irmovq \$100, \%r8
addq \%r13, \%r8
F
cycle \#
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ F & & & & & & D & E & M & W\end{array}$

two instructions that haven't been started could need different versions of $\%$ r8!

write-after-write example

addq \%r10, \%r8
cycle \#
rmmovq \%r8, (\%rax) F
rrmovq \%r11, \%r8
rmmovq \%r8, 8(\%rax)
irmovq \$100, \%r8
addq \%r13, \%r8
F

0	1	2	3	4	5	6	7	8
F					D	E	M	W

D E M W
F D E M W
F D E M W
F D E M W
F
D E M W

keeping multiple versions

for write-after-write problem: need to keep copies of multiple versions
both the new version and the old version needed by delayed instructions for read-after-write problem: need to distinguish different versions solution: have lots of extra registers
...and assign each version a new 'real' register
called register renaming

register renaming

rename architectural registers to physical registers
different physical register for each version of architectural
track which physical registers are ready
compare physical register numbers to do forwarding

backup slides

exercise: miss estimating (2)

```
for (int k = 0; k < 1000; k += 1)
    for (int i = 0; i < 1000; i += 1)
    for (int j = 0; j < 1000; j += 1)
    A[k*N+j] += B[i*N+j];
```

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements
estimate: approximately how many misses for A, B ?

simple blocking - with 3 ?

```
for (int kk = 0; kk < N; kk += 3)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*NN+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
            C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];
        }
```

$\frac{N}{3} \cdot N \mathrm{j}$-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N \div$ block size misses from C per j-loop iteration $N^{3} \div$ block size total misses (same as before)

simple blocking - with 3 ?

```
for (int kk = 0; kk < N; kk += 3)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
            C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];
        }
```

$\frac{N}{3} \cdot N \mathrm{j}$-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N \div$ block size misses from C per j-loop iteration $N^{3} \div$ block size total misses (same as before)

more than $3 ?$

can we just keep doing this increase from 3 to some large X ? ... assumption: X values from A would stay in cache X too large - cache not big enough
assumption: X blocks from B would help with spatial locality X too large - evicted from cache before next iteration

array usage (2 k at a time)

$B_{k i}$ to $B_{k+1, i}$

for each kk: for each i:
for each j :
for $k=k k, k k+1$:

$$
C_{i j}+=A_{i k} \cdot B_{k j}
$$

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

within innermost loop good spatial locality in A bad locality in B
good temporal locality in C

array usage (2k at a time)

for each kk: for each i:
for each j :
for $k=k k, k k+1$: $C_{i j}+=A_{i k} \cdot B_{k j}$
loop over j : better spatial locality over A than before; still good temporal locality for A

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

loop over j : spatial locality over B is worse but probably not more misses cache needs to keep two cache blocks for next iter instead of one (probably has the space left over!)

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1: \text { have more than } 4 \text { cache blocks? } \\
& \quad C_{i j}+=A_{i k} \text {. increasing } k k \text { increment would use more of them }
\end{aligned}
$$

exercise

```
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        A[i*N+j] += B[i] + C[j]
```

Which of the following suggests changing order of memory accesses?

```
/* version A */
```

for (int i = 0; i < N; ++i)
for (int $j=0 ; j<N ; j+=2)$ \{
$A[i * N+j]+=B[i]+C[j]$
$A[i * N+j+1]+=B[i]+C[j+1]$
\}

```
/* version B */
for (int i = 0; i < N; i += 2)
    for (int j = 0; j < N; j += 2) {
        A[i*N+j] += B[i] + C[j];
        A[i*N+j+1] += B[i] + C[j+1];
        A[(i+1)*N+j] += B[i+1] + C[j];
        A[(i+1)*N+j+1] += B[i+1] + C[j+1];
```

 \}

a data flow example

```
addq %rax, %rbx
addq %rax, %rcx
imulq %rdx, %rcx
movq (%rbx, %rdx), %r8
imulq %r8,%rcx
addq %rax, %rbx
```

addq, compute addr: 1 cycle imulq: 3 cycle latency
load: 3 cycle latency
Q1: latency bound on cycles?
Q2: what can be done
at same time as compute addr?

