
Samira	Khan
University	of	Virginia

Jan	31,	2017

Binary	Operations
CS	3330

AGENDA

• Logistics

• Review	from	last	Lecture

• Binary	Operations
– Logical	Operations
– Bitwise	Operations
– Examples

2

Feedbacks

• Quizzes	are	hard
– Use	the	book,	lectures,	internet,	whatever	you	can	
– Past	quizzes	are	available	online

• For	the	quiz	question	with:	typedef struct bar	{	int
x;	}	foo;	I	tried	compiling	struct foo	*c;	in	C,	and	it	
compiled	fine.	So	why	is	it	wrong?
– Dropped	it
– Good	catch
– Ask	in	Piazza,	so	that	others	can	learn,	too

3

Feedbacks

• Is	a	string	still	a	string	if	it	is	expressed	in	bits?	
that	seems	like	more	of	a	philosophical	
question	to	me	I'm	referring	to	the	quiz	
question
– Yes
– There	is	no	“abcde…”	
– Everything	is	just	0s	and	1s
– It	is	just	how	you	interpret	it

4

AGENDA

• Logistics

• Review	from	last	Lecture

• Binary	Operations
– Logical	Operations
– Bitwise	Operations
– Examples

5

Undefined	Behavior

• C	FAQ	definition:
• Anything	at	all	can	happen
– Standard	imposes	no	requirements;
– Program	may	fail	to	compile,	
– or	it	may	execute	incorrectly,
– or	it	may	do	exactly	what	the	programmer	intended

6

Adding	one	to	INT_MAX
if	we	add	one	to	the	largest	representable	integer,	is	the	result	
negative?

#include	<limits.h>
#include	<stdio.h>

int main	(void)
{
printf ("%d\n",	(INT_MAX+1)	<	0);
return	0;
}

7

Undefined,	output	could	be	zero	or	one

More	Undefined	Behavior
• Attempting	to	modify	a	string	literal
– char	*p	=	"wikipedia";	//	valid	C
– p[0]	=	'W';	//	undefined	behavior

• Integer	division	by	zero
– int x	=	1;
– return x	/	0;	//	undefined	behavior

• Certain	pointer	operations	
– int arr[4]	=	{0,	1,	2,	3};
– int *p	=	arr +	5; //	undefined	behavior

• Increment	and	assignment
– i =	i++	+	1;	//	undefined	behavior

8

Undefined	Behavior

• Pros:
– Simplifies the	compiler’s	job
– Generates	very	efficient	code	
– Example:	increment	INT_MAX
• Does	not	need	to	worry	about	overflows	and	result	become	
negative

• Cons:
–Misbehaved	programs
– Security	issues
– Example:	Array	out	of	bound

9

AGENDA

• Logistics

• Review	from	last	Lecture

• Binary	Operations
– Logical	Operations
– Bitwise	Operations
– Examples

10

How	do	digital	computers	
represent	numbers?

• Made	of	transistors	(think	as	a	switch)
• Have	only	two	states:	ON,	OFF

11

• Can	only	use	0	and	1	to	represent	numbers
• 3	à 0011,	10	à 1010

Binary	Operations
• We	need	to	operate	on	these	binary	numbers
• Arithmetic	Operations
– ADD,	SUB,	MUL,	DIV

• Logical	Operations
• AND,	OR,	NOT

• Bitwise	Operations
– AND,	OR,	NOT,	XOR,	SHIFT

12

Logical	Operations

13

Operator Description Example
A	=	2,	B	=	0

Logical	AND	
(&&)

Both	the	operands	are	non-
zeroà condition	becomes	

true

A	&&	B	=	False/0

Logical	OR
(||)	

Any	of	the	two	operands	is	
non-zeroà the	condition	

becomes	true

A	||	B	=	1/true

Logical	NOT
(!/~)

Reverse	the	logical	state	 !(A	&&	B)	= 1/true

Logical	Operations

14

Operator Description Example
A	=	2,	B	=	0

Logical	AND	
(&&)

Both	the	operands	are	non-
zeroà condition	becomes	

true

A	&&	B	=	False/0

Logical	OR
(||)	

Any	of	the	two	operands	is	
non-zeroà the	condition	

becomes	true

A	||	B	=	1/true

Logical	NOT
(!/~)

Reverse	the	logical	state	 !(A	&&	B)	= 1/true

Logical	Operations

15

Operator Description Example
A	=	2,	B	=	0

Logical	AND	
(&&)

Both	the	operands	are	non-
zeroà condition	becomes	

true

A	&&	B	=	False/0

Logical	OR
(||)	

