
1

Changelog
2022-11-02: simple blocking – expanded: correct typo of
premature ‘i += 2’ for ‘i += 1’

2022-11-05: simple blocking – counting loads: also correct typo of
premature i += 2 for i += 1

2

last time
counting cache misses in C code

mapping of arrays to sets
alignment (or not?)
analyzing sets separately

approximate miss counting
assessing locality (spatial/temporal)
look at innermost loop, accesses to array
same as previous access: 0% chance of miss
adjacent: 1/(elems per block) chance of miss
non-adjacent, not accessed recently: 100% chance of miss

3

quiz Q2
normal version:

hit detection + data extraction take 5 cycles
+100 cycles on miss = miss penalty
105 cycles miss time

optimized version
hit detection takes 2 cycles
data extraction takes 5 cycles (done in parallel with hit detection)
+100 cycles after hit detection on miss
102 cycle miss time

90% · c + 10% · 102 = 14.7 cycle AMAT

4

quiz Q3 (1)
for (int j = 0; j < 2; j += 1) {

for (int i = 0; i < 4; i += 1) {
if (sum > array[i * 3 + j]) {

sum += array[i * 3 + j];
}

}
}
accesses index 0, 3, 6, 9, 1, 4, 7, 10

5

quiz Q3 (2)
0 miss: set 0 {0+1,--}; set 1 {--,--}
3 miss: set 0 {0+1,--}; set 1 {2+3,--}
6 miss: set 1 {0+1,--}; set 1 {2+3,6+7}
9 miss: set 0 {0+1,8+9}; set 1 {2+3,6+7}
1 hit
4 miss: set 0 {0+1,4+5}; set 1 {2+3,6+7}
7 hit
10 miss

6

quiz Q5
/* version A */
for (int i = 0; i < N; i += 1) {

for (int j = 0; j < i; j += 1) {
A[i * N + j] = D[j * N + i] + B[i] * C[j];

}
}
when i = 1: B index 1
when i = 2: B index 2, 2
when i = 3: B index 3, 3, 3
…

only first access to B for each i should be miss
first access only miss if not in same block as element of B from prior i

N possible i

1/4 chance of i and i + 1 being in different blocks
total misses N/4

7

quiz Q5 part 2
when i = 1: B index 1

when i = 2: B index 2, 2

when i = 3: B index 3, 3, 3

…
only first access to B for each i should be miss
first access only miss if not in same block as element of B from prior i

N possible i

1/4 chance of i and i + 1 being in different blocks

total misses N/4

8

quiz Q6
/* version A */
for (int i = 0; i < N; i += 1) {

for (int j = 0; j < i; j += 1) {
A[i * N + j] = D[j * N + i] + B[i] * C[j];

}
}
when i = 1: D index 1
when i = 2: D index 2, N+2
when i = 3: D index 3, N+3, 2N+3
…
when i = K: D index K, N+K, 2N+K, …(K-1)N+K
…

once i gets big enough, accessing lots of elements in inner loop
once i gets big enough, not access same block without lots of accesses
in between
so, except every access to D to be miss once once i big enough

9

quiz Q6 part 2
when i = 1: D index 1
when i = 2: D index 2, N+2
when i = 3: D index 3, N+3, 2N+3
…
when i = K: D index K, N+K, 2N+K, …(K-1)N+K
…

once i gets big enough, accessing lots of elements in inner loop
once i gets big enough, not access same block without lots of accesses
in between
so, except every access to D to be miss once once i big enough

total number of accesses to D is about N(N − 1)/2 ≈ N2/2
since N is large compared to cache, except most of them to be
misses

10

locality exercise (2)
/* version 2 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 3 */
for (int ii = 0; ii < N; ii += 32)

for (int jj = 0; jj < N; jj += 32)
for (int i = ii; i < ii + 32; ++i)

for (int j = jj; j < jj + 32; ++j)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?

11

a transformation
for (int k = 0; k < N; k += 1)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

12

a transformation
for (int k = 0; k < N; k += 1)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

12

simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

13

simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

13

simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

13

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

14

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

Temporal locality in Cijs

14

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

More spatial locality in Aik

14

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

Still have good spatial locality in Bkj, Cij

14

recall: counting misses (kij-order)
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i * N + j] += A[i * N + k] * B[k * N + j];

for A: about 1 misses per j-loop
total misses: N2

for B: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

for C: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

15

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…

…

16

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…

16

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…

16

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…

…

likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

17

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…
likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

17

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…
likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

17

counting misses for B (1)
for (int kk = 0; kk < N; kk += 2)

for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

18

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

19

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

19

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

19

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

19

simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop executions and (assuming N large):

about 1 misses from A per j-loop
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size)

20

simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop executions and (assuming N large):

about 1 misses from A per j-loop
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size)

20

improvement in read misses

0 100 200 300 400 500 600
N

0

5

10

15

20read misses/1K instructions of unblocked

blocked (kk+=2)
unblocked

21

simple blocking (2)
same thing for i in addition to k?
for (int kk = 0; kk < N; kk += 2) {

for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < ii + 2; ++i)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}
}

