Binary Operations CS 3330

Samira Khan

University of Virginia Jan 31, 2017

Feedbacks

- Quizzes are hard
- Use the book, lectures, internet, whatever you can
- Past quizzes are available online
- For the quiz question with: typedef struct bar \{ int x ; \} foo; I tried compiling struct foo ${ }^{*} \mathrm{c}$; in C , and it compiled fine. So why is it wrong?
- Dropped it
- Good catch
- Ask in Piazza, so that others can learn, too

AGENDA

- Logistics
- Review from last Lecture
- Binary Operations
- Logical Operations
- Bitwise Operations
- Examples

Feedbacks

- Is a string still a string if it is expressed in bits? that seems like more of a philosophical question to me I'm referring to the quiz question
- Yes
- There is no "abcde..."
- Everything is just Os and 1s
- It is just how you interpret it

| AGENDA |
| :---: | :---: |
| - Logistics |
| - Review from last Lecture |
| - Binary Operations |
| - Logical Operations |
| - Bitwise Operations |
| - Examples |

Adding one to INT_MAX

if we add one to the largest representable integer, is the result negative?
\#include <limits.h>
\#include <stdio.h>
int main (void)
\{
printf ("\%d\n", (INT_MAX+1) < 0);
return 0;
${ }^{\}}$Undefined, output could be zero or one

Undefined Behavior

- C FAQ definition:
- Anything at all can happen
- Standard imposes no requirements;
- Program may fail to compile,
- or it may execute incorrectly,
- or it may do exactly what the programmer intended

More Undefined Behavior

- Attempting to modify a string literal
- char *p = "wikipedia"; // valid C
- $p[0]=$ 'W'; // undefined behavior
- Integer division by zero
- int $\mathrm{x}=1$;
- return x/0; // undefined behavior
- Certain pointer operations
- int arr[4] = \{0, 1, 2, 3\};
- int *p = arr + 5; // undefined behavior
- Increment and assignment
- $\mathrm{i}=\mathrm{i}+++1$; // undefined behavior

Undefined Behavior

- Pros:
- Simplifies the compiler's job
- Generates very efficient code
- Example: increment INT_MAX
- Does not need to worry about overflows and result become negative
- Cons:
- Misbehaved programs
- Security issues
- Example: Array out of bound

How do digital computers

 represent numbers?- Made of transistors (think as a switch)
- Have only two states: ON, OFF

- Can only use 0 and 1 to represent numbers
- $3 \rightarrow 0011,10 \rightarrow 1010$

AGENDA

- Logistics
- Review from last Lecture
- Binary Operations
- Logical Operations
- Bitwise Operations
- Examples

Binary Operations

- We need to operate on these binary numbers
- Arithmetic Operations
- ADD, SUB, MUL, DIV
- Logical Operations
- AND, OR, NOT
- Bitwise Operations
- AND, OR, NOT, XOR, SHIFT

Logical Operations

Logical Operations

Operator	Description	Example $A=2, B=0$		
Logical AND $(\& \&)$	Both the operands are non- zero \rightarrowcondition becomes true	$A \& \& B=$ False/0		
Logical OR $(\\|)$	Any of the two operands is non-zero \rightarrow the condition becomes true	$A \\| B=1 /$ true		

Operator	Description	Example $A=2, B=0$		
Logical AND $(\& \&)$	Both the operands are non- zero \rightarrow condition becomes true	A \& \& B = False/0		
Logical OR $(\\|)$	Any of the two operands is non-zero \rightarrow the condition becomes true	$A \\| B=1 /$ true		
Logical NOT $(!/ \sim)$	Reverse the logical state	!(A \&\&B) =1/true		

Bitwise Operations

X	Y
0	0
0	1
1	0
1	1

AGENDA

- Logistics
- Review from last Lecture
- Binary Operations
- Logical Operations
- Bitwise Operations
- Examples

Bitwise Operations

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Operates on each bit

Bitwise Operations						Bitwise Operations					
X	Y	X AND Y	X OR Y			X	Y	X AND Y	XOR Y	X XOR Y	
0	0	0	0			0	0	0	0	0	
0	1	0	1			0	1	0	1	1	
1	0	0	1			1	0	0	1	1	
1	1	1	1			1	1	1	1	0	
Operates on each bit						Operates on each bit					
Bitwise Operations						Bitwise Operations					
X	Y	X AND Y	X OR Y	X XOR Y	NOT X	0010			10	0100	O010
0	0	0	0	0	1	\& 0100			100	1011	>> 0001
0	1	0	1	1	1	0000		10	110		0001
1	0	0	1	1	0						
1	1	1	1	0	0	AND		XOR	R	NOT	SHIFT
Operates on each bit						What about negative numbers?					

