
3/16/17

1

Precise	Exceptions	and	
Out-of-Order	Execution

Samira	Khan

Multi-Cycle	Execution
• Not	all	instructions	take	the	same	amount	of	time	for	
“execution”

• Idea:	Have	multiple	different	functional	units	that	take	
different	number	of	cycles

• Can	be	pipelined	or	not	pipelined
• Can	let	independent	instructions	start	execution	on	a	different	
functional	unit	before	a	previous	long-latency	instruction	
finishes	execution

2

ISSUES	IN	PIPELINING:	MULTI-CYCLE	EXECUTE
• Instructions	can	take	different	number	of	cycles	in	
EXECUTE	stage

• Integer	ADD	versus	FP	Multiply

• What	is	wrong	with	this	picture?
• What	if	FMUL	incurs	an	exception?
• Sequential	semantics	of	the	ISA	NOT	preserved!

F D E W

F D E WE E E E E E EFMUL R4 ß R1, R2
ADD R3 ß R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

F D E WE E E E E E E

3

The	Von	Neumann	Model/Architecture
• Also	called	stored	program	computer	(instructions	in	
memory).	Two	key	properties:

• Stored	program
• Instructions	stored	in	a	linear	memory	array
• Memory	is	unified	between	instructions	and	data

• The	interpretation	of	a	stored	value	depends	on	the	control	signals

• Sequential	instruction	processing
• One	instruction	processed	(fetched,	executed,	and	completed)	at	a	time
• Program	counter	(instruction	pointer)	identifies	the	current	instr.
• Program	counter	is	advanced	sequentially except	for	control	transfer	
instructions

4

3/16/17

2

HANDLING	EXCEPTIONS	IN	PIPELINING
• Exceptions	versus	interrupts
• Cause

• Exceptions:	internal	to	the	running	thread
• Interrupts:	external	to	the	running	thread

• When	to	Handle
• Exceptions:	when	detected	(and	known	to	be	non-speculative)
• Interrupts:	when	convenient

• Except	for	very	high	priority	ones
• Power	failure
• Machine	check	

• Priority:	process	(exception),	depends	(interrupt)
• Handling	Context:	process	(exception),	system	
(interrupt)

5

PRECISE	EXCEPTIONS/INTERRUPTS
• The	architectural	state	should	be	consistent	when	the	
exception/interrupt	is	ready	to	be	handled

1.	All	previous	instructions	should	be	completely	retired.

2.	No	later	instruction	should	be	retired.	

Retire	=	commit	=	finish	execution	and	update	arch.	state

6

WHY	DO	WE	WANT	PRECISE	EXCEPTIONS?
• Aid	software	debugging

• Enable	(easy)	recovery	from	exceptions,	e.g.	page	faults

• Enable	(easily)	restartable processes

7

ENSURING	PRECISE	EXCEPTIONS	IN	
PIPELINING

• Idea:	Make	each	operation	take	the	same	amount	of	time

• Downside
• What	about	memory	operations?
• Each	functional	unit	takes	500	cycles?

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

FMUL R3 ß R1, R2
ADD R4 ß R1, R2

8

3/16/17

3

SOLUTION:	REORDER	BUFFER	(ROB)
• Idea:	Complete	instructions	out-of-order,	but	reorder	them	
before	making	results	visible	to	architectural	state

• When	instruction	is	decoded	it	reserves	an	entry	in	the	ROB
• When	instruction	completes,	it	writes	result	into	ROB	entry
• When	instruction	oldest	in	ROB	and	it	has	completed,	its	
result	moved	to	reg.	file	or	memory

