
2/9/17

1

Samira	Khan
University	of	Virginia

Feb	9,	2017

Intro	to	Microarchitecture:	
Single-Cycle

CS	3330

AGENDA
• Review	from	last	lecture

• ISA	tradeoffs

• Single-cycle	Microarchitecture

2

Review:	ISA	vs.	Microarchitecture
• ISA	(Instruction	Set	Architecture)

• Agreed	upon	interface	between	software	and	
hardware

• SW/compiler	assumes,	HW	promises
• What	the	software	writer	needs	to	know	to	write	and	
debug	system/user	programs	

• Microarchitecture
• Specific	implementation	of	an	ISA
• Not	visible	to	the	software

• Microprocessor
• ISA,	uarch,	circuits
• “Architecture” =	ISA	+	microarchitecture

Microarchitecture

Circuits

ISA

Problem

Algorithm

Program

Transistors

3

Review:	ISA
• Instructions

• Opcodes,	Addressing	Modes,	Data	Types
• Instruction	Types	and	Formats
• Registers,	Condition	Codes

• Memory
• Address	space,	Addressability,	Alignment
• Virtual	memory	management

• Call,	Interrupt/Exception	Handling
• Access	Control,	Priority/Privilege	
• I/O:	memory-mapped	vs.	instr.
• Task/thread	Management
• Power	and	Thermal	Management
• Multi-threading	support,	Multiprocessor	support

4

2/9/17

2

Microarchitecture
• Implementation	of	the	ISA	under	specific design	constraints	and	goals
• Anything	done	in	hardware	without	exposure	to	software

• Pipelining	(will	see	later)
• Clock	gating
• Caching?	Levels,	size,	associativity,	replacement	policy
• Prefetching?
• Voltage/frequency	scaling?
• Error	correction?

5

Property	of	ISA	vs.	Uarch?
• ADD	instruction’s	opcode
• Number	of	general	purpose	registers
• Number	of	ports	to	the	register	file
• Number	of	cycles	to	execute	the	MUL	instruction
• Whether	or	not	the	machine	employs	pipelined	instruction	execution

• Remember
• Microarchitecture:	Implementation	of	the	ISA	under	specific design	constraints	
and	goals

6

Design	Point
• A	set	of	design	considerations	and	their	importance	

• leads	to	tradeoffs	in	both	ISA	and	uarch
• Considerations

• Cost
• Performance
• Maximum	power	consumption
• Energy	consumption	(battery	life)
• Availability
• Reliability	and	Correctness	
• Time	to	Market

• Design	point	determined	by	the	“Problem” space	(application	space),	
the	intended	users/market

7

Design	Point
• A	set	of	design	considerations	and	their	importance	

• leads	to	tradeoffs	in	both	ISA	and	uarch
• Considerations

• Cost
• Performance
• Maximum	power	consumption
• Energy	consumption	(battery	life)
• Availability
• Reliability	and	Correctness	
• Time	to	Market

• Design	point	determined	by	the	“Problem” space	(application	space),	
the	intended	users/marketLook	Forward	&	Up

8

2/9/17

3

ROLE	OF	THE	(COMPUTER)	ARCHITECT

from Yale Patt’s lecture notes
9

ROLE	OF	THE	(COMPUTER)	ARCHITECT
• Look	backward	(to	the	past)

• Understand	tradeoffs	and	designs,	upsides/downsides,	past	
workloads.	Analyze	and	evaluate	the	past

• Look	forward	(to	the	future)
• Be	the	dreamer	and	create	new	designs.	Listen	to	dreamers
• Push	the	state	of	the	art.	Evaluate	new	design	choices

• Look	up	(towards	problems	in	the	computing	stack)
• Understand	important	problems	and	their	nature
• Develop	architectures	and	ideas	to	solve	important	problems

• Look	down	(towards	device/circuit	technology)
• Understand	the	capabilities	of	the	underlying	technology
• Predict	and	adapt	to	the	future	of	technology	(you	are	designing	for	
N	years	ahead).	Enable	the	future	technology 10

Application	Space

• Dream,	and	they	will	appear…

11

Tradeoffs:	Soul	of	Computer	Architecture
• ISA-level	tradeoffs

• Microarchitecture-level	tradeoffs

• System	and	Task-level	tradeoffs
• How	to	divide	the	labor	between	hardware	and	software

• Computer	architecture	is	the	science	and	art	of	making	
the	appropriate	trade-offs	to	meet	a	design	point

• Why	art?