Any	of	the	two	operands	is	
non-zeroà the	condition	

becomes	true

A	||	B	=	1/true

Logical	NOT
(!/~)

Reverse	the	logical	state	 !(A	&&	B)	= 1/true

Logical	Operations

16

Operator Description Example
A	=	2,	B	=	0

Logical	AND	
(&&)

Both	the	operands	are	non-
zeroà condition	becomes	

true

A	&&	B	=	False/0

Logical	OR
(||)	

Any	of	the	two	operands	is	
non-zeroà the	condition	

becomes	true

A	||	B	=	1/true

Logical	NOT
(!/~)

Reverse	the	logical	state	 !(A	&&	B)	= 1/true

Example:	Short-Circuit
#include	<stdio.h>
int zero()	{	printf("zero()\n");	return	0;	}
int one()	{	printf("one()\n");	return	1;	}

int main()	{
printf(">�%d\n",	zero()	&&	one());
printf(">�%d\n",	one()	&&	zero());
return	0;
}

17

OUTPUT
zero()
>	0
one()
zero()
>	0

AGENDA

• Logistics

• Review	from	last	Lecture

• Binary	Operations
– Logical	Operations
– Bitwise	Operations
– Examples

18

X Y X AND	Y X	OR Y X	XOR	Y NOT X

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

19

Bitwise	Operations

X Y X AND	Y X	OR Y X	XOR	Y NOT X

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

20

Bitwise	Operations

Operates	on	each	bit

X Y X AND	Y X	OR Y X	XOR	Y NOT X

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

21

Bitwise	Operations

Operates	on	each	bit

X Y X AND	Y X	OR Y X	XOR	Y NOT X

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

22

Bitwise	Operations

Operates	on	each	bit

X Y X AND	Y X	OR Y X	XOR	Y NOT X

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

23

Bitwise	Operations

Operates	on	each	bit

24

Bitwise	Operations

0	0	1	0
&	0	1	0	0

0	0	0	0

0	0	1	0
0 1 0 0
0	1	1	0

0	0	1	0
^ 0	1	0	0

0	1	1	0

~			0	1	0	0

1	0	1	1

0	0	1	0
>>	0	0	0	1

0	0	0	1

What	about	negative	numbers?

AND OR XOR NOT SHIFT

25

SHIFT	Bitwise	Operations

• What	value	should	be	placed	in	the	MSB?
• −10	>>	1	==	???	

• -10	=	1111	…	1111	0110
• -10	>>	1	==?111	…	1111	1011

• Option	1:	copy	sign	bit	à Arithmetic	shift
• Option	2:	always	keep	zero	à Logical	shift

Signed	and	Unsigned	Shift
• /*signed*/	int x	=	−10;
• /*	arithmetic:	*/
• x	>>	1	==	−5
• x	>>	4	==	−1

• unsigned	int y	=	0xFFFFFFF6;
• /*	logical	*/
• y	>>	1	==	0x7FFFFFFB
• y	>>	4	==	0x0FFFFFFF

26

Undefined	Behavior	with	SHIFTS

• 0	>>	32		à undefined	behavior

• 0	<<	32		à undefined	behavior

• (long)	0	>>	32	à okay	

• (long)	0	>>	64	à undefined	behavior

27

AGENDA

• Logistics

• Review	from	last	Lecture

• Binary	Operations

– Logical	Operations
– Bitwise	Operations
– Examples

28

RECAP:	Binary	Operations

• Bitwise	Operations
– AND,	OR,	NOT,	XOR,	SHIFT

29

Why	do	Bit	Manipulation?

Why	do	Bit	Manipulation?
• Faster	than	many	complex	operations
– DIV	25-123	cycles
– ADD/AND/CMP/OR/SUB/XOR	1	cycle

• Examples:
– Suppose	you	are	designing	a	reliable	system,	want	to	
detect	if	any	bit	flipped	

– Parity:	count	the	number	of	ones,	store	1	if	even
– How	many	ones	are	there	in	a	number?

– Suppose	you	want	to	make	DIV	faster	if	it	is	a	power	of	
two

– Is	a	number	a	power	of	two?
30

Intel®	64	and	IA-32	Architectures	Optimization	Reference	Manual	

Building	Blocks	of	Bit	Manipulation
• Set	a	bit,	keep	other	bits	unchanged
– 0	à 1;	1	à 1

• Reset/Clear	a	bit,	keep	other	bits	unchanged
– 1	à 0;	0	à 0

• Toggle	a	bit,	keep	other	bits	unchanged
– 1	à 0;	0	à 1

• Extract	and	shift
– 1010	1111 1010	1010	à 0000	0000	0000	1111

31

Building	Blocks	of	Bit	Manipulation
• Set	a	bit
– 0	à 1;	1	à 1
– X	|	1
– Example:
– Set	the	third	bit	of	1010
– 1010	|	0100	=	1110
– X3X2X1X0 |	0100	=	X31X1X0