}

22

simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time

23

simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time

23

simple blocking — counting misses for A
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 misses per loop with A (2 cache blocks)

total misses: N2

2 (same as only blocking in K)

24

simple blocking — counting misses for B
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 ÷ block size misses per iteration with B

total misses: N3

2 · block size (before: N3

block size)

25

simple blocking — counting misses for C
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2
block size misses per iteration with C

total misses: N3

2 · block size (same as blocking only in K)
26

simple blocking — counting misses (total)
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

before:
A: N2

2
; B: N3

1 · block size; C
N3

1 · block size
after:
A: N2

2
; B: N3

2 · block size; C
N3

2 · block size
27

generalizing: divide and conquer
partial_matrixmultiply(float *A, float *B, float *C

int startI, int endI, ...) {
for (int i = startI; i < endI; ++i) {

for (int j = startJ; j < endJ; ++j) {
for (int k = startK; k < endK; ++k) {

...
}
matrix_multiply(float *A, float *B, float *C, int N) {

for (int ii = 0; ii < N; ii += BLOCK_I)
for (int jj = 0; jj < N; jj += BLOCK_J)
for (int kk = 0; kk < N; kk += BLOCK_K)

...
/* do everything for segment of A, B, C

that fits in cache! */
partial_matmul(A, B, C,

ii, ii + BLOCK_I, jj, jj + BLOCK_J,
kk, kk + BLOCK_K)

}
28

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

29

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

29

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

29

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

29

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

29

cache blocking efficiency
for each of N3/IJK matrix blocks:
load I × K elements of Aik:

≈ IK ÷ block size misses per matrix block
≈ N3/(J · blocksize) misses total

load K × J elements of Bkj:
≈ N3/(I · blocksize) misses total

load I × J elements of Cij:
≈ N3/(K · blocksize) misses total

bigger blocks — more work per load!
catch: IK + KJ + IJ elements must fit in cache

otherwise estimates above don’t work
30

cache blocking rule of thumb
fill the most of the cache with useful data

and do as much work as possible from that

example: my desktop 32KB L1 cache

I = J = K = 48 uses 482 × 3 elements, or 27KB.

assumption: conflict misses aren’t important

31

exercise: miss estimating (3)
for (int kk = 0; kk < 1000; kk += 10)

for (int jj = 0; jj < 1000; jj += 10)
for (int i = 0; i < 1000; i += 1)

for (int j = jj; j < jj+10; j += 1)
for (int k = kk; k < kk + 10; k += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1K elements, but
big enough to hold 500 or so

estimate: approximately how many misses for A, B?

hint 1: part of A, B loaded in two inner-most loops only needs to
be loaded once
hint 2: part of A can be reused between iterations of i loop

32

loop ordering compromises
loop ordering forces compromises:

for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]

bad temporal locality for c[i,j], b[j,k]

perfect spatial locality in c[i,j]

bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything

33

loop ordering compromises
loop ordering forces compromises:

for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]

bad temporal locality for c[i,j], b[j,k]

perfect spatial locality in c[i,j]

bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything

33

cache blocking pattern
no perfect loop order? work on rectangular matrix blocks

size amount used in inner loops based on cache size

in practice:
test performance to determine ‘size’ of blocks

34

sum array ASM (gcc 8.3 -Os)
long sum_array(long *values, int size) {

long sum = 0;
for (int i = 0; i < size; ++i) {

sum += values[i];
}
return sum;

}
sum_array:

xorl %edx, %edx // i = 0
xorl %eax, %eax // sum = 0

loop:
cmpq %edx, %esi
jle endOfLoop // if (i < size) break
addq (%rsi,%rdx,8), %rax // sum += values[i]
incq %rdx // i += 1
jmp loop

endOfLoop:
ret

35

loop unrolling (ASM)
loop:

cmpl %edx, %esi
jle endOfLoop // if (i < size) break
addq (%rdi,%rdx,8), %rax // sum += values[i]
incq %rdx // i += 1
jmp loop

endOfLoop:

loop:
cmpl %edx, %esi
jle endOfLoop // if (i < size) break
addq (%rdi,%rdx,8), %rax // sum += values[i]
addq 8(%rdi,%rdx,8), %rax // sum += values[i+1]
addq $2, %rdx // i += 2
jmp loop
// plus handle leftover?

endOfLoop:

36

loop unrolling (ASM)
loop:

cmpl %edx, %esi
jle endOfLoop // if (i < size) break
addq (%rdi,%rdx,8), %rax // sum += values[i]
incq %rdx // i += 1
jmp loop

endOfLoop:

size iterations × 5 instructions
loop:

cmpl %edx, %esi
jle endOfLoop // if (i < size) break
addq (%rdi,%rdx,8), %rax // sum += values[i]
addq 8(%rdi,%rdx,8), %rax // sum += values[i+1]
addq $2, %rdx // i += 2
jmp loop
// plus handle leftover?

endOfLoop:

size ÷2 iterations × 6 instructions 36

loop unrolling (C)
for (int i = 0; i < N; ++i)

sum += A[i];

int i;
for (i = 0; i + 1 < N; i += 2) {

sum += A[i];
sum += A[i+1];