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

9

V DEST
REG

DEST	
VAL

CO
MPL
ETE

1 R4 -- 0

1 R3 -- 0

1 0

1 0

1 0

Reorder	File

Oldest

Youngest

FMUL
ADD

FMUL
ADD

REORDER	BUFFER:	INDEPENDENT	
OPERATIONS

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

11

0 1 2 103 4 5 6 7 8 9 11

V DEST
REG

DEST	
VAL

CO
MPL
ETE

1 R4 -- 0

1 R3 1000 1

1 0

1 0

1 R2 -- 0

Reorder	File

Oldest

Youngest

FMUL
ADD

FMUL
ADD

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

CYCLE	5 REORDER	BUFFER:	INDEPENDENT	
OPERATIONS

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

12

0 1 2 103 4 5 6 7 8 9 11

V DEST
REG

DEST	
VAL

CO
MPL
ETE

1 R4 -- 0

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Reorder	File

Oldest

Youngest

FMUL
ADD

FMUL
ADD

CYCLE	5

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

3/16/17

4

REORDER	BUFFER:	INDEPENDENT	
OPERATIONS

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

13

0 1 2 103 4 5 6 7 8 9 11

V DEST
REG

DEST	
VAL

CO
MPL
ETE

1 R4 101 0

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Reorder	File

Oldest

Youngest

FMUL
ADD

FMUL
ADD

CYCLE	11

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

REORDER	BUFFER:	INDEPENDENT	
OPERATIONS

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

14

0 1 2 103 4 5 6 7 8 9 11

V DEST
REG

DEST	
VAL

CO
MPL
ETE

1 R4 101 1

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Reorder	File

Oldest

Youngest

FMUL
ADD

FMUL
ADD

CYCLE	12

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

RETIRE	
OLDEST

REORDER	BUFFER:	INDEPENDENT	
OPERATIONS

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

15

0 1 2 103 4 5 6 7 8 9 11

V DEST
REG

DEST	
VAL

CO
MPL
ETE

0 R4 101 1

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Reorder	File

Oldest

Youngest

FMUL
ADD

FMUL
ADD

CYCLE	12

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

RETIRE	
OLDEST

REORDER	BUFFER:	INDEPENDENT	
OPERATIONS

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

16

0 1 2 103 4 5 6 7 8 9 11

V DEST
REG

DEST	
VAL

CO
MPL
ETE

0

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Reorder	File

Oldest

Youngest

ADD

FMUL
ADD

CYCLE	12

FMUL R2 ß R5, R6
ADD R4 ß R5, R6

What	if	a	later	operation	needs	a	value	in	the	reorder	buffer?
Read	reorder	buffer	in	parallel	with	the	register	file.	How?

3/16/17

5

REORDER	BUFFER:	HOW	TO	ACCESS?
• A	register	value	can	be	in	the	register	file,	reorder	buffer,	
(or	bypass	paths)

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass path

Content
Addressable
Memory
(searched with
register ID)

17

V DEST
REG

DEST	
VAL

CO
MPL
ETE

0

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Search	for	Register	Value

VAL V

R1 1 1

R2 0

R3 0

R4 0

R5 5 1

R6 6 1

R7 8 1

R8 8 1

R9 9 1

R10 10 1

R11 11 0

Oldest

Youngest

ADD

ADD

SIMPLIFYING	REORDER	BUFFER	ACCESS
• Idea:	Use	indirection
• Access	register	file	first

• If	register	not	valid,	register	file	stores	the	ID	of	the	reorder	buffer	
entry	that	contains	(or	will	contain)	the	value	of	the	register

• Mapping	of	the	register	to	a	ROB	entry

• Access	reorder	buffer	next

• What	is	in	a	reorder	buffer	entry?

• Can	it	be	simplified	further?	

V DestRegID DestRegVal StoreAddr StoreData BranchTarget PC/IP Control/valid bits

19

V DEST
REG

DEST	
VAL

CO
MPL
ETE

0

1 R3 1000 1

1 0

1 0

1 R2 -- 0

1 R4 -- 0

Search	for	Register	Value

VAL TAG V

R1 1 1

R2 5 0

R3 2 0

R4 6 0

R5 5 1

R6 6 1

R7 8 1

R8 8 1

R9 9 1

R10 10 1

R11 11 1

Oldest

Youngest

ADD

ADD

3/16/17

6

REORDER	BUFFER	PROS	AND	CONS
• Pro

• Conceptually	simple	for	supporting	precise	exceptions

• Con
• Reorder	buffer	needs	to	be	accessed	to	get	the	results	that	are	
yet	to	be	written	to	the	register	file