32

Building	Blocks	of	Bit	Manipulation
• Reset/Clear	a	bit
– 1	à 0;	0	à 0
– X	&	0
– Example:
– Clear	the	third	bit	of	1110
– 1110	&	1011	=	1010
– X3X2X1X0 & 1011	=	X30X1X0

33

Building	Blocks	of	Bit	Manipulation
• Toggle	a	bit,	keep	other	bits	unchanged
– 1	à 0;	0	à 1	
– X	^	1
– Example:
– Toggle	the	third	bit	of	the	bit	vector
– 1110	^	0100	=	1010
– 1010	^	0100	=	1110
– X3X2X1X0 |	0100	=	X3!"X1X0

34

Building	Blocks	of	Bit	Manipulation
• Extract	and	shift
– 1010	1111 1010	1010	à 0000	0000	0000	1111

–Mask:	X	&	0x0F00	=	0000	X3X2X1X0 0000	0000
– Shift:	X	>>	8	=	0000	0000	0000	X3X2X1X

35

Example	Problems
• Is	any	bit	set	in	the	bit	vector?

• How	many	bits	are	set?

• How	to	manipulate	colors	in	RGB?

36

Is	any	bit	set	in	the	bit	vector?

• Naïve	Solution

• Shift	a	bit	and	check	if	it	is	1
• (X	&	1)	|	((X	>>	1)	&	1)	|	((X	>>	2)	&	1)	…
• 0011	0010	&	1	=	0
• 0001	1001	&	1	=	1
• 0000	1100	&	1	=	0
•

• Any	other	solution? 37

Is	any	bit	set	in	the	bit	vector?
• Operate	only	on	half	
• Assume	16	bits	integer	
• A =	(X	>>	8)	|	X
• Take	the	upper	half	and	or	with	X
• If	any	bit	in	X	is	set,	lower	half	of	a	will	have	a	
set	bit

• X	=	0000	0100	0000	0000

38

0000	0000	0000	0100									X>>8	

0000 0100 0000 0000 X
----- ------ 0000	0100									A

• A	=	(X	>>	8)	|	X
• A	=	(A	>>	4)	|	A

• A	=	(A	>>	2)	|	A
• A	=	(A	>>	1)	|	A
• return	A	&	1

39

----- ------ 0000	0000								A>>4	

----- ------ 0000 0100 A
----- ----- ---- 0100										A

Is	any	bit	set	in	the	bit	vector?

• A	=	(X	>>	8)	|	X
• A	=	(A	>>	4)	|	A
• A	=	(A	>>	2)	|	A

• A	=	(A	>>	1)	|	A
• return	A	&	1

40

----- ------ ----- 0001								A>>2	

----- ------ ----- 0100 A
----- ----- ---- -- 01										A

Is	any	bit	set	in	the	bit	vector?

• A	=	(X	>>	8)	|	X
• A	=	(A	>>	4)	|	A
• A	=	(A	>>	2)	|	A
• A	=	(A	>>	1)	|	A

• return	A	&	1

41

----- ------ ----- -- 00								A>>1	

----- ------ ----- -- 01 A
----- ----- ---- -- - 1								A

Is	any	bit	set	in	the	bit	vector? Example	Problems
• Is	any	bit	set	in	the	bit	vector?

• How	many	bits	are	set?

• How	to	manipulate	colors	in	RGB?

42

Count	Set	bits

• Count	=	X	&	1
• Count	+=	(X	>>	1)	&	1
• Count	+=	(X	>>	2)	&	1
• …

43

Example	Problems
• Is	any	bit	set	in	the	bit	vector?

• How	many	bits	are	set?

• How	to	manipulate	colors	in	RGB?

44

How	to	manipulate	colors	in	RGB?
• RGB	8	bits
– Each	color	is	represented	using	8	bit
– 0	to	255

• 32	bits:	0x	00	BB	GG RR

• int blueMask =	0xFF0000
int greenMask =	0xFF00
int redMask =	0xFF;
int r	=	12,	g	=	13,	b	=	14;
int bgrValue =	(b	<<	16)	+	(g	<<	8)	+	r;
printf("blue:%d\n”,	((bgrValue &	blueMask)	>>	16));
printf("red:%d\n”,	((bgrValue &	redMask)));
printf("green:%d\n”,	((bgrValue &	greenMask)	>>	8));

45

Samira	Khan
University	of	Virginia

Jan	31,	2017

Binary	Operations
CS	3330