}
// handle leftover, if needed
if (i < N)

sum += A[i];

37

more loop unrolling (C)
int i;
for (i = 0; i + 4 <= N; i += 4) {

sum += A[i];
sum += A[i+1];
sum += A[i+2];
sum += A[i+3];

}
// handle leftover, if needed
for (; i < N; i += 1)

sum += A[i];

38

loop unrolling performance
on my laptop with 992 elements (fits in L1 cache)
work/loop iteration cycles/element instructions/element
1 1.33 4.02
2 1.03 2.52
4 1.02 1.77
8 1.01 1.39
16 1.01 1.21
32 1.01 1.15
1.01 cycles/element — latency bound

39

loop unrolling on MM
original code:
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

loop unrolling in j loop (not cache blocking)
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; j += 2) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
C[i*N+j+1] += A[i*N+k] * B[k*N+j+1];

}

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]
k=i=0, j=1: C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]
k=i=0, j=3: C[0*N+3], A[0*N+0], B[0*N+3]
…

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]

C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]

C[0*N+3], A[0*N+0], B[0*N+3]
…

40

loop unrolling on MM
original code:
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

loop unrolling in j loop (not cache blocking)
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; j += 2) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
C[i*N+j+1] += A[i*N+k] * B[k*N+j+1];

}

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]
k=i=0, j=1: C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]
k=i=0, j=3: C[0*N+3], A[0*N+0], B[0*N+3]
…

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]

C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]

C[0*N+3], A[0*N+0], B[0*N+3]
…

40

loop unrolling on MM
original code:
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

loop unrolling in j loop (not cache blocking)
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; j += 2) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
C[i*N+j+1] += A[i*N+k] * B[k*N+j+1];

}

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]
k=i=0, j=1: C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]
k=i=0, j=3: C[0*N+3], A[0*N+0], B[0*N+3]
…

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]

C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]

C[0*N+3], A[0*N+0], B[0*N+3]
…

40

loop unrolling on MM
original code:
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

loop unrolling in j loop (not cache blocking)
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; j += 2) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
C[i*N+j+1] += A[i*N+k] * B[k*N+j+1];

}

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]
k=i=0, j=1: C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]
k=i=0, j=3: C[0*N+3], A[0*N+0], B[0*N+3]
…

access order:
k=i=j=0: C[0*N+0], A[0*N+0], B[0*N+0]

C[0*N+1], A[0*N+0], B[0*N+1]
k=i=0, j=2: C[0*N+2], A[0*N+0], B[0*N+2]

C[0*N+3], A[0*N+0], B[0*N+3]
…

40

partial cache blocking in MM
original code:
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

(incomplete) cache blocking with only k:
changes locality v. original (order of A, B, C accesses)
for (int kk = 0; kk < N; kk += BLOCK_SIZE)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

for (int k = kk; k < kk + BLOCK_SIZE; ++k)
C[i*N+j] += A[i*N+k+0] * B[k*N+j];

41

loop unrolling v cache blocking (0)
cache blocking for k only: (with teeny 1 by 1 by 2 matrix blocks)
changes locality v. original (order of A, B, C accesses)
for (int kk = 0; kk < N; kk += 2)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for(int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[(k)*N+j];
with loop unrolling added afterwards:
same order of A, B, C accesses as above
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {
C[i*N+j] += A[i*N+k+0] * B[(k+0)*N+j];
C[i*N+j] += A[i*N+k+1] * B[(k+1)*N+j];

}
42

loop unrolling v cache blocking (0)
cache blocking for k only: (with teeny 1 by 1 by 2 matrix blocks)
changes locality v. original (order of A, B, C accesses)
for (int kk = 0; kk < N; kk += 2)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for(int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[(k)*N+j];
with loop unrolling added afterwards:
same order of A, B, C accesses as above
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {
C[i*N+j] += A[i*N+k+0] * B[(k+0)*N+j];
C[i*N+j] += A[i*N+k+1] * B[(k+1)*N+j];

}
42

loop unrolling v cache blocking
cache blocking for k only (1x1x2 blocks) and then loop unrolling

for (int k = 0; k < N; k += 2)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+k+0] * B[(k+0)*N+j];
C[i*N+j] += A[i*N+k+1] * B[(k+1)*N+j];

}
versus pretty useless loop unrolling in k-loop
same order of A, B, C accesses as original
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k+0] * B[(k+0)*N+j];
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k+1] * B[(k+1)*N+j];
} 43

loop unrolling v cache blocking (1)
cache blocking for k,i only: (1 by 2 by 2 matrix blocks)
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
for(int kk = k; kk < k + 2; ++kk)

for (int ii = i; ii < i + 2; ++ii)
C[ii*N+j] += A[ii*N+kk] * B[(kk)*N+j];

cache blocking for k,i and loop unrolling for i:
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
for(int kk = k; kk < k + 2; ++kk) {

C[(i+0)*N+j] += A[(i+0)*N+kk] * B[(kk)*N+j];
C[(i+1)*N+j] += A[(i+1)*N+kk] * B[(kk)*N+j];

