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Precise	Exceptions	and	
Out-of-Order	Execution

Samira	Khan

Multi-Cycle	Execution
• Not	all	instructions	take	the	same	amount	of	time	for	
“execution”

• Idea:	Have	multiple	different	functional	units	that	take	
different	number	of	cycles

• Can	be	pipelined	or	not	pipelined
• Can	let	independent	instructions	start	execution	on	a	different	
functional	unit	before	a	previous	long-latency	instruction	
finishes	execution
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ISSUES	IN	PIPELINING:	MULTI-CYCLE	EXECUTE
• Instructions	can	take	different	number	of	cycles	in	
EXECUTE	stage

• Integer	ADD	versus	FP	Multiply

• What	is	wrong	with	this	picture?
• What	if	FMUL	incurs	an	exception?
• Sequential	semantics	of	the	ISA	NOT	preserved!
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The	Von	Neumann	Model/Architecture
• Also	called	stored	program	computer	(instructions	in	
memory).	Two	key	properties:

• Stored	program
• Instructions	stored	in	a	linear	memory	array
• Memory	is	unified	between	instructions	and	data

• The	interpretation	of	a	stored	value	depends	on	the	control	signals

• Sequential	instruction	processing
• One	instruction	processed	(fetched,	executed,	and	completed)	at	a	time
• Program	counter	(instruction	pointer)	identifies	the	current	instr.
• Program	counter	is	advanced	sequentially except	for	control	transfer	
instructions
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HANDLING	EXCEPTIONS	IN	PIPELINING
• Exceptions	versus	interrupts
• Cause

• Exceptions:	internal	to	the	running	thread
• Interrupts:	external	to	the	running	thread

• When	to	Handle
• Exceptions:	when	detected	(and	known	to	be	non-speculative)
• Interrupts:	when	convenient

• Except	for	very	high	priority	ones
• Power	failure
• Machine	check	

• Priority:	process	(exception),	depends	(interrupt)
• Handling	Context:	process	(exception),	system	
(interrupt)
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PRECISE	EXCEPTIONS/INTERRUPTS
• The	architectural	state	should	be	consistent	when	the	
exception/interrupt	is	ready	to	be	handled

1.	All	previous	instructions	should	be	completely	retired.

2.	No	later	instruction	should	be	retired.	

Retire	=	commit	=	finish	execution	and	update	arch.	state
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WHY	DO	WE	WANT	PRECISE	EXCEPTIONS?
• Aid	software	debugging

• Enable	(easy)	recovery	from	exceptions,	e.g.	page	faults

• Enable	(easily)	restartable processes
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ENSURING	PRECISE	EXCEPTIONS	IN	
PIPELINING

• Idea:	Make	each	operation	take	the	same	amount	of	time

• Downside
• What	about	memory	operations?
• Each	functional	unit	takes	500	cycles?
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SOLUTION:	REORDER	BUFFER	(ROB)
• Idea:	Complete	instructions	out-of-order,	but	reorder	them	
before	making	results	visible	to	architectural	state

• When	instruction	is	decoded	it	reserves	an	entry	in	the	ROB
• When	instruction	completes,	it	writes	result	into	ROB	entry
• When	instruction	oldest	in	ROB	and	it	has	completed,	its	
result	moved	to	reg.	file	or	memory
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What	if	a	later	operation	needs	a	value	in	the	reorder	buffer?
Read	reorder	buffer	in	parallel	with	the	register	file.	How?
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REORDER	BUFFER:	HOW	TO	ACCESS?
• A	register	value	can	be	in	the	register	file,	reorder	buffer,	
(or	bypass	paths)
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Content 
Addressable
Memory
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SIMPLIFYING	REORDER	BUFFER	ACCESS
• Idea:	Use	indirection
• Access	register	file	first

• If	register	not	valid,	register	file	stores	the	ID	of	the	reorder	buffer	
entry	that	contains	(or	will	contain)	the	value	of	the	register

• Mapping	of	the	register	to	a	ROB	entry

• Access	reorder	buffer	next

• What	is	in	a	reorder	buffer	entry?