12

2/9/17

4

ISA	Principles	and	Tradeoffs

Many	Different	ISAs	Over	Decades
• x86
• PDP-x:	Programmed	Data	Processor	(PDP-11)
• VAX
• IBM	360
• CDC	6600
• SIMD	ISAs: CRAY-1,	Connection	Machine
• VLIW	ISAs:	Multiflow,	Cydrome,	IA-64	(EPIC)
• PowerPC,	POWER
• RISC	ISAs:	Alpha,	MIPS,	SPARC,	ARM

• What	are	the	fundamental	differences?
• E.g.,	how	instructions	are	specified	and	what	they	do	
• E.g.,	how	complex	are	the	instructions

14

MIPS

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type

15

ARM

16

2/9/17

5

What	Are	the	Elements	of	An	ISA?
• Instructions

• Opcode
• Operand	specifiers	(addressing	modes)

• How	to	obtain	the	operand?

• Data	types
• Definition:	Representation	of	information	for	which	there	are	
instructions	that	operate	on	the	representation

• Integer,	floating	point,	character,	binary,	decimal,	BCD
• Doubly	linked	list,	queue,	string,	bit	vector,	stack

• VAX:	INSQUEUE	and	REMQUEUE	instructions	on	a	doubly	linked	list	or	
queue;	FINDFIRST

• Digital	Equipment	Corp.,	“VAX11	780	Architecture	Handbook,” 1977.
• X86:	SCAN	opcode	operates	on	character	strings;	PUSH/POP

Why are there different addressing modes?

17

Data	Type	Tradeoffs
• What	is	the	benefit	of	having	more	or	high-level	data	types	in	the	ISA?
• What	is	the	disadvantage?

• Think	compiler/programmer	vs.	microarchitect

• Concept	of	semantic	gap
• Data	types	coupled	tightly	to	the	semantic	level,	or	complexity	of	instructions

• Example:	Early	RISC	architectures	vs.	Intel	432
• Early	RISC:	Only	integer	data	type
• Intel	432:	Object	data	type,	capability	based	machine

18

Complex	vs.	Simple	Instructions
• Complex	instruction:	An	instruction	does	a	lot	of	work,	
e.g.	many	operations

• Insert	in	a	doubly	linked	list
• Compute	FFT
• String	copy

• Simple	instruction:	An	instruction	does	small	amount	of	
work,	it	is	a	primitive	using	which	complex	operations	
can	be	built

• Add
• XOR
• Multiply

19

Complex	vs.	Simple	Instructions
• Advantages	of	Complex	instructions

+	Denser	encoding	à smaller	code	size	à better	memory	
utilization,	saves	off-chip	bandwidth,	better	cache	hit	rate	
(better	packing	of	instructions)

+	Simpler	compiler:	no	need	to	optimize	small	instructions	as	
much	

• Disadvantages	of	Complex	Instructions
- Larger	chunks	of	work	à compiler	has	less	opportunity	to	
optimize	(limited	in	fine-grained	optimizations	it	can	do)

- More	complex	hardware	à translation	from	a	high	level	to	
control	signals	and	optimization	needs	to	be	done	by	
hardware

20

2/9/17

6

ISA-level	Tradeoffs:	Semantic	Gap
• Where	to	place	the	ISA? Semantic	gap

• Closer	to	high-level	language	(HLL)	à Small	semantic	gap,	complex	
instructions

• Closer	to	hardware	control	signals?	à Large	semantic	gap,	simple	instructions

• RISC	vs.	CISC	machines
• RISC:	Reduced	instruction	set	computer
• CISC:	Complex	instruction	set	computer

• FFT,	QUICKSORT,	POLY,	FP	instructions?
• VAX	INDEX	instruction	(array	access	with	bounds	checking)

21

ISA-level	Tradeoffs:	Semantic	Gap
• Some	tradeoffs	(for	you	to	think	about)

• Simple	compiler,	complex	hardware	vs.	complex	compiler,	simple	
hardware

• Burden	of	backward	compatibility

• Performance?	Energy	Consumption?
• Optimization	opportunity:	Example	of	VAX	INDEX	instruction:	who	(compiler	
vs.	hardware)	puts	more	effort	into	optimization?