}

44

interlude: real CPUs
modern CPUs:

execute multiple instructions at once

execute instructions out of order — whenever values available

45

beyond pipelining: multiple issue
start more than one instruction/cycle

multiple parallel pipelines; many-input/output register file

hazard handling much more complex
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r10, %r11 F D E M W
xorq %r9, %r11 F D E M W
subq %r10, %rbx F D E M W
…

46

beyond pipelining: out-of-order
find later instructions to do instead of stalling

lists of available instructions in pipeline registers
take any instruction with available values

provide illusion that work is still done in order
much more complicated hazard handling logic

cycle # 0 1 2 3 4 5 6 7 8 9 10 11
mrmovq 0(%rbx), %r8 F D E M M M W C
subq %r8, %r9 F D E W C
addq %r10, %r11 F D E W C
xorq %r12, %r13 F D E W C
…

47

out-of-order and hazards
out-of-order execution makes hazards harder to handle

problems for forwarding:
value in last stage may not be most up-to-date
older value may be written back before newer value?

problems for branch prediction:
mispredicted instructions may complete execution before squashing

which instructions to dispatch?
how to quickly find instructions that are ready?

48

out-of-order and hazards
out-of-order execution makes hazards harder to handle

problems for forwarding:
value in last stage may not be most up-to-date
older value may be written back before newer value?

problems for branch prediction:
mispredicted instructions may complete execution before squashing

which instructions to dispatch?
how to quickly find instructions that are ready?

49

read-after-write examples (1)
cycle # 0 1 2 3 4 5 6 7 8

addq %r10, %r8 F D E M W
addq %r11, %r8 F D E M W
addq %r12, %r8 F D E M W
normal pipeline: two options for %r8?
choose the one from earliest stage
because it’s from the most recent instruction

50

read-after-write examples (1)
cycle # 0 1 2 3 4 5 6 7 8

addq %r10, %r8 F D E M W
addq %r11, %r8 F D E M W
addq %r12, %r8 F D E M W

cycle # 0 1 2 3 4 5 6 7 8
addq %r10, %r8 F D E M W
rmmovq %r8, (%rax) F D E M W
irmovq $100, %r8 F D E M W
addq %r13, %r8 F D E M W

out-of-order execution:
%r8 from earliest stage might be from delayed instruction
can’t use same forwarding logic

50

register version tracking
goal: track different versions of registers

out-of-order execution: may compute versions at different times

only forward the correct version

strategy for doing this: preprocess instructions represent version
info

makes forwarding, etc. lookup easier

51

rewriting hazard examples (1)
addq %r10, %r8 addq %r10, %r8v1 → %r8v2
addq %r11, %r8 addq %r11, %r8v2 → %r8v3
addq %r12, %r8 addq %r12, %r8v3 → %r8v4
read different version than the one written

represent with three argument psuedo-instructions

forwarding a value? must match version exactly

for now: version numbers

later: something simpler to implement

52

write-after-write example
cycle # 0 1 2 3 4 5 6 7 8

addq %r10, %r8 F D E M W
rmmovq %r8, (%rax) F D E M W
rrmovq %r11, %r8 F D E M W
rmmovq %r8, 8(%rax) F D E M W
irmovq $100, %r8 F D E M W
addq %r13, %r8 F D E M W

out-of-order execution:
if we don’t do something, newest value could be overwritten!

two instructions that haven’t been started
could need different versions of %r8!

53

write-after-write example
cycle # 0 1 2 3 4 5 6 7 8

addq %r10, %r8 F D E M W
rmmovq %r8, (%rax) F D E M W
rrmovq %r11, %r8 F D E M W
rmmovq %r8, 8(%rax) F D E M W
irmovq $100, %r8 F D E M W
addq %r13, %r8 F D E M W

out-of-order execution:
if we don’t do something, newest value could be overwritten!

two instructions that haven’t been started
could need different versions of %r8!

53

write-after-write example
cycle # 0 1 2 3 4 5 6 7 8

addq %r10, %r8 F D E M W
rmmovq %r8, (%rax) F D E M W
rrmovq %r11, %r8 F D E M W
rmmovq %r8, 8(%rax) F D E M W
irmovq $100, %r8 F D E M W
addq %r13, %r8 F D E M W

out-of-order execution:
if we don’t do something, newest value could be overwritten!

two instructions that haven’t been started
could need different versions of %r8!

53

write-after-write example
cycle # 0 1 2 3 4 5 6 7 8

addq %r10, %r8 F D E M W
rmmovq %r8, (%rax) F D E M W
rrmovq %r11, %r8 F D E M W
rmmovq %r8, 8(%rax) F D E M W
irmovq $100, %r8 F D E M W
addq %r13, %r8 F D E M W

out-of-order execution:
if we don’t do something, newest value could be overwritten!

two instructions that haven’t been started
could need different versions of %r8!

53

keeping multiple versions
for write-after-write problem: need to keep copies of multiple
versions

both the new version and the old version needed by delayed instructions

for read-after-write problem: need to distinguish different versions

solution: have lots of extra registers

…and assign each version a new ‘real’ register

called register renaming

54

register renaming
rename architectural registers to physical registers

different physical register for each version of architectural

track which physical registers are ready

compare physical register numbers to do forwarding

55

backup slides

56

exercise: miss estimating (2)
for (int k = 0; k < 1000; k += 1)

for (int i = 0; i < 1000; i += 1)
for (int j = 0; j < 1000; j += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block

assuming: cache not close to big enough to hold 1K elements

estimate: approximately how many misses for A, B?