reorder buffer: on rename

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\%$ rax	$\% \times 12$
$\% r c x$	$\% \times 17$
$\% r b x$	$\% \times 13$
$\%$ rdx	$\% \times 07$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 23$
\cdots
\cdots

reorder buffer: on rename

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\% r a x$	$\% x 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% x 07$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 23$
\cdots
\cdots

reorder buffer (ROB)

instr num.	PC	dest. reg	done?	mispred? / except?
14	0×1233	$\% r b x / \% \times 23$		
15	0×1239	$\% r a x / \% \times 30$		
16	0×1242	$\% r c x / \% \times 31$		
17	0×1244	$\% r c x / \% \times 32$		
18	0×1248	$\% r d x / \% \times 34$		
19	0×1249	$\% r a x / \% \times 38$		
20	0×1254	PC		
21	0×1260	$\% r c x / \% \times 17$		
\cdots	\ldots	\ldots	\cdots	\cdots
31	0×129	$\% r a x / \% \times 12$		

reorder buffer contains instructions started, but not fully finished new entries created on rename (not enough space? stall rename stage)

reorder buffer: on rename

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\% r a x$	$\% x 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% x 07$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 23$
\cdots
\cdots

reorder buffer (ROB)

remove here when committed	instr num.	PC	dest. reg	done?	mispred? / except?
	14	0×1233	\%rbx / \%x23		
	15	0x1239	\%rax / \%x30		
	16	0×1242	\%rcx / \%x31		
	17	0x1244	\%rcx / \%x32		
	18	0x1248	\%rdx / \%x34		
	19	0x1249	\%rax / \%x38		
	20	0×1254	PC		
	21	0×1260	\%rcx / \%x17		

	31	0x129f	\%rax / \%x12		
on rename					

place newly started instruction at end of buffer remember at least its destination register (both architectural and physical versions)

reorder buffer: on rename

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\% r a x$	$\% \times 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% \times 07 \% \times 19$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 23$
\cdots
\cdots

remove here when committed	reorder buffer (ROB)				
	instr num.	PC	dest. reg	done?	mispred? except?
	14	0x1233	\%rbx / \%x23		
	15	0×1239	\%rax / \%x30		
	16	0×1242	\%rcx / \%x31		
	17	0×1244	\%rcx / \%x32		
	18	0×1248	\%rdx / \%x34		
	19	0×1249	\%rax / \%x38		
	20	0×1254	PC		
	21	0x1260	\%rcx / \%x17		

add here	31	0x129f	\%rax / \%x12		
	32	0x1230	\%rdx / \%x19		
on rename					

next renamed instruction goes in next slot, etc.

reorder buffer: on rename

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\% r a x$	$\% x 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% \times 07 \% \times 19$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 23$
\cdots
\cdots

remove here when committed	reorder buffer (ROB)				
	instr num.	PC	dest. reg	done?	mispred? except?
	14	0×1233	\%rbx / \%x23		
	15	0×1239	\%rax / \%x30		
	16	0×1242	\%rcx / \%x31		
	17	0×1244	\%rcx / \%x32		
	18	0×1248	\%rdx / \%x34		
	19	0x1249	\%rax / \%x38		
	20	0×1254	PC		
	21	0×1260	\%rcx / \%x17		
	\cdots
	31	0x129f	\%rax / \%x12		
	32	0x1230	\%rdx / \%x19		

reorder buffer: on commit

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\% r a x$	$\% x 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% \times 07 \% \times 19$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 13$
\cdots
\cdots

remove here when committed	reorder buffer (ROB)				
	instr num.	PC	dest. reg	done?	mispred? except?
	14	0x1233	\%rbx / \%x24		
	15	0x1239	\%rax / \%x30		
	16	0x1242	\%rcx / \%x31		
	17	0x1244	\%rcx / \%x32		
	18	0x1248	\%rdx / \%x34		
	19	0x1249	\%rax / \%x38		
	20	0x1254	PC		
	21	0x1260	\%rcx / \%x17		

	31	0x129f	\%rax / \%x12		

reorder buffer: on commit

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\% r a x$	$\% \times 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% \times 07 \% \times 19$
\cdots	\cdots

free list

$\% \times 19$
$\% \times 13$
\cdots
\cdots

	reorder buffer (ROB)				
remove here	instr num.	PC	dest. reg	done?	mispred? except?
	14	0x1233	\%rbx / \%x24		
when committed	15	0x1239	\%rax / \%x30		
	16	0x1242	\%rcx / \%x31	\checkmark	
	17	0x1244	\%rcx / \%x32		
	18	0×1248	\%rdx / \%x34	\checkmark	
	19	0×1249	\%rax / \%x38	\checkmark	
	20	0x1254	PC		
	21	0x1260	\%rcx / \%x17		