• Instruction	size,	code	size

22

Small	versus	Large	Semantic	Gap
• CISC	vs.	RISC

• Complex	instruction	set	computer	à complex	instructions
• Initially	motivated	by	“not	good	enough” code	generation

• Reduced	instruction	set	computer	à simple	instructions
• John	Cocke,	mid	1970s,	IBM	801

• Goal:	enable	better	compiler	control	and	optimization

• RISC	motivated	by	
• Memory	stalls	(no	work	done	in	a	complex	instruction	when	
there	is	a	memory	stall?)

• When	is	this	correct?
• Simplifying	the	hardware	à lower	cost,	higher	frequency
• Enabling	the	compiler	to	optimize	the	code	better

• Find	fine-grained	parallelism	to	reduce	stalls

23

ISA-level	Tradeoffs:	Instruction	Length
• Fixed	length:	Length	of	all	instructions	the	same

+	Easier	to	decode	single	instruction	in	hardware
+	Easier	to	decode	multiple	instructions	concurrently
-- Wasted	bits	in	instructions	(Why	is	this	bad?)
-- Harder-to-extend	ISA	(how	to	add	new	instructions?)

• Variable	length:	Length	of	instructions	different	(determined	by	
opcode	and	sub-opcode)

+	Compact	encoding	(Why	is	this	good?)
Intel	432:	6	to	321	bit	instructions.	

-- More	logic	to	decode	a	single	instruction
-- Harder	to	decode	multiple	instructions	concurrently

• Tradeoffs
• Code	size	(memory	space,	bandwidth,	latency)	vs.	hardware	complexity
• ISA	extensibility	and	expressiveness	vs.	hardware	complexity
• Performance?	Energy?	Smaller	code	vs.	ease	of	decode

24

2/9/17

7

ISA-level	Tradeoffs:	Uniform	Decode
• Uniform	decode:	Same	bits	in	each	instruction	
correspond	to	the	same	meaning

• Opcode	is	always	in	the	same	location
• Ditto	operand	specifiers,	immediate	values,	…
• Many	“RISC” ISAs:	Alpha,	MIPS,	SPARC
+	Easier	decode,	simpler	hardware
+	Enables	parallelism:	generate	target	address	before	knowing	the	
instruction	is	a	branch

-- Restricts	instruction	format	(fewer	instructions?)	or	wastes	space

• Non-uniform	decode
• E.g.,	opcode	can	be	the	1st-7th	byte	in	x86
+	More	compact	and	powerful	instruction	format
-- More	complex	decode	logic

25

ISA-level	Tradeoffs:	Number	of	Registers
• Affects:

• Number	of	bits	used	for	encoding	register	address
• Number	of	values	kept	in	fast	storage	(register	file)
• (uarch)	Size,	access	time,	power	consumption	of	register	file

• Large	number	of	registers:
+	Enables	better	register	allocation	(and	optimizations)	by	compiler	à
fewer	saves/restores

-- Larger	instruction	size
-- Larger	register	file	size

26

ISA-level	Tradeoffs:	Addressing	Modes
• Addressing	mode	specifies	how	to	obtain	an	operand	of	an	
instruction

• Register
• Immediate
• Memory	(displacement,	register	indirect,	indexed,	absolute,	
memory	indirect,	autoincrement,	autodecrement,	…)

• More	modes:	
+	help	better	support	programming	constructs	(arrays,	pointer-
based	accesses)

-- make	it	harder	for	the	architect	to	design	
-- too	many	choices	for	the	compiler?	