57

simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)

58

simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)

58

more than 3?
can we just keep doing this increase from 3 to some large X? …

assumption: X values from A would stay in cache
X too large — cache not big enough

assumption: X blocks from B would help with spatial locality
X too large — evicted from cache before next iteration

59

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

60

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

60

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

60

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

60

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

60

exercise
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i*N+j] += B[i] + C[j]

Which of the following suggests changing order of memory accesses?
/* version A */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; j += 2) {
A[i*N+j] += B[i] + C[j]
A[i*N+j+1] += B[i] + C[j+1]

}

/* version B */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; j += 2) {
A[i*N+j] += B[i] + C[j];
A[i*N+j+1] += B[i] + C[j+1];
A[(i+1)*N+j] += B[i+1] + C[j];
A[(i+1)*N+j+1] += B[i+1] + C[j+1];

} 61

a data flow example
addq %rax, %rbx
addq %rax, %rcx
imulq %rdx, %rcx
movq (%rbx, %rdx), %r8
imulq %r8, %rcx
addq %rax, %rbx

%rax
(initial)

%rbx
(initial)

%rcx
(initial)

%rdx
(initial)

addq addq

compute addraddq

load

imulq

imulq

addq, compute addr: 1 cycle
imulq: 3 cycle latency
load: 3 cycle latency
Q1: latency bound on cycles?
Q2: what can be done
at same time as compute addr?

63

an OOO pipeline

register
file reorder

buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename

instr.
queue(s)

reg.
ready
info

register
read
and

forward

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches
register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

64

reorder buffer: on rename

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07
… …

phys → arch. reg
for new instrs

%x19
%x23
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x23
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34
19 0x1249 %rax / %x38
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12

reorder buffer (ROB)

add here
on rename

remove here
when committed

add here
on rename

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

place newly started instruction at end of buffer
remember at least its destination register
(both architectural and physical versions)

next renamed instruction goes in next slot, etc.

65

reorder buffer: on rename

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07
… …

phys → arch. reg
for new instrs

%x19
%x23
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x23
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34
19 0x1249 %rax / %x38
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12

reorder buffer (ROB)

add here
on rename

remove here
when committed

add here
on rename

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

place newly started instruction at end of buffer
remember at least its destination register
(both architectural and physical versions)

next renamed instruction goes in next slot, etc.

65

reorder buffer: on rename

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07
… …

phys → arch. reg
for new instrs

%x19
%x23
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x23
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34
19 0x1249 %rax / %x38
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12

reorder buffer (ROB)

add here
on rename

remove here
when committed

add here
on rename

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

place newly started instruction at end of buffer
remember at least its destination register
(both architectural and physical versions)

next renamed instruction goes in next slot, etc.

65

reorder buffer: on rename

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x23
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x23
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34
19 0x1249 %rax / %x38
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12
32 0x1230 %rdx / %x19

reorder buffer (ROB)

add here
on rename

remove here
when committed

add here
on rename

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

place newly started instruction at end of buffer
remember at least its destination register
(both architectural and physical versions)

next renamed instruction goes in next slot, etc.

65

reorder buffer: on rename

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x23
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x23
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34
19 0x1249 %rax / %x38
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12
32 0x1230 %rdx / %x19

reorder buffer (ROB)

add here
on rename

remove here
when committed

add here
on rename

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

reorder buffer contains instructions started,
but not fully finished new entries created on rename
(not enough space? stall rename stage)

place newly started instruction at end of buffer
remember at least its destination register
(both architectural and physical versions)

next renamed instruction goes in next slot, etc.

65

reorder buffer: on commit

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34
19 0x1249 %rax / %x38
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12

reorder buffer (ROB)

remove here
when committed

remove here
when committed

instructions marked done in reorder buffer
when result is computed
but not removed from reorder buffer (‘committed’) yet

commit stage tracks architectural to physical register map
for committed instructions
when next-to-commit instruction is done
update this register map and free register list
and remove instr. from reorder buffer

arch.
reg

phys.
reg

%rax %x30
%rcx %x28
%rbx %x23
%rdx %x21
… …

phys → arch. reg
for committed

66

reorder buffer: on commit

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X

reorder buffer (ROB)

remove here
when committed

remove here
when committed

instructions marked done in reorder buffer
when result is computed
but not removed from reorder buffer (‘committed’) yet

commit stage tracks architectural to physical register map
for committed instructions
when next-to-commit instruction is done
update this register map and free register list
and remove instr. from reorder buffer

arch.
reg

phys.
reg

%rax %x30
%rcx %x28
%rbx %x23
%rdx %x21
… …

phys → arch. reg
for committed

66

reorder buffer: on commit

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X

reorder buffer (ROB)

remove here
when committed

remove here
when committed

instructions marked done in reorder buffer
when result is computed
but not removed from reorder buffer (‘committed’) yet