	31	0x129f	\%rax / \%x12		\checkmark

instructions marked done in reorder buffer when result is computed but not removed from reorder buffer ('committed') yet

reorder buffer: on commit

phys \rightarrow arch. reg for new instrs
reorder buffer (ROB)

arch. reg	phys. reg
$\% r a x$	$\% \times 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% \times 07 \% \times 19$
\cdots	\cdots

commit stage tracks architectural to physical register map for committed instructions

reorder buffer: on commit

phys \rightarrow arch. reg
for new instrs
reorder buffer (ROB)

arch. reg	phys. reg
$\% r a x$	$\% \times 12$
$\% r c x$	$\% x 17$
$\% r b x$	$\% x 13$
$\% r d x$	$\% \times 07 \% \times 19$
\cdots	\cdots

arch. reg	phys. reg
$\% r a x$	$\% \times 30$
$\% r c x$	$\% \times 28$
$\% r b x$	$\% \times 23 \% \times 24$
$\% r d x$	$\% \times 21$
\cdots	\cdots

\rightarrow| instr
 num. | PC | dest. reg | done? | mispred? /
 except? |
| :--- | :--- | :--- | :--- | :--- |
| 14 | 0×1233 | $\% r b x / \% \times 24$ | \checkmark | |
| 15 | 0×1239 | $\% r a x / \% \times 30$ | | |
| 16 | 0×1242 | $\% \mathrm{rcx} / \% \times 31$ | \checkmark | |
| 17 | 0×1244 | $\% \mathrm{rcx} / \% \times 32$ | | |
| 18 | 0×1248 | $\% \mathrm{rdx} / \% \times 34$ | \checkmark | |
| 19 | 0×1249 | $\% \mathrm{rax} / \% \times 38$ | \checkmark | |
| 20 | 0×1254 | PC | | |
| 21 | 0×1260 | $\% \mathrm{rcx} / \% \times 17$ | | |
| \cdots | \cdots | \cdots | \cdots | \cdots |
| 31 | $0 \times 129 \mathrm{f}$ | $\% \mathrm{rax} / \% \times 12$ | | \checkmark |
| 32 | 0×1230 | $\% \mathrm{rdx} / \% \times 19$ | | |
| | | | | |

when next-to-commit instruction is done update this register map and free register list and remove instr. from reorder buffer

reorder buffer: on commit

phys \rightarrow arch. reg
for new instrs
reorder buffer (ROB)

when next-to-commit instruction is done update this register map and free register list and remove instr. from reorder buffer

reorder buffer: commit mispredict (one way)

phys \rightarrow arch. reg

for new instrs	
arch. reg	phys. reg
\%rax	\%x12
\%rcx	\%×17
\%rbx	\%x13
\%rdx	\%×19
\cdots	...

free list

$\% \times 19$
$\% \times 13$
\cdots
\cdots

phys \rightarrow arch. reg for committed

arch. reg	phys. reg
$\% r a x$	$\% \times 30 \% \times 38$
$\% r c x$	$\% \times 31 \% \times 32$
$\% r b x$	$\% \times 23 \% \times 24$
$\% r d x$	$\% \times 21 \% \times 34$
\cdot	\cdots

reorder buffer: commit mispredict (one way)

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg
$\%$ rax	$\% \times 12$
$\% r c x$	$\% \times 17$
$\% r b x$	$\% \times 13$
$\% r d x$	$\% \times 19$
\cdots	..

free list

$\% \times 19$
$\% \times 13$
\cdots
\cdots

phys \rightarrow arch. reg for committed

arch. reg	phys. reg
\%rax	\% $\times 30 \% \times 38$
\%rcx	\% $\times 31 \% \times 32$
\%rbx	$\% \times 23 \% \times 24$
\%rdx	\% $\times 21 \% \times 34$
...	...

