2/9/17

Intro to Microarchitecture:
Single-Cycle

CS 3330

Samira Khan
University of Virginia
Feb9, 2017

AGENDA

* Review from last lecture
* ISA tradeoffs

« Single-cycle Microarchitecture

Review: ISA vs. Microarchitecture

« ISA (Instruction Set Architecture) Problem
« Agreed upon interface between software and
hardware Algorithm
* SW/compiler assumes, HW promises
« What the software writer needs to know to write and Program

debug system/user programs
* Microarchitecture
* Specific implementation of an ISA
* Not visible to the software
* Microprocessor

« “Architecture” = ISA + microarchitecture

Microarchitecture
Circuits
* ISA, uarch, circuits
Transistors

Review: ISA

* Instructions
+ Opcodes, Addressing Modes, Data Types

* Instruction Types and Formats K
Registers, Condition Codes

. l N
* Memory L/

+ Address space, Addressability, Alignment

+ Virtual memory management
* Call, Interrupt/Exception Handling
* Access Control, Priority/Privilege Intel” 64 and IA-32 Architectures
« 1/0: memory-mapped vs. instr. Software Developer's Manual
* Task/thread Management o Ar(\/'?\umel:
* Power and Thermal Management chrtecre
* Multi-threading support, Multiprocessor support

2/9/17

Microarchitecture

* Implementation of the ISA under specific design constraints and goals

* Anything done in hardware without exposure to software
« Pipelining (will see later)
* Clock gating
* Caching? Levels, size, associativity, replacement policy
* Prefetching?
* Voltage/frequency scaling?
* Error correction?

Property of ISA vs. Uarch?

* ADD instruction’s opcode

* Number of general purpose registers

* Number of ports to the register file

* Number of cycles to execute the MUL instruction

* Whether or not the machine employs pipelined instruction execution

* Remember
* Microarchitecture: Implementation of the ISA under specific design constraints
and goals

Design Point

* A set of design considerations and their importance
* leads to tradeoffs in both ISA and uarch
* Considerations
* Cost
* Performance
* Maximum power consumption
« Energy consumption (battery life)
* Availability
* Reliability and Correctness
* Time to Market

* Design point determined by the “Problem” space (application space),
the intended users/market

Design Point

* A set of design considerations and their importance
* leads to tradeoffs in both ISA and uarch
* Considerations
* Cost
* Performance
* Maximum power consumption
« Energy consumption (battery life)
* Availability
* Reliability and Correctness
* Time to Market

* Design point determined by the “Problem” space (application space),
the intended users/market

ook Forward & Up

2/9/17

ROLE OF THE (COMPUTER) ARCHITECT

Role of the Architect
-- Look Backward (Examine old code)
-- Look forward (Listen to the dreamers)
-- Look Up (Nature of the problems)

-- Look Down (Predict the future of
technology)

from Yale Patt's lecture notes

ROLE OF THE (COMPUTER) ARCHITECT

* Look backward (to the past)
* Understand tradeoffs and designs, upsides/downsides, past
workloads. Analyze and evaluate the past

* Look forward (to the future)
* Be the dreamer and create new designs. Listen to dreamers
* Push the state of the art. Evaluate new design choices

* Look up (towards problems in the computing stack)
* Understand important problems and their nature
* Develop architectures and ideas to solve important problems

* Look down (towards device/circuit technology)
* Understand the capabilities of the underlying technology

+ Predict and adapt to the future of technology (you are designing for
N years ahead). Enable the future technology

Application Space

* Dream, and they will appear...

Tradeoffs: Soul of Computer Architecture
* ISA-level tradeoffs

* Microarchitecture-level tradeoffs

« System and Task-level tradeoffs
* How to divide the labor between hardware and software

* Computer architecture is the science and art of making
the appropriate trade-offs to meet a design point
* Why art?