commit stage tracks architectural to physical register map
for committed instructions

when next-to-commit instruction is done
update this register map and free register list
and remove instr. from reorder buffer

arch.
reg

phys.
reg

%rax %x30
%rcx %x28
%rbx %x23
%rdx %x21
… …

phys → arch. reg
for committed

66

reorder buffer: on commit

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
%x23

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24 X
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X
32 0x1230 %rdx / %x19

reorder buffer (ROB)

remove here
when committed

remove here
when committed

instructions marked done in reorder buffer
when result is computed
but not removed from reorder buffer (‘committed’) yet

commit stage tracks architectural to physical register map
for committed instructions

when next-to-commit instruction is done
update this register map and free register list
and remove instr. from reorder buffer

arch.
reg

phys.
reg

%rax %x30
%rcx %x28
%rbx %x23 %x24
%rdx %x21
… …

phys → arch. reg
for committed

66

reorder buffer: on commit

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x07 %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
%x23

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24 X
15 0x1239 %rax / %x30
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X
32 0x1230 %rdx / %x19

reorder buffer (ROB)

remove here
when committed

remove here
when committed

instructions marked done in reorder buffer
when result is computed
but not removed from reorder buffer (‘committed’) yet

commit stage tracks architectural to physical register map
for committed instructions

when next-to-commit instruction is done
update this register map and free register list
and remove instr. from reorder buffer

arch.
reg

phys.
reg

%rax %x30
%rcx %x28
%rbx %x23 %x24
%rdx %x21
… …

phys → arch. reg
for committed

66

reorder buffer: commit mispredict (one way)

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24 X
15 0x1239 %rax / %x30 X
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32 X
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC X X
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X
32 0x1230 %rdx / %x19

reorder buffer (ROB)

when committing a mispredicted instruction…
this is where we undo mispredicted instructions
copy commit register map into rename register map
so we can start fetching from the correct PC
…and discard all the mispredicted instructions
(without committing them)

arch.
reg

phys.
reg

%rax %x30 %x38
%rcx %x31 %x32
%rbx %x23 %x24
%rdx %x21 %x34
… …

phys → arch. reg
for committed

67

reorder buffer: commit mispredict (one way)

arch.
reg

phys.
reg

%rax %x12
%rcx %x17
%rbx %x13
%rdx %x19
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24 X
15 0x1239 %rax / %x30 X
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32 X
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC X X
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X
32 0x1230 %rdx / %x19

reorder buffer (ROB)

when committing a mispredicted instruction…
this is where we undo mispredicted instructions

copy commit register map into rename register map
so we can start fetching from the correct PC
…and discard all the mispredicted instructions
(without committing them)

arch.
reg

phys.
reg

%rax %x30 %x38
%rcx %x31 %x32
%rbx %x23 %x24
%rdx %x21 %x34
… …

phys → arch. reg
for committed

67

reorder buffer: commit mispredict (one way)

arch.
reg

phys.
reg

%rax %x38
%rcx %x32
%rbx %x24
%rdx %x34
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24 X
15 0x1239 %rax / %x30 X
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32 X
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC X X
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X
32 0x1230 %rdx / %x19

reorder buffer (ROB)

when committing a mispredicted instruction…
this is where we undo mispredicted instructions

copy commit register map into rename register map
so we can start fetching from the correct PC

…and discard all the mispredicted instructions
(without committing them)

arch.
reg

phys.
reg

%rax %x30 %x38
%rcx %x31 %x32
%rbx %x23 %x24
%rdx %x21 %x34
… …

phys → arch. reg
for committed

67

reorder buffer: commit mispredict (one way)

arch.
reg

phys.
reg

%rax %x38
%rcx %x32
%rbx %x24
%rdx %x34
… …

phys → arch. reg
for new instrs

%x19
%x13
…
…

free list

instr
num. PC dest. reg done? mispred? /

except?
14 0x1233 %rbx / %x24 X
15 0x1239 %rax / %x30 X
16 0x1242 %rcx / %x31 X
17 0x1244 %rcx / %x32 X
18 0x1248 %rdx / %x34 X
19 0x1249 %rax / %x38 X
20 0x1254 PC X X
21 0x1260 %rcx / %x17
… … … … …
31 0x129f %rax / %x12 X
32 0x1230 %rdx / %x19

reorder buffer (ROB)

when committing a mispredicted instruction…
this is where we undo mispredicted instructions
copy commit register map into rename register map
so we can start fetching from the correct PC

…and discard all the mispredicted instructions
(without committing them)

arch.
reg

phys.
reg

%rax %x30 %x38
%rcx %x31 %x32
%rbx %x23 %x24
%rdx %x21 %x34
… …

phys → arch. reg
for committed

67

better? alternatives
can take snapshots of register map on each branch

don’t need to reconstruct the table
(but how to efficiently store them)

can reconstruct register map before we commit the branch
instruction

need to let reorder buffer be accessed even more?

can track more/different information in reorder buffer

68

an OOO pipeline

register
file reorder

buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename

instr.
queue(s)

reg.
ready
info

register
read
and

forward

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches
register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