• Many	ways	to	do	the	same	thing	complicates	compiler	design
• Wulf,	“Compilers	and	Computer	Architecture,” IEEE	Computer	1981

27

A	Note	on	RISC	vs.	CISC
• Usually,	…

• RISC
• Simple	instructions
• Fixed	length
• Uniform	decode
• Few	addressing	modes

• CISC
• Complex	instructions
• Variable	length
• Non-uniform	decode
• Many	addressing	modes

28

2/9/17

8

Food	for	Thought	for	You
• How	would	you	design	a	new	ISA?

• Where	would	you	place	it?
• What	design	choices	would	you	make	in	terms	of	ISA	
properties?

• What	would	be	the	first	question	you	ask	in	this	
process?

• “What	is	my	design	point?”

Look	Forward	&	Up

29

Y86-64	Instruction	Set	#1
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

30

Now	That	We	Have	an	ISA
• How	do	we	implement	it?

• i.e.,	how	do	we	design	a	system	that	obeys	the	
hardware/software	interface?

31

Implementing	the	ISA:	
Microarchitecture	Basics

2/9/17

9

How	Does	a	Machine	Process	Instructions?	
• What	does	processing	an	instruction	mean?
• Remember	the	von	Neumann	model

AS	=	Architectural	(programmer	visible)	state	before	an	instruction	is	processed

Process	instruction

AS’ =	Architectural	(programmer	visible)	state	after	an	instruction	is	processed

• Processing	an	instruction:	Transforming	AS	to	AS’ according	to	the	ISA	
specification	of	the	instruction

33

The	“Process	instruction” Step
• ISA	specifies	abstractly	what	AS’ should	be,	given	an	instruction	and	
AS

• It	defines	an	abstract	finite	state	machine	where
• State	=	programmer-visible	state	
• Next-state	logic	=	instruction	execution	specification

• From	ISA	point	of	view,	there	are	no	“intermediate	states” between	AS	and	AS’
during	instruction	execution

• One	state	transition	per	instruction

• Microarchitecture	implements	how	AS	is	transformed	to	AS’
• There	are	many	choices	in	implementation	
• We	can	have	programmer-invisible	state	to	optimize	the	speed	of	instruction	
execution:	multiple	state	transitions	per	instruction

• Choice	1:	AS	à AS’ (transform	AS	to	AS’ in	a	single	clock	cycle)
• Choice	2:	AS	à AS+MS1	à AS+MS2	à AS+MS3	à AS’ (take	multiple	clock	cycles	to	

transform	AS	to	AS’)

34

A	Very	Basic	Instruction	Processing	Engine
• Each	instruction	takes	a	single	clock	cycle	to	execute
• Only	combinational	logic	is	used	to	implement	instruction	execution	

• No	intermediate,	programmer-invisible	state	updates

AS	=	Architectural	(programmer	visible)	state	
at	the	beginning	of	a	clock	cycle

Process	instruction	in	one	clock	cycle

AS’ =	Architectural	(programmer	visible)	state	
at	the	end	of	a	clock	cycle

35

A	Very	Basic	Instruction	Processing	Engine
• Single-cycle	machine

• What	is	the	clock	cycle	time	determined	by?
• What	is	the	critical	path of	the	combinational	logic	
determined	by?

AS’ AS(State)Combinational
Logic

36

2/9/17

10

Assembly/Machine	Code	View

Programmer-Visible	State
• PC:	Program	counter

• Address	of	next	instruction
• Called	“RIP”	(x86-64)

• Register	file
• Heavily	used	program	data

• Condition	codes
• Store	status	information	about	most	
recent	arithmetic	or	logical	operation

• Used	for	conditional	branching

CPU

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

Instructions
Condition
Codes

• Memory
• Byte	addressable	array
• Code	and	user	data

• Stack	to	support	procedures

Instructions	(and	programs)	specify	how	to	transform
the	values	of	programmer	visible	state37

Single-cycle	vs.	Multi-cycle	Machines
• Single-cycle	machines

• Each	instruction	takes	a	single	clock	cycle
• All	state	updates	made	at	the	end	of	an	instruction’s	execution
• Big	disadvantage:	The	slowest	instruction	determines	cycle	time	à long	clock	
cycle	time

