3/16/17

Precise Exceptions and
Out-of-Order Execution

Samira Khan

Multi-Cycle Execution

* Not all instructions take the same amount of time for
“execution”

« Idea: Have multiple different functional units that take
different number of cycles
* Can be pipelined or not pipelined
« Can let independent instructions start execution on a different
functional unit before a previous long-latency instruction
finishes execution

ISSUES IN PIPELINING: MULTI-CYCLE EXECUTE

* Instructions can take different number of cycles in
EXECUTE stage
* Integer ADD versus FP Multiply

FMULR4 < R1,R2 [F [0 [E € € e Je JE JE e [w]
ADD R3 ¢ R1,R2 FlPlE ™
F |D|E |W
F |D|E W
FMUL R2 € RS, R6 Pl e e T [E e IE [E W)
ADD R4 ¢ R5, R6 F [D|E
F[D |E w‘

* What is wrong with this picture?
* What if FMUL incurs an exception?
* Sequential semantics of the ISA NOT preserved!

The Von Neumann Model/Architecture

« Also called stored program computer (instructions in
memory). Two key properties:

« Stored program
+ Instructions stored in a linear memory array
* Memory is unified between instructions and data
* The interpretation of a stored value depends on the control signals

* Sequential instruction processing
+ One instruction processed (fetched, executed, and completed) at a time
* Program counter (instruction pointer) identifies the current instr.
* Program counter is advanced sequentially except for control transfer
instructions

3/16/17

HANDLING EXCEPTIONS IN PIPELINING

* Exceptions versus interrupts

* Cause
« Exceptions: internal to the running thread
« Interrupts: external to the running thread
* When to Handle
* Exceptions: when detected (and known to be non-speculative)
* Interrupts: when convenient
* Except for very high priority ones
« Power failure
* Machine check

* Priority: process (exception), depends (interrupt)

» Handling Context: process (exception), system
(interrupt)

PRECISE EXCEPTIONS/INTERRUPTS

* The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.
2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

WHY DO WE WANT PRECISE EXCEPTIONS?
« Aid software debugging

 Enable (easy) recovery from exceptions, e.g. page faults

 Enable (easily) restartable processes

ENSURING PRECISE EXCEPTIONS IN
PIPELINING

* Idea: Make each operation take the same amount of time

FMULR3 < R1,R2 [F |DJE € [e € [e[e[e[e[w
ADD R4 & R1,R2 [F{ole[elee[e[e[ee[w]
F |D|E|E[E|E|E[E[E|E[W
F|D|E|E|[E|E|E[E[E|E|[W
F |0 |E € [E[E e € [E[E[W
Floe e [e e e e [E w]
F D |E [E|E|E|E|E|EJE|W
* Downside

* What about memory operations?
« Each functional unit takes 500 cycles?

3/16/17

SOLUTION: REORDER BUFFER (ROB)

* Idea: Comﬁ!ete instructions out-of-order, but reorder them
before making results visible to architectural state

* When instruction is decoded it reserves an entry in the ROB
* When instruction completes, it writes result into ROB entry

* When instruction oldest in ROB and it has completed, its
result moved to reg. file or memory

Func Unit

Register

i Reorder
Cache [-=r =+ > File

Buffer

DEST | DEST | CO
REG VAL |mPL
ETE
Oldest mmmmmgpFMUL 1)
ADD 1 R3 0

1)
FMUL 2 0
Youngest gy ADD 1 0

Reorder File

REORDER BUFFER: INDEPENDENT
OPERATIONS

CYCLES

v |DEsT |DEsT |co
REG VAL |MPL
Oldest ETE
0 1 2 3 4 5 6 7 8 9 10 11 g FVIUL 1 M ~ 5
‘F]D E[E E]E]E]E]EIR]W‘ ADD : B [=2 :
[F E[R a &
D |E IR w Youngest FvmuL 1 R o
F |D JE [R w ﬁ ADD
FMULR2 < R5,R6|F |0 [E [E [E E]E]E]E]E R w‘
JADD R4 ¢ R5, R6 EEED W
F[D[E[R ‘
Reorder File