69

branch target buffer
can take several cycles to fetch+decode jumps, calls, returns

still want 1-cycle prediction of next thing to fetch

70

BTB: cache for branches
idx valid tag ofst type target (more info?) valid …
0x00 1 0x400 5 Jxx 0x3FFFF3 … 1 …
0x01 1 0x401 C JMP 0x401035 --- 0 …
0x02 0 --- --- --- --- --- 0 …
0x03 1 0x400 9 RET --- … 0 …
… … … … … … … … …
0xFF 1 0x3FF 8 CALL 0x404033 … 0 …

0x3FFFF3: movq %rax, %rsi
0x3FFFF7: pushq %rbx
0x3FFFF8: call 0x404033
0x400001: popq %rbx
0x400003: cmpq %rbx, %rax
0x400005: jle 0x3FFFF3
… …
0x400031: ret
… …

71

BTB: cache for branches
idx valid tag ofst type target (more info?) valid …
0x00 1 0x400 5 Jxx 0x3FFFF3 … 1 …
0x01 1 0x401 C JMP 0x401035 --- 0 …
0x02 0 --- --- --- --- --- 0 …
0x03 1 0x400 9 RET --- … 0 …
… … … … … … … … …
0xFF 1 0x3FF 8 CALL 0x404033 … 0 …

0x3FFFF3: movq %rax, %rsi
0x3FFFF7: pushq %rbx
0x3FFFF8: call 0x404033
0x400001: popq %rbx
0x400003: cmpq %rbx, %rax
0x400005: jle 0x3FFFF3
… …
0x400031: ret
… …

71

BTB: cache for branches
idx valid tag ofst type target (more info?) valid …
0x00 1 0x400 5 Jxx 0x3FFFF3 … 1 …
0x01 1 0x401 C JMP 0x401035 --- 0 …
0x02 0 --- --- --- --- --- 0 …
0x03 1 0x400 9 RET --- … 0 …
… … … … … … … … …
0xFF 1 0x3FF 8 CALL 0x404033 … 0 …

0x3FFFF3: movq %rax, %rsi
0x3FFFF7: pushq %rbx
0x3FFFF8: call 0x404033
0x400001: popq %rbx
0x400003: cmpq %rbx, %rax
0x400005: jle 0x3FFFF3
… …
0x400031: ret
… …

71

aside on branch pred. and performance
modern branch predictors are very good

we might explore how later in semester (if time)

…usually can assume most branches will be predicted

but could be a problem if really no pattern
e.g. branch based on random number?

generally: measure and see

72

if branch prediction is bad…
avoiding branches — conditional move, etc.

replace multiple branches with single lookup?
one misprediction better than K?

73

recall: shifts
we mentioned that compilers compile x/4 into a shift instruction

they are really good at these types of of transformation…
“strength reduction”: replacing complicated op with simpler one

but can’t do without seeing special case (e.g. divide by constant)

74

Intel Skylake OOO design
2015 Intel design — codename ‘Skylake’
94-entry instruction queue-equivalent
168 physical integer registers
168 physical floating point registers
4 ALU functional units

but some can handle more/different types of operations than others

2 load functional units
but pipelined: supports multiple pending cache misses in parallel

1 store functional unit
224-entry reorder buffer

determines how far ahead branch mispredictions, etc. can happen
75

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs

instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr
Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer
+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

76

addressing efficiency
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

float Cij = C[i * N + j];
for (int k = kk; k < kk + 2; ++k) {
Cij += A[i * N + k] * B[k * N + j];

}
C[i * N + j] = Cij;

}
}

}

tons of multiplies by N??

isn’t that slow?

77

addressing transformation
for (int kk = 0; k < N; kk += 2)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

float Cij = C[i * N + j];
float *Bkj_pointer = &B[kk * N + j];
for (int k = kk; k < kk + 2; ++k) {
// Bij += A[i * N + k] * A[k * N + j~];
Bij += A[i * N + k] * Bkj_pointer;
Bkj_pointer += N;

}
C[i * N + j] = Bij;

}
}

transforms loop to iterate with pointer

compiler will often do this

increment/decrement by N (× sizeof(float))
78

addressing transformation
for (int kk = 0; k < N; kk += 2)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

float Cij = C[i * N + j];
float *Bkj_pointer = &B[kk * N + j];
for (int k = kk; k < kk + 2; ++k) {
// Bij += A[i * N + k] * A[k * N + j~];
Bij += A[i * N + k] * Bkj_pointer;
Bkj_pointer += N;

}
C[i * N + j] = Bij;

}
}

transforms loop to iterate with pointer

compiler will often do this

increment/decrement by N (× sizeof(float))
78

addressing efficiency
compiler will usually eliminate slow multiplies

doing transformation yourself often slower if so

i * N; ++i into i_times_N; i_times_N += N

way to check: see if assembly uses lots multiplies in loop

if it doesn’t — do it yourself

79

another addressing transformation
for (int i = 0; i < n; i += 4) {

C[(i+0) * n + j] += A[(i+0) * n + k] * B[k * n + j];
C[(i+1) * n + j] += A[(i+1) * n + k] * B[k * n + j];
// ...