• Can	it	be	simplified	further?	

V DestRegID DestRegVal StoreAddr StoreData BranchTarget PC/IP Control/valid bits
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REORDER	BUFFER	PROS	AND	CONS
• Pro

• Conceptually	simple	for	supporting	precise	exceptions

• Con
• Reorder	buffer	needs	to	be	accessed	to	get	the	results	that	are	
yet	to	be	written	to	the	register	file

• CAM	or	indirection	à increased	latency	and	complexity
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Reorder	Buffer	in	Intel	Pentium	III

22

Boggs et al., “The 
Microarchitecture of the 
Pentium 4 Processor,” Intel 
Technology Journal, 2001.

In-Order	Pipeline	with	Reorder	Buffer
• Decode	(D):	Access	regfile/ROB,	allocate	entry	in	ROB,	check	if	instruction	can	
execute,	if	so	dispatch instruction

• Execute	(E):	Instructions	can	complete	out-of-order
• Completion	(R):	Write	result	to	reorder	buffer
• Retirement/Commit	(W):	Check	for	exceptions;	if	none,	write	result	to	
architectural	register	file	or	memory;	else,	flush	pipeline	and	start	from	exception	
handler

• In-order	dispatch/execution,	out-of-order	completion,	in-order	retirement	
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AN	IN-ORDER	PIPELINE

• Problem:	A	true	data	dependency	stalls	dispatch	of	
younger	instructions	into	functional	(execution)	units

• Dispatch:	Act	of	sending	an	instruction	to	a	functional	
unit
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CAN	WE	DO	BETTER?
• What	do	the	following	two	pieces	of	code	have	in	common	
(with	respect	to	execution	in	the	previous	design)?

• Answer:	First	ADD	stalls	the	whole	pipeline!
• ADD	cannot	dispatch	because	its	source	registers	unavailable
• Later	independent instructions	cannot	get	executed

• How	are	the	above	code	portions	different?
• Answer:	Load	latency	is	variable	(unknown	until	runtime)
• What	does	this	affect?	Think	compiler	vs.	microarchitecture

IMUL  R3 ß R1, R2
ADD   R3 ß R3, R1
ADD   R1 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9

LD      R3 ß R1 (0)
ADD   R3 ß R3, R1
ADD   R1 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9
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IN-ORDER	VS.	OUT-OF-ORDER	DISPATCH
• In	order	dispatch	+	precise	exceptions:

• Out-of-order	dispatch	+	precise	exceptions:

• 16	vs.	12	cycles
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PREVENTING	DISPATCH	STALLS

• Any	way	to	prevent	dispatch	stalls?
• Dataflow:	fetch	and	“fire” an	instruction	when	its	inputs	are	
ready

• Problem:	in-order	dispatch	(scheduling,	or	execution)
• Solution:	out-of-order	dispatch	(scheduling,	or	execution)

28
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TOMASULO’S	ALGORITHM
• OoO with	register	renaming	invented	by	Robert	Tomasulo

• Used	in	IBM	360/91	Floating	Point	Units
• Read: Tomasulo,	“An	Efficient	Algorithm	for	Exploiting	Multiple	Arithmetic	
Units,” IBM	Journal	of	R&D,	Jan.	1967.

• What	is	the	major	difference	today?
• Precise	exceptions:	IBM	360/91	did	NOT	have	this
• Patt,	Hwu,	Shebanow,	“HPS,	a	new	microarchitecture:	rationale	and	
introduction,”MICRO	1985.

• Patt et	al.,	“Critical	issues	regarding	HPS,	a	high	performance	
microarchitecture,”MICRO	1985.

• Variants	are	used	in	most	high-performance	processors
• Initially	in	Intel	Pentium	Pro,	AMD	K5		
• Alpha	21264,	MIPS	R10000,	IBM	POWER5,	IBM	z196,	Oracle	UltraSPARC T4,	ARM	Cortex	A15
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• These	slides	are	not	covered	in	the	class
• These	are	for	students	who	want	to	know	more

• What	is	the	insight	of	OOO	execution?