reorder buffer (ROB)

when committing a mispredicted instruction... this is where we undo mispredicted instructions

reorder buffer: commit mispredict (one way)

phys \rightarrow arch. reg for new instrs

arch. reg	phys. reg	arch. reg	phys. reg
\%rax	\%x38	\%rax	\% $\times 30 \% \times 38$
\%rcx	\%x32	\%rcx	\% $\times 31 \% \times 32$
\%rbx	\%x24	\%rbx	\% $\times 23$ \% $\times 24$
\%rdx	\%x34	\%rdx	\% $\times 21 \% \times 34$
...	...	-..	...

free list

$\% \times 19$
$\% \times 13$
\cdots
\cdots

reorder buffer (ROB)

copy commit register map into rename register map so we can start fetching from the correct PC

reorder buffer: commit mispredict (one way)

phys for n	\rightarrow arch new ins	phys \rightarrow arch. reg for committed	
arch. reg	$\begin{aligned} & \text { phys. } \\ & \text { reg } \end{aligned}$	arch reg	phys. reg
\%rax	\%x38	\%rax	\% $\times 30 \% \times 38$
\%rcx	\%x32	\%rcx	\% \% $\%$ \% $\times 32$
\%rbx	$\% \times 24$	\%rbx	\% $\times 23$ \%x24
\%rdx	\%x34	\%rdx	\% $\times 21$ \%x34
...

free list

$\% \times 19$
$\% \times 13$
\cdots
\cdots

reorder buffer (ROB)

... and discard all the mispredicted instructions (without committing them)

better? alternatives

can take snapshots of register map on each branch don't need to reconstruct the table (but how to efficiently store them)
can reconstruct register map before we commit the branch instruction
need to let reorder buffer be accessed even more?
can track more/different information in reorder buffer

branch target buffer

can take several cycles to fetch+decode jumps, calls, returns still want 1-cycle prediction of next thing to fetch

BTB: cache for branches

idx	valid	tag	ofst	type	target	(more info?)	valid	...
0×00	1	0x400	5	Jxx	0x3FFFF3	...	1	...
0×01	1	0x401	C	JMP	0x401035	-	0	\cdots
0×02	0	--	--	---	---	-	0	...
0x03	1	0x400	9	RET	---	...	\bigcirc	...
...	\ldots
0xFF	1	0x3FF	8	CALL	0x404033	...	\bigcirc	...

0x3FFFF3: movq \%rax, \%rsi
0x3FFFF7: pushq \%rbx
0x3FFFF8: call 0×404033
$0 x 400001: ~ p o p q$ \%rbx
0x400003: cmpq \%rbx, \%rax
0x400005: jle 0x3FFFF3
0x400031: ret

BTB: cache for branches

idx	valid	tag	ofst	type	target	(more info?)	valid	...
0×00	1	0x400	5	Jxx	0x3FFFF3	...	1	...
0×01	1	0x401	C	JMP	0x401035	---	0	...
0×02	0	--	---	---	---	-	0	...
0x03	1	0×400	9	RET	---	...	0	..
...
0xFF	1	0x3FF	8	CALL	0x404033	...	\bigcirc	...

0x3FFFF3: movq \%rax, \%rsi
0x3FFFF7: pushq \%rbx
0x3FFFF8: call 0×404033
0×400001 : popq \%rbx
$0 x 400003: ~ c m p q$ \%rbx, \%rax
0x400005: jle 0x3FFFF3
0x400031: ret

BTB: cache for branches

idx	valid	tag	ofst	type	target	(more info?)	valid	...
0x00	1	0×400	5	Jxx	0x3FFFF3	...	1	...
0x01	1	0x401	C	JMP	0x401035	--	0	...
0x02	0	---	---	---	---	---	0	...
0x03	1	0x400	9	RET	---	...	0	...
...
$0 \times F F$	1	0x3FF	8	CALL	0x404033	...	0	...