2/9/17

ISA Principles and Tradeoffs

Many Different ISAs Over Decades

x86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine
VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM

What are the fundamental differences?
* E.g., how instructions are specified and what they do
* E.g., how complex are the instructions

MIPS

[o Irs |t | rd Ishamt Jfunct |
Goit Shit Sbit Sbit 5bit | 6bit
opcode |rs |t |immediate |
& 5Bt 5Bt 165t

|opcode |immediate
-bit -bit

R-type

I-type

J-type

ARM

35222222222211111111119876543210
1098765432109876543210

Gond [o[o] 1 Opeci [§] A | 7 Gooraniz

Gona m | | & [PP[
Gons_[o[oo[o[1[S[A[S| Fe | moe | [i[o[o]1[m
Gond [o[o[o[7[o[8[o[o] A | As [SP[o o[
Gona_[o[olo[v[o[e [+ o[\ [[[[[[r[7[e[e o] 7=
Gons wo | e [ofo[o[olt[s[i] Am
Gona [o[ofo[P[O[TWL[A | 7 st [1[S[F [T Ofeer
Gons [o[{[1[PSEL ™ | ™ Gt

Gona [o[1[1 T

Gona [0 P Fogsie s

Gond [1[0[1]C Ot

Gona |13 [o[P[UNW[L] e | G | Gee Oeer
Gona [T[1[T[o[Pome | G | ona | cer | o al Gm
Gond 1‘100POV1L G | Aa | o [P |‘ G
Gons [T [1[1 onoredty processor
33222222222211111111119676543210
1098765432109876543

Data Pracessing
PSR Transter

oy
Maltply Long

Singie ata Swap
Branch and Excharge

Halword Data Transter:
regstr ofset

Haltword Data Transter:
immediteoftsat
Singl Data Trantor
Undetined

Block Dat Transter
Branch

Coprocessor Data
Transter
Coprocessor Dats
Operaion
Coprocessor Register
Transter

Softwars terupt

Figure \RM instruction set formats

2/9/17

What Are the Elements of An ISA?

* Instructions
* Opcode
« Operand specifiers (addressing modes)
* How to obtain the operand? why are there different addressing modes?

* Data types
« Definition: Representation of information for which there are
instructions that operate on the representation

* Integer, floating point, character, binary, decimal, BCD

« Doubly linked list, queue, string, bit vector, stack
* VAX: INSQUEUE and REMQUEUE instructions on a doubly linked list or

queue; FINDFIRST

« Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977.
* X86: SCAN opcode operates on character strings; PUSH/POP

Data Type Tradeoffs

* What is the benefit of having more or high-level data types in the ISA?
* What is the disadvantage?

 Think compiler/programmer vs. microarchitect

* Concept of semantic gap
« Data types coupled tightly to the semantic level, or complexity of instructions

« Example: Early RISC architectures vs. Intel 432

« Early RISC: Only integer data type
* Intel 432: Object data type, capability based machine

Complex vs. Simple Instructions

» Complex instruction: An instruction does a lot of work,
e.g. many operations
* Insert in a doubly linked list
* Compute FFT
« String copy

* Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations
can be built

* Add
* XOR
* Multiply

Complex vs. Simple Instructions

» Advantages of Complex instructions

+ Denser encoding = smaller code size = better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

« Disadvantages of Complex Instructions
- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)
- More complex hardware - translation from a high level to
control signals and optimization needs to be done by
hardware

2/9/17

ISA-level Tradeoffs: Semantic Gap

* Where to place the ISA? Semantic gap

« Closer to high-level language (HLL) = Small semantic gap, complex
instructions

« Closer to hardware control signals? = Large semantic gap, simple instructions

* RISC vs. CISC machines
* RISC: Reduced instruction set computer
« CISC: Complex instruction set computer
* FFT, QUICKSORT, POLY, FP instructions?
+ VAX INDEX instruction (array access with bounds checking)

ISA-level Tradeoffs: Semantic Gap

* Some tradeoffs (for you to think about)

« Simple compiler, complex hardware vs. complex compiler, simple
hardware

« Burden of backward compatibility

« Performance? Energy Consumption?

« Optimization opportunity: Example of VAX INDEX instruction: who (compiler
vs. hardware) puts more effort into optimization?

« Instruction size, code size

Small versus Large Semantic Gap

* CISCvs. RISC
* Complex instruction set computer = complex instructions
« Initially motivated by “not good enough” code generation
* Reduced instruction set computer = simple instructions
+ John Cocke, mid 1970s, IBM 801

« Goal: enable better compiler control and optimization

* RISC motivated by
* Memory stalls (no work done in a complex instrud
there is a memory stall?)
* When is this correct?
« Simplifying the hardware = lower cost, higher frequency
 Enabling the compiler to optimize the code better
+ Find fine-grained parallelism to reduce stalls

ISA-level Tradeoffs: Instruction Length

* Fixed length: Length of all instructions the same
+ Easier to decode single instruction in hardware
+ Easier to decode multiple instructions concurrently
-- Wasted bits in instructions (Why is this bad?)
- Harder-to-extend ISA (how to add new instructions?)