OUT-OF-ORDER	EXECUTION	
(DYNAMIC	SCHEDULING)

• Idea:	Move	the	dependent	instructions	out	of	the	way	of	
independent	ones (s.t. independent	ones	can	execute)

• Rest	areas	for	dependent	instructions:	Reservation	stations	

• Monitor	the	source	“values” of	each	instruction	in	the	
resting	area

• When	all	source	“values” of	an	instruction	are	available,	
“fire” (i.e.	dispatch)	the	instruction

• Instructions	dispatched	in	dataflow	(not	control-flow)	order	

• Benefit:
• Latency	tolerance:	Allows	independent	instructions	to	execute	and	
complete	in	the	presence	of	a	long	latency	operation

32
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The	Von	Neumann	Model/Architecture
• Also	called	stored	program	computer	(instructions	in	
memory).	Two	key	properties:

• Stored	program
• Instructions	stored	in	a	linear	memory	array
• Memory	is	unified	between	instructions	and	data

• The	interpretation	of	a	stored	value	depends	on	the	control	signals

• Sequential	instruction	processing
• One	instruction	processed	(fetched,	executed,	and	completed)	at	a	time
• Program	counter	(instruction	pointer)	identifies	the	current	instr.
• Program	counter	is	advanced	sequentially except	for	control	transfer	
instructions
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When is a value interpreted as an instruction?

The	Dataflow	Model	(of	a	Computer)
• Von	Neumann	model:	An	instruction	is	fetched	and	
executed	in	control	flow	order	

• As	specified	by	the	instruction	pointer
• Sequential	unless	explicit	control	flow	instruction

• Dataflow	model:	An	instruction	is	fetched	and	executed	
in	data	flow	order

• i.e.,	when	its	operands	are	ready
• i.e.,	there	is	no	instruction	pointer
• Instruction	ordering	specified	by	data	flow	dependence

• Each	instruction	specifies	“who” should	receive	the	result
• An	instruction	can	“fire” whenever	all	operands	are	received

• Potentially	many	instructions	can	execute	at	the	same	time
• Inherently	more	parallel
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Von	Neumann	vs	Dataflow
nConsider	a	Von	Neumann	program	

qWhat	is	the	significance	of	the	program	order?
qWhat	is	the	significance	of	the	storage	locations?

nWhich	model	is	more	natural	to	you	as	a	programmer?
35

v	<=	a	+	b;			
w	<=	b	*	2;
x	<=	v	- w
y	<=	v	+	w
z	<=	x	*	y

+ *2

- +

*

a b

z

Sequential

Dataflow

Data	Flow	Advantages/Disadvantages
• Advantages

• Very	good	at	exploiting	irregular	parallelism
• Only	real	dependencies	constrain	processing

• Disadvantages
• Debugging	difficult	(no	precise	state)

• Interrupt/exception	handling	is	difficult	(what	is	precise	state	
semantics?)

• Too	much	parallelism?	(Parallelism	control	needed)
• High	bookkeeping	overhead	(tag	matching,	data	storage)
• Memory	locality	is	not	exploited
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OOO	EXECUTION:	
RESTRICTED	DATAFLOW

• An	out-of-order	engine	dynamically	builds	the	dataflow	
graph of	a	piece	of	the	program

• which	piece?

• The	dataflow	graph	is	limited	to	the	instruction	window
• Instruction	window:	all	decoded	but	not	yet	retired	
instructions

• Can	we	do	it	for	the	whole	program?	
• Why	would	we	like	to?
• In	other	words,	how	can	we	have	a	large	instruction	
window? 37

GENERAL	ORGANIZATION	OF	AN	OOO	PROCESSOR

n Smith	and	Sohi,	“The	Microarchitecture	of	Superscalar	Processors,” Proc.	IEEE,	Dec.	1995.
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TOMASULO’S	MACHINE:	IBM	360/91

FP	FU FP	FU
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load
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FP	registers
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operation	bus

reservation	
stations

Common data bus
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