SHIFT Bitwise Operations

- What value should be placed in the MSB?
- $-10 \gg 1==$???
- $-10=1111$... 11110110
- -10 >> 1 ==? 111 ... 11111011
- Option 1: copy sign bit \rightarrow Arithmetic shift
- Option 2: always keep zero \rightarrow Logical shift

Signed and Unsigned Shift

- /*signed*/ int x = -10;
- /* arithmetic: */
- $x \gg 1==-5$
- $x \gg 4==-1$
- unsigned int $y=0 x F F F F F F F 6$;
- /* logical */
- $y \gg 1==0 x 7 F F F F F F B$
- $y \gg 4==0 x 0 F F F F F F F$

AGENDA

- Logistics
- Review from last Lecture
- Binary Operations
- Logical Operations
- Bitwise Operations
- Examples

RECAP: Binary Operations

- Bitwise Operations
- AND, OR, NOT, XOR, SHIFT

Why do Bit Manipulation?

Building Blocks of Bit Manipulation

- Set a bit, keep other bits unchanged
$-0 \rightarrow 1 ; 1 \rightarrow 1$
- Reset/Clear a bit, keep other bits unchanged
$-1 \rightarrow 0 ; 0 \rightarrow 0$
- Toggle a bit, keep other bits unchanged
$-1 \rightarrow 0 ; 0 \rightarrow 1$
- Extract and shift
- $1010111110101010 \rightarrow 0000000000001111$

Why do Bit Manipulation?

- Faster than many complex operations
- DIV 25-123 cycles
- ADD/AND/CMP/OR/SUB/XOR 1 cycle
- Examples:
- Suppose you are designing a reliable system, want to detect if any bit flipped
- Parity: count the number of ones, store 1 if even
- How many ones are there in a number?
- Suppose you want to make DIV faster if it is a power of two
- Is a number a power of two?

Building Blocks of Bit Manipulation

- Set a bit
$-0 \rightarrow 1 ; 1 \rightarrow 1$
-X| 1
- Example:
- Set the third bit of 1010
$-1010 \mid 0100=1110$
$-X_{3} X_{2} X_{1} X_{0} \mid 0100=X_{3} 1 X_{1} X_{0}$

Building Blocks of Bit Manipulation

- Reset/Clear a bit
$-1 \rightarrow 0 ; 0 \rightarrow 0$
$-X \& 0$
- Example:
- Clear the third bit of 1110
-1110 \& $1011=1010$
$-X_{3} x_{2} x_{1} x_{0} \& 1011=X_{3} 0 X_{1} x_{0}$

Building Blocks of Bit Manipulation

- Toggle a bit, keep other bits unchanged
$-1 \rightarrow 0 ; 0 \rightarrow 1$
$-x^{\wedge} 1$
- Example:
- Toggle the third bit of the bit vector
$-1110{ }^{\wedge} 0100=1010$
$-1010 \wedge 0100=1110$
$-X_{3} X_{2} X_{1} X_{0} \mid 0100=X_{3} \overline{X_{2}} X_{1} X_{0}$

Example Problems

- Is any bit set in the bit vector?
- How many bits are set?
- How to manipulate colors in RGB?

Is any bit set in the bit vector?

- Naïve Solution
- Shift a bit and check if it is 1
- (\quad \& 1$)|((X \gg 1) \& 1)|((X \gg 2) \& 1) .$.
- 00110010 \& $1=0$
- 00011001 \& $1=1$
- 00001100 \& $1=0$
-
- Any other solution?

Is any bit set in the bit vector?

- $A=(X \gg 8) \mid X$
- $A=(A \gg 4) \mid A$
- $A=(A \gg 2) \mid A$
- $A=(A \gg 1) \mid A$
- return A \& 1

Is any bit set in the bit vector?

- Operate only on half
- Assume 16 bits integer
- $A=(X \gg 8) \mid X$
- Take the upper half and or with X
- If any bit in X is set, lower half of a will have a set bit
- X = 0000010000000000

```
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
| 0000 010000000000
```

00000100
A

Is any bit set in the bit vector?

- $A=(X \gg 8) \mid X$
- $A=(A \gg 4) \mid A$
- $A=(A \gg 2) \mid A$
- $A=(A \gg 1) \mid A$
- return A \& 1

Is any bit set in the bit vector?

- $A=(X \gg 8) \mid X$
- $A=(A \gg 4) \mid A$
- $A=(A \gg 2) \mid A$
- $A=(A \gg 1) \mid A$
- return A \& 1
| ------ ------------ -- 00 A>>1

Count Set bits

- Count =X \& 1
- Count $+=(X \gg 1) \& 1$
- Count += ($\mathrm{X} \gg 2$) \& 1
- ...

Example Problems

- Is any bit set in the bit vector?
- How many bits are set?
- How to manipulate colors in RGB?

Example Problems

- Is any bit set in the bit vector?
- How many bits are set?
- How to manipulate colors in RGB?

How to manipulate colors in RGB?

- RGB 8 bits
- Each color is represented using 8 bit
- 0 to 255
- 32 bits: 0x 00 BB GG RR
- int blueMask $=0 \times F F 0000$
int greenMask $=0 \times F F 00$
int redMask $=0 \times F F$;
int $r=12, g=13, b=14$;
int bgrValue $=(b \ll 16)+(g \ll 8)+r$;
printf("blue:\%d\n", ((bgrValue \& blueMask) >> 16));
printf("red:\%d\n", ((bgrValue \& redMask)));
printf("green:\%d\n", ((bgrValue \& greenMask) >> 8));

Binary Operations
 CS 3330

Samira Khan

University of Virginia Jan 31, 2017