* Variable length: Length of instructions different (determined by
opcode and sub-opcode)

+ Compact encoding (Why is this good?)
Intel 432: 6 to 321 bit instructions.

- More logic to decode a single instruction
- Harder to decode multiple instructions concurrently

* Tradeoffs
+ Code size (memory space, bandwidth, latency) vs. hardware complexity
. ISA ility and exp vs. hardware
+ Performance? Energy? Smaller code vs. ease of decode

2/9/17

ISA-level Tradeoffs: Uniform Decode

* Uniform decode: Same bits in each instruction
correspond to the same meaning
+ Opcode is always in the same location
+ Ditto operand specifiers, immediate values, ...
+ Many “RISC” ISAs: Alpha, MIPS, SPARC
+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

~ Restricts instruction format (fewer instructions?) or wastes space

* Non-uniform decode
* E.g., opcode can be the 1st-7th byte in x86
+ More compact and powerful instruction format
-- More complex decode logic

ISA-level Tradeoffs: Number of Registers

* Affects:
* Number of bits used for encoding register address
* Number of values kept in fast storage (register file)
« (uarch) Size, access time, power consumption of register file

* Large number of registers:

+ Enables better register allocation (and optimizations) by compiler >
fewer saves/restores

-- Larger instruction size
-- Larger register file size

ISA-level Tradeoffs: Addressing Modes

» Addressing mode specifies how to obtain an operand of an
instruction
* Register
* Immediate
* Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, ...)

* More modes:
+ help better support programming constructs (arrays, pointer-
based accesses)
-- make it harder for the architect to design
-- too many choices for the compiler?
* Many ways to do the same thing complicates compiler design
* Wulf, “Compilers and Computer Architecture, ” IEEE Computer 1981

A Note on RISC vs. CISC

* Usually, ...

* RISC
* Simple instructions
* Fixed length
* Uniform decode
* Few addressing modes

* CISC
* Complex instructions
* Variable length
* Non-uniform decode
* Many addressing modes

2/9/17

Food for Thought for You

* How would you design a new ISA?

* Where would you place it?

* What design choices would you make in terms of ISA
properties?

* What would be the first question you ask in this
process?
* “What is my design point?”

Look Forward & Up

Y86-64 Instruction Set #1

Byte 5 6 7 8

hal

Now That We Have an ISA

* How do we implement it?

* i.e., how do we design a system that obeys the
hardware/software interface?

Implementing the ISA:
Microarchitecture Basics

2/9/17

How Does a Machine Process Instructions?
* What does processing an instruction mean?
* Remember the von Neumann model

AS = Architectural (programmer visible) state before an instruction is processed

Process instruction

4

AS’ = Architectural (programmer visible) state after an instruction is processed

* Processing an instruction: Transforming AS to AS’ according to the ISA
specification of the instruction

The “Process instruction” Step

« ISA specifies abstractly what AS’ should be, given an instruction and
AS

* It defines an abstract finite state machine where
« State = programmer-visible state
* Next-state logic = instruction execution specification
* From ISA point of view, there are no “intermediate states” between AS and AS’
during instruction execution
« One state transition per instruction

* Microarchitecture implements how AS is transformed to AS’
+ There are many choices in implementation
* We can have programmer-invisible state to optimize the speed of instruction
execution: multiple state transitions per instruction
+ Choice 1: AS > AS’ (transform AS to AS’ in a single clock cycle)
+ Choice 2: AS > AS+MS1 > AS+MS2 > AS+MS3 > AS’ (take multiple clock cycles to
transform AS to AS’)

A Very Basic Instruction Processing Engine

* Each instruction takes a single clock cycle to execute
* Only combinational logic is used to implement instruction execution
* No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

A Very Basic Instruction Processing Engine

« Single-cycle machine

AS' AS
Combinational (State)

* What is the clock cycle time determined by?

* What is the critical path of the combinational logic
determined by?