• Multi-cycle	machines	
• Instruction	processing	broken	into	multiple	cycles/stages
• State	updates	can	be	made	during	an	instruction’s	execution
• Architectural	state	updates	made	only	at	the	end	of	an	instruction’s	execution
• Advantage	over	single-cycle:	The	slowest	“stage” determines	cycle	time

n Both	single-cycle	and	multi-cycle	machines	literally	follow	the	
von	Neumann	model	at	the	microarchitecture	level

38

Instruction	Processing	“Stage”
• Instructions	are	processed	under	the	direction	of	a	“control	
unit” step	by	step.	

• Instruction	stage:	Sequence	of	steps	to	process	an	instruction
• Fundamentally,	there	are	five	phases:

• Fetch
• Decode
• Evaluate	Address/Fetch	Operands
• Execute
• Store	Result

• Not	all	instructions	require	all	stages

39

Instruction	Processing	“Cycle” vs.	Machine	Clock	Cycle
• Single-cycle	machine:	

• All	phases	of	the	instruction	processing	cycle	take	a	single	
machine	clock	cycle to	complete

• Multi-cycle	machine:	
• All	six	phases	of	the	instruction	processing	cycle	can	take	
multiple	machine	clock	cycles to	complete

• In	fact,	each	phase	can	take	multiple	clock	cycles	to	complete

40

2/9/17

11

Instruction	Processing	Viewed	Another	Way

• Instructions	transform	Data	(AS)	to	Data’ (AS’)
• This	transformation	is	done	by	functional	units	

• Units	that	“operate” on	data

• These	units	need	to	be	told	what	to	do	to	the	data

• An	instruction	processing	engine	consists	of	two	components
• Datapath:	Consists	of	hardware	elements	that	deal	with	and	transform	
data	signals

• functional	units	that	operate	on	data
• hardware	structures	(e.g.	wires	and	muxes)	that	enable	the	flow	of	data	into	
the	functional	units	and	registers

• storage	units	that	store	data	(e.g.,	registers)
• Control	logic:	Consists	of	hardware	elements	that	determine	control	
signals,	i.e.,	signals	that	specify	what	the	datapath elements	should	do	
to	the	data

41

Single-cycle	vs.	Multi-cycle:	Control	&	Data
• Single-cycle	machine:

• Control	signals	are	generated	in	the	same	clock	cycle	as	the	
one	during	which	data	signals	are	operated	on

• Everything	related	to	an	instruction	happens	in	one	clock	cycle	
(serialized	processing)

• Multi-cycle	machine:
• Control	signals	needed	in	the	next	cycle	can	be	generated	in	
the	current	cycle

• Latency	of	control	processing	can	be	overlapped	with	latency	
of	datapath operation	(more	parallelism)

42

Many	Ways	of	Datapath and	Control	Design
• There	are	many	ways	of	designing	the	data	path	and	control	logic

• Single-cycle,	multi-cycle,	pipelined	datapath and	control

• Hardwired/combinational	vs.	microcoded/microprogrammed	control
• Control	signals	generated	by	combinational	logic	versus
• Control	signals	stored	in	a	memory	structure

43

Flash-Forward:	Performance	Analysis
• Execution	time	of	an	instruction

• {CPI}		x		{clock	cycle	time}	

• Execution	time	of	a	program
• Sum	over	all	instructions	[{CPI}		x		{clock	cycle	time}]
• {#	of	instructions}		x		{Average	CPI}		x		{clock	cycle	time}

• Single	cycle	microarchitecture	performance	
• CPI	=	1
• Clock	cycle	time	=	long

• Multi-cycle	microarchitecture	performance
• CPI	=	different	for	each	instruction

• Average	CPI	à hopefully	small
• Clock	cycle	time	=	short

Now, we have
two degrees of freedom
to optimize independently

44

2/9/17

12

A	Single-Cycle	
Microarchitecture
A	Closer	Look

Remember…
• Single-cycle	machine

AS(State)Combinational
Logic

AS’