0x3FFFF3: movq \%rax, \%rsi
0x3FFFF7: pushq \%rbx
0x3FFFF8: call 0×404033
0×400001 : popq \%rbx
0x400003: cmpq \%rbx, \%rax
0x400005: jle 0x3FFFF3
0x400031: ret

aside on branch pred. and performance

modern branch predictors are very good we might explore how later in semester (if time)
...usually can assume most branches will be predicted
but could be a problem if really no pattern
e.g. branch based on random number?
generally: measure and see

if branch prediction is bad...

avoiding branches - conditional move, etc.
replace multiple branches with single lookup? one misprediction better than K ?

recall: shifts

we mentioned that compilers compile $x / 4$ into a shift instruction they are really good at these types of of transformation... "strength reduction": replacing complicated op with simpler one
but can't do without seeing special case (e.g. divide by constant)

Intel Skylake 000 design

2015 Intel design — codename 'Skylake’
94-entry instruction queue-equivalent
168 physical integer registers
168 physical floating point registers
4 ALU functional units
but some can handle more/different types of operations than others
2 load functional units
but pipelined: supports multiple pending cache misses in parallel
1 store functional unit
224-entry reorder buffer
determines how far ahead branch mispredictions, etc. can happen

exceptions and 000 (one strategy)

exceptions and 000 (one strategy)

free regs for new instrs

X19	arch. phys. reg reg	
X23		
...	RAX	X15
	RCX	X17
	RBX	X13
	RBX	X07

exceptions and 000 (one strategy)

addressing efficiency

```
for (int kk \(=0 ; k k<N ; k k+=2\) ) \{
    for (int \(\mathbf{i}=0 ; i<N ;++i)\) \{
        for (int \(j=0 ; j<N ;++j)\) \{
            float \(\mathrm{Cij}=\mathrm{C}[\mathrm{i} * N+j]\);
            for (int \(k=k k ; k<k k+2 ;++k)\) \{
            \(\mathrm{Cij}+=A[i \star N+k] \star B[k \star N+j] ;\)
            \}
            \(C[i * N+j]=C i j ;\)
        \}
    \}
\}
```

tons of multiplies by N??
isn't that slow?

addressing transformation

```
for (int kk = 0; k < N; kk += 2)
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            float Cij = C[i * N + j];
            float *Bkj_pointer = &B[kk * N + j];
            for (int k = kk; k < kk + 2; ++k) {
            // Bij += A[i * N + k] * A[k * N + j~];
                Bij += A[i * N + k] * Bkj_pointer;
                Bkj_pointer += N;
            }
                C[i * N + j] = Bij;
        }
    }
```

transforms loop to iterate with pointer
compiler will often do this
increment/decrement by $\mathrm{N}(\times$ sizeof(float $))$

addressing transformation

```
for (int kk = 0; k < N; kk += 2)
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            float Cij = C[i * N + j];
            float *Bkj_pointer = &B[kk * N + j];
            for (int k = kk; k < kk + 2; ++k) {
            // Bij += A[i * N + k] * A[k * N + j~];
                Bij += A[i * N + k] * Bkj_pointer;
            Bkj_pointer += N;
            }
            C[i * N + j] = Bij;
        }
    }
```

transforms loop to iterate with pointer
compiler will often do this
increment/decrement by $\mathrm{N}(\times$ sizeof(float $))$

addressing efficiency

compiler will usually eliminate slow multiplies doing transformation yourself often slower if so
i $\star \mathrm{N} ;++i$ into i_times_N; i_times_N += N
way to check: see if assembly uses lots multiplies in loop
if it doesn't - do it yourself

another addressing transformation

$$
\text { for } \begin{aligned}
(i n t ~ & i=0 ; i<n ; i+=4)\{ \\
& C[(i+0) \star n+j]+=A[(i+0) \star n+k] \star B[k \star n+j] ; \\
& C[(i+1) \star n+j]+=A[(i+1) \star n+k] \star B[k \star n+j] ; \\
& / / \ldots
\end{aligned}
$$

```
int offset = 0;
float *Ai0_base = &A[k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
// ...
for (int i = 0; i < n; i += 4) {
        C[(i+0) * n + j] += Ai0_base[offset] * B[k * n + j];
        // ...
        offset += n;
```

compiler will sometimes do this, too

another addressing transformation

$$
\text { for } \begin{aligned}
&(i n t i=0 ; i<n ; i+=4)\{ \\
& C[(i+0) \star n+j]+=A[(i+0) \star n+k] \star B[k \star n+j] ; \\
& C[(i+1) \star n+j]+=A[(i+1) \star n+k] \star B[k \star n+j] ; \\
& / / \ldots
\end{aligned}
$$

```
int offset = 0;
float *Ai0_base = &A[k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
// ...
for (int i = 0; i < n; i += 4) {
    C[(i+0) * n + j] += Ai0_base[offset] * B[k * n + j]; 
    // ...
    offset += n;
```