2/9/17

Assembly/Machine Code View

Memory

Code

Data
Stack

Programmer-Visible State
* PC: Program counter
* Address of next instruction
« Called “RIP” (x86-64)
* Register file
* Heavily used program data
* Condition codes

* Store status information about most
recent arithmetic or logical operation

* Memory
« Byte addressable array

* Code and user data

* Stack to support procedures

* Used for conditional branching
Instructions (and programs) specify how to transform
the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

« Single-cycle machines
* Each instruction takes a single clock cycle
« All state updates made at the end of an instruction’s execution
* Big disadvantage: The slowest instruction determines cycle time = long clock
cycle time

* Multi-cycle machines
+ Instruction processing broken into multiple cycles/stages
+ State updates can be made during an instruction’s execution
+ Architectural state updates made only at the end of an instruction’s execution
+ Advantage over single-cycle: The slowest “stage” determines cycle time

= Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

H H " ”
Instruction Processing “Stage
« Instructions are processed under the direction of a “control
unit” step by step.
* Instruction stage: Sequence of steps to process an instruction
* Fundamentally, there are five phases:

* Fetch

* Decode

* Evaluate Address/Fetch Operands
* Execute

* Store Result

* Not all instructions require all stages

Instruction Processing “Cycle” vs. Machine Clock Cycle

« Single-cycle machine:
* All phases of the instruction processing cycle take a single
machine clock cycle to complete

* Multi-cycle machine:
« All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete
« In fact, each phase can take multiple clock cycles to complete

10

2/9/17

Instruction Processing Viewed Another Way

« Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units
+ Units that “operate” on data

* These units need to be told what to do to the data

* An instruction processing engine consists of two components
+ Datapath: Consists of hardware elements that deal with and transform
data signals
« functional units that operate on data
« hardware structures (e.g. wires and muxes) that enable the flow of data into
the functional units and registers
* storage units that store data (e.g., registers)
* Control logic: Consists of hardware elements that determine control
signals, i.e., signals that specify what the datapath elements should do
to the data

Single-cycle vs. Multi-cycle: Control & Data
« Single-cycle machine:

« Control signals are generated in the same clock cycle as the
one during which data signals are operated on

* Everything related to an instruction happens in one clock cycle
(serialized processing)

* Multi-cycle machine:
« Control signals needed in the next cycle can be generated in
the current cycle
* Latency of control processing can be overlapped with latency
of datapath operation (more parallelism)

Many Ways of Datapath and Control Design

* There are many ways of designing the data path and control logic
« Single-cycle, multi-cycle, pipelined datapath and control

« Hardwired/combinational vs. microcoded/microprogrammed control
« Control signals generated by combinational logic versus
« Control signals stored in a memory structure

Flash-Forward: Performance Analysis

 Execution time of an instruction
* {CPI} x {clock cycle time}

« Execution time of a program
+ Sum over all instructions [{CPI} x {clock cycle time}]
+ {# of instructions} x {Average CPI} x {clock cycle time}

« Single cycle microarchitecture performance
< CPI=1
+ Clock cycle time = long

* Multi-cycle microarchitecture performance
+ CPI = different for each instruction
+ Average CPl - hopefully small Now, we have
* Clock cycle time = short two degrees of freedom
to optimize independently

11

2/9/17

A Single-Cycle
Microarchitecture
A Closer Look

Remember...
« Single-cycle machine

U

AS
Combinational” ™y
Logic

(State) AS

Let’s Start with the State Elements

For Now, We Will Assume

. R
* Data and control inputs | wiite o o
aln * “Magic” memory and register file
A w
bc Svca) va
I Register w | G— .
ot file Rl * Synchronous write
w B MUX « the selected register is updated on the positive edge clock
— Select transition when write enable is asserted
Mem * Cannot affect read output in between clock edges
Writs
. — Operation
nstr Address
Addr Instruction — fead updates every clock cycle
Instruction Write Data jr—) .
Mem Data Mem register output - -
. . X S
register input Y &\ \\x
I Mem
Raad

12

2/9/17

Instruction Processing
* 6 (5) generic steps
« Instruction fetch (IF)
« Instruction decode and register operand fetch (ID/RF)
* Execute/Evaluate memory address (EX/AG)
* Memory operand fetch (MEM)
« Store/writeback result (WB)
* PC Update
IF

new PC I

Instruction Processing
* 6 (5) generic steps

Instruction fetch (IF)

Instruction decode and register operand fetch (ID/RF)
Execute/Evaluate memory address (EX/AG)