int offset = 0;
float *Ai0_base = &A[k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
// ...
for (int i = 0; i < n; i += 4) {

C[(i+0) * n + j] += Ai0_base[offset] * B[k * n + j];
C[(i+1) * n + j] += Ai1_base[offset] * B[k * n + j];
// ...
offset += n;

compiler will sometimes do this, too

80

another addressing transformation
for (int i = 0; i < n; i += 4) {

C[(i+0) * n + j] += A[(i+0) * n + k] * B[k * n + j];
C[(i+1) * n + j] += A[(i+1) * n + k] * B[k * n + j];
// ...

int offset = 0;
float *Ai0_base = &A[k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
// ...
for (int i = 0; i < n; i += 4) {

C[(i+0) * n + j] += Ai0_base[offset] * B[k * n + j];
C[(i+1) * n + j] += Ai1_base[offset] * B[k * n + j];
// ...
offset += n;

compiler will sometimes do this, too

80

another addressing transformation
for (int i = 0; i < n; i += 20) {

C[(i+0) * n + j] += A[(i+0) * n + k] * B[k * n + j];
C[(i+1) * n + j] += A[(i+1) * n + k] * B[k * n + j];
// ...

int offset = 0;
float *Ai0_base = &A[0*n+k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
// ...
for (int i = 0; i < n; i += 20) {

C[(i+0) * n + j] += Ai0_base[i*n] * B[k * n + j];
C[(i+1) * n + j] += Ai1_base[i*n] * B[k * n + j];
// ...
offset += n;

storing 20 AiX_base? — need the stack
maybe faster (quicker address computation)
maybe slower (can’t do enough loads) 81

another addressing transformation
for (int i = 0; i < n; i += 20) {

C[(i+0) * n + j] += A[(i+0) * n + k] * B[k * n + j];
C[(i+1) * n + j] += A[(i+1) * n + k] * B[k * n + j];
// ...

int offset = 0;
float *Ai0_base = &A[0*n+k];
float *Ai1_base = Ai0_base + n;
float *Ai2_base = Ai1_base + n;
// ...
for (int i = 0; i < n; i += 20) {

C[(i+0) * n + j] += Ai0_base[i*n] * B[k * n + j];
C[(i+1) * n + j] += Ai1_base[i*n] * B[k * n + j];
// ...
offset += n;

storing 20 AiX_base? — need the stack
maybe faster (quicker address computation)
maybe slower (can’t do enough loads) 81

alternative addressing transformation
instead of:

float *Ai0_base = &A[0*n+k];
float *Ai1_base = Ai0_base + n;
// ...
for (int i = 0; i < n; i += 20) {

C[(i+0) * n + j] += Ai0_base[i*n] * B[k * n + j];
C[(i+1) * n + j] += Ai1_base[i*n] * B[k * n + j];
// ...

could do:
float *Ai0_base = &A[k];
for (int i = 0; i < n; i += 20) {

float *A_ptr = &Ai0_base[i*n];
C[(i+0) * n + j] += *A_ptr * A[k * n + j];
A_ptr += n;
C[(i+1) * n + j] += *A_ptr * B[k * n + j];
// ...

avoids spilling on the stack, but more dependencies
82

alternative addressing transformation
instead of:

float *Ai0_base = &A[0*n+k];
float *Ai1_base = Ai0_base + n;
// ...
for (int i = 0; i < n; i += 20) {

C[(i+0) * n + j] += Ai0_base[i*n] * B[k * n + j];
C[(i+1) * n + j] += Ai1_base[i*n] * B[k * n + j];
// ...

could do:
float *Ai0_base = &A[k];
for (int i = 0; i < n; i += 20) {

float *A_ptr = &Ai0_base[i*n];
C[(i+0) * n + j] += *A_ptr * A[k * n + j];
A_ptr += n;
C[(i+1) * n + j] += *A_ptr * B[k * n + j];
// ...

avoids spilling on the stack, but more dependencies
82

addressing efficiency generally
mostly: compiler does very good job itself

eliminates multiplications, use pointer arithmetic
often will do better job than if how typically programming would do it
manually

sometimes compiler won’t take the best option
if spilling to the stack: can cause weird performance anomalies
if indexing gets too complicated — might not remove multiply

if compiler doesn’t, you can always make addressing simple yourself
convert to pointer arith. without multiplies

83

	warmup, take two: locality exercise
	cache blocking introduction
	transformation — 1D blocking
	recall: miss counting in original
	missses in A
	missses in B
	overall misses
	actual performance

	two-at-a-time
	generalizing
	diagram of general

	exercise
	cache blocking review
	loop unrolling
	performance difference
	aside: combining loop unrolling and cache blocking

	out-of-order, multiple issue CPUs
	introduction
	multiple issue
	out-of-order issue

	complex hazards examples

	backup slides
	miss count exericse
	cache blocking: more than two at a time?
	exercise
	OOO pipeline
	a dataflow example
	OOO: handling branch misprediction
	remembering branches: branch target buffer

	avoiding branch misprediction?
	aside: strength reduction
	real OOO sizes
	exceptions and OOO
	misc. topic: efficiently computing addresses in loops