• CAM	or	indirection	à increased	latency	and	complexity

21

Reorder	Buffer	in	Intel	Pentium	III

22

Boggs et al., “The
Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

In-Order	Pipeline	with	Reorder	Buffer
• Decode	(D):	Access	regfile/ROB,	allocate	entry	in	ROB,	check	if	instruction	can	
execute,	if	so	dispatch instruction

• Execute	(E):	Instructions	can	complete	out-of-order
• Completion	(R):	Write	result	to	reorder	buffer
• Retirement/Commit	(W):	Check	for	exceptions;	if	none,	write	result	to	
architectural	register	file	or	memory;	else,	flush	pipeline	and	start	from	exception	
handler

• In-order	dispatch/execution,	out-of-order	completion,	in-order	retirement	

23

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Out-of-Order	Execution
(Dynamic	Instruction	Scheduling)

3/16/17

7

AN	IN-ORDER	PIPELINE

• Problem:	A	true	data	dependency	stalls	dispatch	of	
younger	instructions	into	functional	(execution)	units

• Dispatch:	Act	of	sending	an	instruction	to	a	functional	
unit

F D

E

R
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

25

CAN	WE	DO	BETTER?
• What	do	the	following	two	pieces	of	code	have	in	common	
(with	respect	to	execution	in	the	previous	design)?

• Answer:	First	ADD	stalls	the	whole	pipeline!
• ADD	cannot	dispatch	because	its	source	registers	unavailable
• Later	independent instructions	cannot	get	executed

• How	are	the	above	code	portions	different?
• Answer:	Load	latency	is	variable	(unknown	until	runtime)
• What	does	this	affect?	Think	compiler	vs.	microarchitecture

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

LD R3 ß R1 (0)
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R9, R9

26

IN-ORDER	VS.	OUT-OF-ORDER	DISPATCH
• In	order	dispatch	+	precise	exceptions:

• Out-of-order	dispatch	+	precise	exceptions:

• 16	vs.	12	cycles

F D WE E E E R

F D E R W

F

IMUL		R3	ß R1,	R2
ADD			R3	ß R3,	R1
ADD			R1	ß R6,	R7
IMUL		R5	ß R6,	R8
ADD			R7	ß R3,	R5

D E R W

F D E R W
F D E R W

F D WE E E E R

F D

STALL
STALL

E R W
F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

27

PREVENTING	DISPATCH	STALLS

• Any	way	to	prevent	dispatch	stalls?
• Dataflow:	fetch	and	“fire” an	instruction	when	its	inputs	are	
ready

• Problem:	in-order	dispatch	(scheduling,	or	execution)
• Solution:	out-of-order	dispatch	(scheduling,	or	execution)

28

3/16/17

8

TOMASULO’S	ALGORITHM
• OoO with	register	renaming	invented	by	Robert	Tomasulo

• Used	in	IBM	360/91	Floating	Point	Units
• Read: Tomasulo,	“An	Efficient	Algorithm	for	Exploiting	Multiple	Arithmetic	
Units,” IBM	Journal	of	R&D,	Jan.	1967.

• What	is	the	major	difference	today?
• Precise	exceptions:	IBM	360/91	did	NOT	have	this
• Patt,	Hwu,	Shebanow,	“HPS,	a	new	microarchitecture:	rationale	and	
introduction,”MICRO	1985.

• Patt et	al.,	“Critical	issues	regarding	HPS,	a	high	performance	
microarchitecture,”MICRO	1985.

• Variants	are	used	in	most	high-performance	processors
• Initially	in	Intel	Pentium	Pro,	AMD	K5		
• Alpha	21264,	MIPS	R10000,	IBM	POWER5,	IBM	z196,	Oracle	UltraSPARC T4,	ARM	Cortex	A15

29

• These	slides	are	not	covered	in	the	class
• These	are	for	students	who	want	to	know	more

• What	is	the	insight	of	OOO	execution?