Memory operand fetch (MEM)

Store/writeback result (WB)

PC Update

Instr
Addr Instructionbey

Instruction
Mem

Instruction Processing
* 6 (5) generic steps
* Instruction fetch (IF)
« Instruction decode and register operand fetch (ID/RF)
* Execute/Evaluate memory address (EX/AG)
* Memory operand fetch (MEM)
« Store/writeback result (WB)
* PC Update
IF ID/RF EX/AG

B valB
Instr

Addr Instruction Vvala
. DestE
Instruction Register
Mem

t Vale file

Instruction Processing
* 6 (5) generic steps

Instruction fetch (IF)

Instruction decode and register operand fetch (ID/RF)
Execute/Evaluate memory address (EX/AG)

Memory operand fetch (MEM)

Store/writeback result (WB)

PC Update
ID/RF EX/AG MEM WB
B valg
Instr Address Read
Addr Instruction A Vala —
N DestE Write
Instruction Register D;;(a Data
Mem T ValE file Mem

13

2/9/17

Single-Cycle Datapath for
Arithmetic and Logical

Instructions

Executing Arith./Logical Operation

OPq rA, rB

*Fetch *Memory

* Read 2 bytes * Do nothing
*Decode *Write back

* Read operand registers * Update register
*Execute *PC Update

* Perform operation

+ Set condition codes

* Increment PC by 2

Stage Computation: Arith/Log. Ops
T

Read instruction byte
Read register byte

rA:rB <~ Mi[PC+1]

valP < PC+2 Compute next PC
valA « R[rAl Read operand A
| valB < R[rB] Read operand B
[IPPOR \alE < valB OP valA Perform ALU operation
Set CC Set condition code
register
R[rB] < valE Write back result
PC « valP Update PC

« Formulate instruction execution as sequence of simple

steps

* Use same general form for all instructions

ALU Datapath | eg

Write
rA valA
Instr
Addr Instruction B Valg
i DestE
Instruction Register
Mem

if MEM[PC] ==0Pq rA, rB

t ValE file

ALY

—-IF [ID__JEX Y MEM{WB J[PC |

R[rB] < R[rB] op R[rA] # Combinational

PC«PC+2

state update logic

14

2/9/17

ALU Datapath Reg
Write Al
or
» Instr
B
Instruction Dest Register
Mem ValE file

if MEM[PC] == OPq rA, B

T [0 JeX IVEMWE J[Pc
R[rB] « R[rB] op R[rA] ‘ Combinational]
PCePC+2 state update logic

We did not cover these slides
in the class

Will learn about these in the next class
They are here for your benefit

Single-Cycle Datapath for
Data Movement Instructions

Executing mrmovqg (Load from Mem to Reg)

mrmovq D (rB) ,rA

|6 |fn |rA|rB|D |
*Fetch *Memory

* Read 10 bytes * Read from memory
*Decode *Write back

* Read operand registers * Write to Register
*Execute *PC Update

* Compute effective * Increment PC by 10

address

15

2/9/17

Stage Computation: mrmovqg

EA = Disp +R[rB]
R[rA] <~ MEM[EA]
PC < PC+10

Combinational
state update logic

-

EA = Disp + R[rB]
R[rA] <~ MEM[EA]

PC<«<PC+10

Ld Datapath
icodesifun < M1[PC] Read instruction byte Write ALY
rA:rB < M1[PC+1] Read register byte 0|
valC < Ms[PC+2] Read displacement D B valg
valP « PC+10 Compute next PC Instr Address Read
Addr Instruction, A ValA D
pecode 1B < Rird] Read operand B wi
valB < R[rl ead operan Instruction DestE N rite Data
Register Data
Execute valE « valB + valC Compute effective address Mem ValE file em
| ST iV < MislvalE] Write value to memory
RIrA] < valM
[PCupdate [Repet3 Update PC 0
* Use ALU for address computation
if MEM[PC]== mrmovq Disp (1B), rA [ID_]
(2= Bl ¢ (4113 Combinational
‘ RIrA] « MEMIEA] ‘)
PC < PC+10 state update logic
Ld Datapath | et Ld Datapath | et
Address Read Address Read
| oata Dot
—— wite Data wite |)
Register Data Data
ValE file em PalE file Mem
if MEM[PC]== mrmovq Disp (rB), rA PC if MEM[PC]== mrmovq Disp (rB), rA