46

Let’s	Start	with	the	State	Elements
• Data	and	control	inputs

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

A
L
U

Operation

A

B

MUX

0

1

PC

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address
Read
Data

Write
Data

Reg
Write

Mem
Write

Mem
Read

MUX
Select

47

For	Now,	We	Will	Assume
• “Magic” memory	and	register	file

• Synchronous	write
• the	selected	register	is	updated	on	the	positive	edge	clock	
transition	when	write	enable	is	asserted

• Cannot	affect	read	output	in	between	clock	edges

48

2/9/17

13

Instruction	Processing
• 6	(5)	generic	steps	

• Instruction	fetch	(IF)
• Instruction	decode	and	register	operand	fetch	(ID/RF)
• Execute/Evaluate	memory	address	(EX/AG)
• Memory	operand	fetch	(MEM)
• Store/writeback result	(WB)	
• PC	Update

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

IF ID/RF EX/AG WBMEM

new	PC

49

Instruction	Processing
• 6	(5)	generic	steps	

• Instruction	fetch	(IF)
• Instruction	decode	and	register	operand	fetch	(ID/RF)
• Execute/Evaluate	memory	address	(EX/AG)
• Memory	operand	fetch	(MEM)
• Store/writeback result	(WB)	
• PC	Update

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

IF ID/RF EX/AG WBMEM

new	PC

50

Instruction	Processing
• 6	(5)	generic	steps	

• Instruction	fetch	(IF)
• Instruction	decode	and	register	operand	fetch	(ID/RF)
• Execute/Evaluate	memory	address	(EX/AG)
• Memory	operand	fetch	(MEM)
• Store/writeback result	(WB)	
• PC	Update

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

IF ID/RF EX/AG WBMEM

new	PC

51

Instruction	Processing
• 6	(5)	generic	steps	

• Instruction	fetch	(IF)
• Instruction	decode	and	register	operand	fetch	(ID/RF)
• Execute/Evaluate	memory	address	(EX/AG)
• Memory	operand	fetch	(MEM)
• Store/writeback result	(WB)	
• PC	Update

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

IF ID/RF EX/AG WBMEM

new	PC

52

2/9/17

14

Single-Cycle	Datapath	for
Arithmetic	and	Logical	

Instructions

Executing	Arith./Logical	Operation

•Fetch
• Read	2	bytes

•Decode
• Read	operand	registers

•Execute
• Perform	operation

• Set	condition	codes

•Memory
• Do	nothing

•Write	back
• Update	register

•PC	Update
• Increment	PC	by	2

OPq rA, rB 6 fn rA rB

54

Stage	Computation:	Arith/Log.	Ops

• Formulate	instruction	execution	as	sequence	of	simple	
steps

• Use	same	general	form	for	all	instructions

OPq rA,	rB
icode:ifun	¬M1[PC]
rA:rB¬M1[PC+1]

valP¬ PC+2

Fetch
Read	instruction	byte
Read	register	byte

Compute	next	PC
valA	¬ R[rA]
valB	¬ R[rB]

Decode Read	operand	A
Read	operand	B

valE	¬ valB	OP	valA
Set	CC

Execute Perform	ALU	operation
Set	condition	code	
registerMemory

R[rB]	¬ valEWrite

back
Write	back	result

PC	¬ valPPC	update Update	PC

55

ALU	Datapath

**Based	on	original	figure	from	[P&H	CO&D,	COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	RESERVED.]

if	MEM[PC]	==	OPq rA, rB
R[rB] ¬ R[rB] op	R[rA]
PC	¬ PC	+	2

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValB

rA

DestE

valA
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rB

ValE

A
D
D

Reg
Write ALU

OP

PC

2

56

2/9/17

15

ALU	Datapath

**Based	on	original	figure	from	[P&H	CO&D,	COPYRIGHT	2004	Elsevier.	ALL	RIGHTS	RESERVED.]

if	MEM[PC]	==	OPq rA, rB
R[rB] ¬ R[rB] op	R[rA]
PC	¬ PC	+	2

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValB

rA

DestE

valA
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rB

ValE

A
D
D

Reg
Write ALU

OP

PC

2

57

We	did	not	cover	these	slides
in	the	class

Will	learn	about	these	in	the	next	class
They	are	here	for	your	benefit

Single-Cycle	Datapath	for
Data	Movement	Instructions

Executing	mrmovq (Load	from	Mem	to	Reg)