OUT-OF-ORDER	EXECUTION	
(DYNAMIC	SCHEDULING)

• Idea:	Move	the	dependent	instructions	out	of	the	way	of	
independent	ones (s.t. independent	ones	can	execute)

• Rest	areas	for	dependent	instructions:	Reservation	stations	

• Monitor	the	source	“values” of	each	instruction	in	the	
resting	area

• When	all	source	“values” of	an	instruction	are	available,	
“fire” (i.e.	dispatch)	the	instruction

• Instructions	dispatched	in	dataflow	(not	control-flow)	order	

• Benefit:
• Latency	tolerance:	Allows	independent	instructions	to	execute	and	
complete	in	the	presence	of	a	long	latency	operation

32

3/16/17

9

The	Von	Neumann	Model/Architecture
• Also	called	stored	program	computer	(instructions	in	
memory).	Two	key	properties:

• Stored	program
• Instructions	stored	in	a	linear	memory	array
• Memory	is	unified	between	instructions	and	data

• The	interpretation	of	a	stored	value	depends	on	the	control	signals

• Sequential	instruction	processing
• One	instruction	processed	(fetched,	executed,	and	completed)	at	a	time
• Program	counter	(instruction	pointer)	identifies	the	current	instr.
• Program	counter	is	advanced	sequentially except	for	control	transfer	
instructions

33

When is a value interpreted as an instruction?

The	Dataflow	Model	(of	a	Computer)
• Von	Neumann	model:	An	instruction	is	fetched	and	
executed	in	control	flow	order	

• As	specified	by	the	instruction	pointer
• Sequential	unless	explicit	control	flow	instruction

• Dataflow	model:	An	instruction	is	fetched	and	executed	
in	data	flow	order

• i.e.,	when	its	operands	are	ready
• i.e.,	there	is	no	instruction	pointer
• Instruction	ordering	specified	by	data	flow	dependence

• Each	instruction	specifies	“who” should	receive	the	result
• An	instruction	can	“fire” whenever	all	operands	are	received

• Potentially	many	instructions	can	execute	at	the	same	time
• Inherently	more	parallel

34

Von	Neumann	vs	Dataflow
nConsider	a	Von	Neumann	program	

qWhat	is	the	significance	of	the	program	order?
qWhat	is	the	significance	of	the	storage	locations?

nWhich	model	is	more	natural	to	you	as	a	programmer?
35

v	<=	a	+	b;			
w	<=	b	*	2;
x	<=	v	- w
y	<=	v	+	w
z	<=	x	*	y

+ *2

- +

*

a b

z

Sequential

Dataflow

Data	Flow	Advantages/Disadvantages
• Advantages

• Very	good	at	exploiting	irregular	parallelism
• Only	real	dependencies	constrain	processing

• Disadvantages
• Debugging	difficult	(no	precise	state)

• Interrupt/exception	handling	is	difficult	(what	is	precise	state	
semantics?)

• Too	much	parallelism?	(Parallelism	control	needed)
• High	bookkeeping	overhead	(tag	matching,	data	storage)
• Memory	locality	is	not	exploited

36

3/16/17

10

OOO	EXECUTION:	
RESTRICTED	DATAFLOW

• An	out-of-order	engine	dynamically	builds	the	dataflow	
graph of	a	piece	of	the	program

• which	piece?

• The	dataflow	graph	is	limited	to	the	instruction	window
• Instruction	window:	all	decoded	but	not	yet	retired	
instructions

• Can	we	do	it	for	the	whole	program?	
• Why	would	we	like	to?
• In	other	words,	how	can	we	have	a	large	instruction	
window? 37

GENERAL	ORGANIZATION	OF	AN	OOO	PROCESSOR

n Smith	and	Sohi,	“The	Microarchitecture	of	Superscalar	Processors,” Proc.	IEEE,	Dec.	1995.

38

TOMASULO’S	MACHINE:	IBM	360/91

FP	FU FP	FU

from	memory

load
buffers

from	instruction	unit
FP	registers

store	buffers

to	memory

operation	bus

reservation	
stations

Common data bus

39