[F I Jex IVeMwe J[Pc]

- Combinational

state update logic

16

2/9/17

Ld Datapath - Ld Datapath
Write ALU
0]
ddress :“"’ dress Rnea'd
A Vala
) 3 o Y
peste Write Data peste Write Data
Register Data TA Register Data
ol file Mem Pale e Mem
D
From ALU
10
MuUx
Select
if MEM[PC]== mrmovgq Disp (rB), rA PC if MEM[PC]== mrmovq Disp (rB), rA [D]
EA = Disp +R[rB] Combinati EA = Disp + R[rB] —
ombinational
RIrA] < MEM[EA] - i RIrA] < MEMIEA] - Combinational)
PC < PC+10 state update logic PC < PC+10 state update logic

Stage Computation: rmmovqg

Executing rmmovqg (St from reg to Memory)

rmmovq rA, D (rB)

|4 |O rA |rB |D |
*Fetch *Memory

* Read 10 bytes * Write to memory
*Decode *Write back

* Read operand registers * Do nothing
*Execute *PC Update

* Compute effective address * Increment PC by 10

Decode

Execute

icode:ifun < Mi[PC]
rATB < Mi[PC+1]
valC « Ms[PC+2]

ValE < valB + valC

MslvalE] < valA

PC update |[Iepmw

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Update PC

* Use ALU for address computation

17

Write Data
Data

Ly Mem

Register
file

if MEM[PC]== rnmovq rA, Disp (rB)
EA = Disp + R[rB]
MEMIEA] « R[rA]
PC« PC+10

Combinational
state update logic

-

Instruction

if MEM[PC]== rnmovq rA, Disp (rB)

EA = Disp + R[rB]
MEMIEA] « R[rA]

PC<«<PC+10

-

Data

St Datapath - Mem St Datapath wem
Write ALU Write Write
0,
[valB
Instr Add. Read » Read
Addr Instruction A vala ress Data |_Address -
Instruction DSt pegister hae Data Instruction Write Data
Mem ValE file Mem o
From ALU
10 From Mem
if MEM[PCl== rmmovq rA, Disp (rB) 15¢'et L [N IS LEY KR if MEM[PC]== rnmovq rA, Disp (rB) ! °¢'et [D]
EA = Disp +R[rB] Combinati EA = Disp + R[rB] —
ombinational
MEMIEA] « R[rA] -) MEM[EA] < RIrA] - Combinational)
PC < PC+10 state update logic PC < PC+10 state update logic
St Datapath eg Mem St Datapath eg Mam
Write Write
Instr dd Read ad Read
adgy_Instruction) ot ddress | Data |_Address
Instruction

Write Data
Data

L Mem

I3 PH ESN MEY NEN

Combinational
state update logic

2/9/17

18

2/9/17

St C tation: i
Executing irmovqg (Move imm to Reg) 4ge Lompaton. JTInovy

icode:ifun < Mi[PC] Read instruction byte
irmovqgV, rB

TATB Mi[PC+1] Read register byte

valC « Ms[PC+2] Read displacement D
F | rB |V |

valP « PC+10 Compute next PC
Decode
Execute valE « 0 +valC Compute effective address
R[rB] < valA

*Fetch *Memory

* Read 10 bytes « Do nothing - -
*Decode *Write back

* Read operand registers * Write V to rB * Use ALU for address computation
*Execute *PC Update

*AddOtoV

* Increment PC by 10

IRMov Datapath: Option 1

IRMov Datapath: Option 1
Reg Mem Reg Mem
Write Write Write o ALU Write
valB B valg
Instr Address Read P Instr Address Read
Addr Instruction Vala | Data__ rA ValA Date
B
i DestE Write i DestE Writ
Instruction 't Register Data zata Instruction o " Register batg Dt
ValE file em Mem ValE file Mem
D
From ALU From ALU
From Mem 10 : From Mem
MUX
Y= rmong i [Ve we e] if MEMIPC]== i movq V, 1B setet o]
R[rB] « V — R[rB]« V+0 P
PC< PC+10 - Combinational) ‘ e) - Combinational »
state update logic state update logic