REORDER BUFFER: INDEPENDENT
OPERATIONS

0 1 2 3 4 5 6 7 8 9 101

[F]o

[F

€ e Je Je Je [/ [w]

5]
o|m[m

w Youngest FMUL
R w m—fp ADD
E 3] E] 3] E] 3 w ‘

D [E |R w
3

o e [R]

E

FMUL R2 ¢ R5, R6
[ADD R4 < R5, R6

E
R
E
D
3

m
=

o[m|®

DEST
REG
Oldest
— FMUL 1 R4
ADD R

CYCLES

3 1000

1 1
1)
1)
1 R2)
1 0

Reorder File

1

DEST |cO
VAL | mPL

ETE
= 0

3/16/17

OPERATIONS

0 1 2 3 4 5 6 7 8 9 1011 Oldest
‘F]D E[E E]E]E]E]E[R]w
‘F E[R w
D |E|R w Youngest FMUL
F |D [E [R w ﬁADD
FMUL R2 < R5,R6[F [D [E [E [E E]E]E E]E R w‘
JADD R4 ¢ R5, R6 EEED W
F[D[E R‘

1
1

Reorder File

OPERATIONS

What if a later operation needs a value in the reorder buffer?
Read reorder buffer in parallel with the register file. How?

REORDER BUFFER: INDEPENDENT CYCLE 11 REORDER BUFFER: INDEPENDENT CYCLE 12
OPERATIONS P e OPERATIONS neTiRe
Oldest . Oldest OLDEST

0 12 3 4 5 6 7 8 9 1011 —FMUL 1 RS 201 0 0123 456 7 89 101 fvos s W o o

‘F]‘FD E E ; EJeJeJe[e]r w‘w APD : " mn; ‘F]‘FD E E ; E]E]E]E]E[R]ww ADD : &= mo:

i I Ao e g e

;ASIBLEZ:E;ES F FD E E E 3]E E]E]E R w‘w ;gg_gizgzgg F FD E E E E]E]E E]E R w‘w
FIP[E[R] F o e Jr]
Reorder File Reorder File
REORDER BUFFER: INDEPENDENT CYCLE 12 REORDER BUFFER: INDEPENDENT CYCLE 12

DEST | DEST |cCO
REG |VAL |MPL
ETE
D R:

012 3456 7 8 9 101 Oldest o
[Fe e Je Je[eJeJe [e[R[w 0 : 2 mo:
[F o e [r w a 5
FIPIE IR w Youngest FMuL 1 R o
Flpo[e [r W‘ —fp ADD 1 R4 0
FMULR2 < R5,R6[F |D [E [E [E s]E]s E]E R w‘
[ADD R4 € R5,R6 7[5 £ [R W
F[p[E[R ‘
Reorder File

3/16/17

REORDER BUFFER: HOW TO ACCESS?

« A register value can be in the register file, reorder buffer,

(or bypass paths)

Instruction Register

Cache [~ = | File

-]

Content ! Reorder Func Unit |—>]
Addressable = * | Buffer -
Memory

(searched with bypass path

register ID) 7

Search for Register Value

[T]

R 11

z 2 Oldest

ADD

Ra o

RS 51

RE 6 1

R EERE Youngest

qe s R ﬁ ADI
R9. 9 1

RIO 10 1

RI 1 0

DEST | DEST
REG |VAL

R3 1000

)
L
ETE

0
1 1
1 0
1 0
1)
1 0

SIMPLIFYING REORDER BUFFER ACCESS

* Idea: Use indirection

* Access register file first

« If register not valid, register file stores the ID of the reorder buffer
entry that contains (or will contain) the value of the register

* Mapping of the register to a ROB entry
* Access reorder buffer next

* What is in a reorder buffer entry?

DestRegID | DestRegVal | StoreAddr | StoreData | BranchTarget [Pc/P | Controlivalid bits

‘ v

* Can it be simplified further?