•Fetch
• Read	10	bytes

•Decode
• Read	operand	registers

•Execute
• Compute	effective	
address

•Memory
• Read	from	memory

•Write	back
• Write	to	Register

•PC	Update
• Increment	PC	by	10

6 fn rA rB

mrmovq D(rB)	,rA

D

60

2/9/17

16

Stage	Computation:	mrmovq

• Use	ALU	for	address	computation

mrmovq D(rB),	rA
icode:ifun¬M1[PC]
rA:rB	¬M1[PC+1]
valC¬M8[PC+2]
valP¬ PC+10

Fetch

Read	instruction	byte
Read	register	byte
Read	displacement	D
Compute	next	PC

valB¬ R[rB]
Decode

Read	operand	B
valE¬ valB +	valC

Execute
Compute	effective	address

valM¬ M8[valE]Memory Write	value	to	memory		
R[rA]	¬ valMWrite

back
PC	¬ valPPC	update Update	PC

61

Ld Datapath

if	MEM[PC]==	mrmovq Disp (rB), rA
EA	=	Disp +	R[rB]
R[rA]¬MEM[EA]	
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem10

PC

62

Ld Datapath

if	MEM[PC]==	mrmovq Disp (rB), rA
EA	=	Disp +	R[rB]
R[rA]¬MEM[EA]	
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem10

PC

63

Ld Datapath

if	MEM[PC]==	mrmovq Disp (rB), rA
EA	=	Disp +	R[rB]
R[rA]¬MEM[EA]	
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem10

PC

64

2/9/17

17

Ld Datapath

if	MEM[PC]==	mrmovq Disp (rB), rA
EA	=	Disp +	R[rB]
R[rA]¬MEM[EA]	
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem10

PC

65

Ld Datapath

if	MEM[PC]==	mrmovq Disp (rB), rA
EA	=	Disp +	R[rB]
R[rA]¬MEM[EA]	
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem10

PC

66

Executing	rmmovq (St	from	reg to	Memory)

•Fetch
• Read	10	bytes

•Decode
• Read	operand	registers

•Execute
• Compute	effective	address

•Memory
• Write	to	memory

•Write	back
• Do	nothing

•PC	Update
• Increment	PC	by	10

4 0 rA rB

rmmovq rA,	D(rB)

D

67

Stage	Computation:	rmmovq

• Use	ALU	for	address	computation

rmmovq rA,	D(rB)
icode:ifun¬M1[PC]
rA:rB	¬M1[PC+1]
valC¬M8[PC+2]
valP¬ PC+10

Fetch

Read	instruction	byte
Read	register	byte
Read	displacement	D
Compute	next	PC

valA	¬ R[rA]
valB	¬ R[rB]

Decode
Read	operand	A
Read	operand	B

valE	¬ valB	+	valC
Execute

Compute	effective	address

M8[valE]	¬ valAMemory Write	value	to	memory		
Write

back
PC	¬ valPPC	update Update	PC

68

2/9/17

18

St	Datapath

if	MEM[PC]==	rmmovq rA, Disp (rB)
EA	=	Disp +	R[rB]
MEM[EA]	¬ R[rA]
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

10

Mem
Write

69

St	Datapath

if	MEM[PC]==	rnmovq rA, Disp (rB)
EA	=	Disp +	R[rB]
MEM[EA]	¬ R[rA]
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

10

Mem
Write

70

St	Datapath

if	MEM[PC]==	rnmovq rA, Disp (rB)
EA	=	Disp +	R[rB]
MEM[EA]	¬ R[rA]
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

10

Mem
Write

71

St	Datapath

if	MEM[PC]==	rnmovq rA, Disp (rB)
EA	=	Disp +	R[rB]
MEM[EA]	¬ R[rA]
PC	¬ PC	+	10

Combinational
state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

10

Mem
Write

72

2/9/17

19

Executing	irmovq (Move	imm to	Reg)