19

IRMov Datapath: Option 1 IRMov Datapath: Option 1
Reg Mem Reg Mem
Write ALY Write Write ALU Write
o o
I valg I val
P Instr Address Read 3 Instr Address Read
A Vala Data A Vala 2
B B
Instruction > PestE pegister Write Data Instruction . ' Register g Data
Mem ValE file Mem Mem ValE file Mem
D
2 From ALU A Fro
D
10 D From Mem 10 : Erom Mem
MUX MUX
if MEM[PC]== irmovq V, rB EEiEEn [T] [EX JVEVM[WE] if MEM[PC]== i rmovq V, 1B BRI
+ — + y
=Y o0 Combinational i) =Y 0 Combinational
PC <« PC+10 -) PC < PC+10 -)
state update logic state update logic
IRMov Datapath: Option 1 [RMov Datapath: Option 2
Reg Mem Reg Mem
Write o ALU Write Write Write
B valB B valB
P Instr Address Read Instr Address Read
" ™ A Vala | Data__ Addr Instruction] A Vala Data
B
Instruction > * Register Wite Data Instruction PestE pegister Wiite Data
Mem ValE file em Mem Vot file Mem
D
A From ALU From ALU
D
10 D From Mem From Mem
i
MUX MUX
if MEM[PCl== i rmovq V, rB select
R[rB] <~ V +0
PC < PC +10

Combinational
state update logic

-

if MEM[PCl== i rmovq V, rB Select
R[rB] < V

PC« PC+10

-

[ID_]
Combinational
state update logic

20

2/9/17

2/9/17

TRVIovV Datapath: Option 2

Mem
AW Write
[
Address Read
Data
Write Data
Data
Mem

Reg
Write
8 valg
N Instr A
r
Vala
3 4a B
1 DestE .
Instruction o Register
Mem 'Vale file
A fom ALU
D
10 From Mem
MUX

if MEM[PC]== i rmovq V, B
R(rB] « V/
PC« PC+10

Select = MEWE [P]

-

Combinational
state update logic

 Tradeoffs between option 1 and option 2?

Executing rrmovg (Move from Reg to Reg)

*Fetch
* Read 2 bytes
*Decode

* Read operand register rA

*Execute
* Add 0 to val rA

*Memory

* Do nothing

*Write back

*PC Update

* Write val rAto rB

* Increment PC by 2

Stage Computation: rrmovqg

icode:ifun < Mi[PC] Read instruction byte
rATB < Mi[PC+1] Read register byte
Read displacement D

valP < PC+2 Compute next PC
Decode

ValA < RIrA]
Execute valE <0+ valA Compute effective address
PC < valP Update PC

* Use ALU for address computation

21

if MEM[PC]== rrmovq rA, rB [T} [TX VeM]
Egi;ﬁ[?] Combinational
state update logic

rrMov Datapath: Option 1 rrmov Datapath: Option 1
Reg Mem Reg Mem
Write ALy Write Write
0
0,
[valB
Inste Address Read » Instr Address Read
Addr Instruction A ValA Data A 3 D,
B
Instruction PestE pegister Write Data Instruction » P Register g Data
Mem ValE file Mem Mem ValE file Mem
D
From ALU
2 From Mem 2 :

if MEM[PC]== rrmovq rA, rB
R[rB] < R[rA]
PC<«PC+2

Combinational
state update logic

-)

rrmov Datapath: Option 1 rrmov Datapath: Option 1
Reg Mem Reg Mem
Write Write Write Write
valB
P Instr) Address ’:::: P Instr ‘ Address RDE;:
= - | Data - -
Instruction Wite Data Instruction Wiite Data
Mem TA Mem Mem rA Mem
D D
From ALU
2 ?) D
D D

if MEM[PC]== rrmovq rA, rB
R[rB] < R[rA] —
PC« PC+2 Combinational

state update logic

-

if MEM[PC]== rrmovq rA, rB
R[rB] < R[rA]

['F_ 0 Jex JmeM we JLPC_]
PC«PC+2

- Combinational

state update logic

22

2/9/17

rrmov Datapath: Option 2

Reg
Write

valg

Instr
Addr Instruction Vala
Instruction
Mem

DestE .
Register
ValE file

if MEM[PC]== rrmovq rA, rB
R[rB] < R[rA]
PC<« PC+2

-)

Mem
Write
Address Read
Data
Write Data
Data
Mem

Combinational
state update logic

Intro to Microarchitecture:
Single-Cycle

CS 3330

Samira Khan
University of Virginia
Feb9,2017

23

2/9/17