compiler will sometimes do this, too

another addressing transformation

$$
\text { for } \begin{aligned}
(i n t ~ & i=0 ; i<n ; i+=20) \\
& C[(i+0) \star n+j]+=A[(i+0) \star n+k] \star B[k \star n+j] ; \\
& C[(i+1) \star n+j]+=A[(i+1) \star n+k] \star B[k \star n+j] ; \\
& / / \ldots
\end{aligned}
$$

```
int offset \(=0\);
float *Ai0_base = \&A[0*n+k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
for (int \(i=0 ; i<n ; i+=20)\) \{
    \(C[(i+0) \star n+j]+=A i 0^{*}\) base \(\left[i^{\star} n\right]\) * \(B[k * n+j] ;\)
    \(C[(i+1) * n+j]+=A i 1_{-}\)base \([i * n] * B[k * n+j] ;\)
    // ...
    offset \(+=\mathrm{n}\);
```

storing 20 Aix_base? - need the stack maybe faster (quicker address computation) maybe slower (can't do enough loads)

another addressing transformation

$$
\text { for } \begin{aligned}
(i n t ~ & i=0 ; i<n ; i+=20)\{ \\
& C[(i+0) \star n+j]+=A[(i+0) \star n+k] \star B[k \star n+j] ; \\
& C[(i+1) \star n+j]+=A[(i+1) \star n+k] \star B[k \star n+j] ; \\
& / / \ldots
\end{aligned}
$$

```
int offset \(=0\);
float *Ai0_base = \&A[0*n+k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
for (int \(i=0 ; i<n ; i+=20)\)
    \(C[(i+0) \star n+j]+=A i 0 \_\)base \([i * n]\) * \(B[k * n+j] ;\)
        \(C[(i+1) \star n+j]+=A i 1_{-}\)base \([i * n] * B[k * n+j] ;\)
        // ...
        offset \(+=\mathrm{n}\);
```

storing 20 Aix_base? - need the stack maybe faster (quicker address computation) maybe slower (can't do enough loads)

alternative addressing transformation

instead of:

```
float *Ai0_base = &A[0*n+k];
float *Ail_base = Ai0_base + n;
for (int i = 0; i < n; i += 20) {
    C[(i+0) * n + j] += Ai0_base[i*n] * B[k * n + j];
    C[(i+1) * n + j] += Ai1_base[i*n] * B[k * n + j];
    // ...
```

could do:

```
float *Ai0_base = \&A[k];
for (int \(i=0 ; i<n ; i+=20)\) \{
    float *A_ptr \(=\) \&Ai0_base[i*n];
    \(C[(i+0) \star n+j]+={ }^{*} A \_p t r * A[k * n+j] ;\)
    A_ptr += n;
    \(C[(i+1) \star n+j]+=* A \_p t r * B[k * n+j] ;\)
    // ...
```

avoids spilling on the stack, but more dependencies

alternative addressing transformation

instead of:

```
float *Ai0_base = &A[0*n+k];
float *Ail_base = Ai0_base + n;
for (int i = 0; i < n; i += 20) {
    C[(i+0) * n + j] += Ai0_base[i*n] * B[k * n + j];
    C[(i+1) * n + j] += Ai1_base[i*n] * B[k * n + j];
    // ...
```

could do:

```
float *Ai0_base \(=\& A[k]\);
for (int \(i=0 ; i<n ; i+=20)\) \{
    float *A_ptr = \&Ai0_base[i*n];
    \(C[(i+0) \star n+j]+={ }^{*} A \_p t r * A[k * n+j] ;\)
    A_ptr += n;
    \(C[(i+1) \star n+j]+=* A \_p t r * B[k * n+j] ;\)
    // ...
```

avoids spilling on the stack, but more dependencies

addressing efficiency generally

mostly: compiler does very good job itself
eliminates multiplications, use pointer arithmetic often will do better job than if how typically programming would do it manually
sometimes compiler won't take the best option if spilling to the stack: can cause weird performance anomalies if indexing gets too complicated - might not remove multiply
if compiler doesn't, you can always make addressing simple yourself convert to pointer arith. without multiplies