•Fetch
• Read	10	bytes

•Decode
• Read	operand	registers

•Execute
• Add	0	to	V

•Memory
• Do	nothing

•Write	back
• Write	V	to	rB

•PC	Update
• Increment	PC	by	10

3 0 F rB

irmovq V, rB

V

73

Stage	Computation:	immovq

• Use	ALU	for	address	computation

irmovq V,	rB
icode:ifun¬M1[PC]
rA:rB	¬M1[PC+1]
valC¬M8[PC+2]
valP¬ PC+10

Fetch

Read	instruction	byte
Read	register	byte
Read	displacement	D
Compute	next	PC

Decode

valE¬ 0 +	valC
Execute

Compute	effective	address

R[rB]	¬ valAMemory Write	value	to	memory		
Write

back
PC	¬ valPPC	update Update	PC

74

IRMov Datapath:	Option	1	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

10

75

IRMov Datapath:	Option	1	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V + 0
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

10

76

2/9/17

20

IRMov Datapath:	Option	1	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V + 0
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

10

77

IRMov Datapath:	Option	1	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V + 0
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

10

78

IRMov Datapath:	Option	1	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V + 0
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

10

79

IRMov Datapath:	Option	2	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

Mem
Write

10

80

2/9/17

21

IRMov Datapath:	Option	2	

if	MEM[PC]==	irmovq V, rB
R[rB]	¬ V
PC	¬ PC	+	10 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

Mem
Write

10

81

• Tradeoffs	between	option	1	and	option	2?

82

Executing	rrmovq (Move	from	Reg to	Reg)

•Fetch
• Read	2	bytes

•Decode
• Read	operand	register	rA

•Execute
• Add	0	to	val rA

•Memory
• Do	nothing

•Write	back
• Write	val rA to	rB

•PC	Update
• Increment	PC	by	2

2 0 rA rB

rrmovq rA, rB

83

Stage	Computation:	rrmovq

• Use	ALU	for	address	computation

rrmovq rA,	rB
icode:ifun¬M1[PC]
rA:rB	¬M1[PC+1]

valP¬ PC+2

Fetch

Read	instruction	byte
Read	register	byte
Read	displacement	D
Compute	next	PC

ValA¬ R[rA]	
Decode

valE¬ 0 +	valA
Execute

Compute	effective	address

Memory Write	value	to	memory		
R[rB]	ß valEWrite

back
PC	¬ valPPC	update Update	PC

84

2/9/17

22

rrMov Datapath:	Option	1	

if	MEM[PC]==	rrmovq rA, rB
R[rB]	¬ R[rA]
PC	¬ PC	+	2 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

2

85

rrmov Datapath:	Option	1	

if	MEM[PC]==	rrmovq rA, rB
R[rB]	¬ R[rA]
PC	¬ PC	+	2 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

2

86

rrmov Datapath:	Option	1	

if	MEM[PC]==	rrmovq rA, rB
R[rB]	¬ R[rA]
PC	¬ PC	+	2 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

2

87

rrmov Datapath:	Option	1	

if	MEM[PC]==	rrmovq rA, rB
R[rB]	¬ R[rA]
PC	¬ PC	+	2 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

M
U
X

0

PC

Mem
Write

2

88

2/9/17

23

rrmov Datapath:	Option	2	

if	MEM[PC]==	rrmovq rA, rB
R[rB]	¬ R[rA]
PC	¬ PC	+	2 Combinational

state	update	logic

IF ID EX MEM WB

Register
file

ValA

rB

DestE

valB
A
L
U

P
C

Instruction
Mem

Instr
Addr Instruction

Data
Mem

Address Read
Data

Write
Data

rA

ValE

A
D
D

Reg
Write ALU

OP

M
U
X

MUX
Select

M
U
X

rB

rA

M
U
X

D

From	ALU	

From	Mem

PC

Mem
Write

10 ?
89

Samira	Khan
University	of	Virginia

Feb	9,	2017

Intro	to	Microarchitecture:	
Single-Cycle

CS	3330