Search for Register Value

[o e |\

R 1 1

R2 5o

= m—— Oldest

- ADD

Ra 6 o

RS 5 1

R 6 1

- s N Youngest

ﬁ ADI

R8 8 1

R 9 1

RIO 10 1

R11 1 1

DEST | DEST
REG |VAL

0
1 R3 1000 1
1 0
1 0
1 0
1 0

3/16/17

REORDER BUFFER PROS AND CONS

* Pro
« Conceptually simple for supporting precise exceptions

* Con
« Reorder buffer needs to be accessed to get the results that are
yet to be written to the register file
+ CAM or indirection > increased latency and complexity

Reorder Buffer in Intel Pentium I

Pentium III Rop
Data Status

Boggs et al., “The

RAT Microarchitecture of the
Pentium 4 Processor,” Intel
Technology Journal, 2001.

In-Order Pipeline with Reorder Buffer

* Decode (D): Access regfile/ROB, allocate entry in ROB, check if instruction can
execute, if so dispatch instruction

= Execute (E): Instructions can complete out-of-order

Completion (R): Write result to reorder buffer

« Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from exception
handler

In-order dispatch/execution, out-of-order completion, in-order retirement

Integer add

Loadistore

Out-of-Order Execution
(Dynamic Instruction Scheduling)

3/16/17

AN IN-ORDER PIPELINE

Integer add

Cache miss

* Problem: A true data dependency stalls dispatch of
younger instructions into functional (execution) units

« Dispatch: Act of sending an instruction to a functional
unit

CAN WE DO BETTER?

* What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1,R2 LD R3 < R1(0)
ADD R3 €« R3, R1 ADD R3 € R3, R1
ADD R1 € R6,R7 ADD R1 €« R6,R7
IMUL R5 €« R6, R8 IMUL R5 €« R6, R8
ADD R7 €« R9,R9 ADD R7 €« R9, R9

* Answer: First ADD stalls the whole pipeline!
* ADD cannot dispatch because its source registers unavailable
« Later independent instructions cannot get executed

* How are the above code portions different?
« Answer: Load latency is variable (unknown until runtime)
* What does this affect? Think compiler vs. microarchitecture

IN-ORDER VS. OUT-OF-ORDER DISPATCH

* In order dispatch + precise exceptions:

EEEEEE e en
\F_D_ STALL |E |R |W ADD R1 € R, R7
F| s [D|E |R [w IMUL RS € R6, R8
. Flp |E E‘E]EIE \R_lw‘ ADD R7 € R3,R5
F D STALL E R W

+ Out-of-order dispatch + precise exceptions:

‘FD

‘ F

E]E]E R [W
DW/:ITR E]R]W%W
F[po[E E]E]E R

F D WAIT \E_R w

| o

=

* 16vs. 12 cycles

PREVENTING DISPATCH STALLS

* Any way to prevent dispatch stalls?
« Dataflow: fetch and “fire” an instruction when its inputs are
ready
* Problem: in-order dispatch (scheduling, or execution)
* Solution: out-of-order dispatch (scheduling, or execution)

3/16/17

TOMASULO’S ALGORITHM

* 000 with register renaming invented by Robert Tomasulo
* Used in IBM 360/91 Floating Point Units
* Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic
Units,” 1BM Journal of R&D, Jan. 1967.

* What is the major difference today?
* Precise exceptions: IBM 360/91 did NOT have this

« Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

* Pattetal., “Critical jssues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

* Variants are used in most high-performance processors
« Initially in Intel Pentium Pro, AMD K5
+ Alpha 21264, MIPS R10000, IBM POWERS, IBM 2196, Oracle UltraSPARC T4, ARM Cortex A15

* These slides are not covered in the class

* These are for students who want to know more

* What is the insight of OO0 execution?

OUT-OF-ORDER EXECUTION
(DYNAMIC SCHEDULING)
Idea: Move the dependent instructions out of the way of
independent ones (s.t. independent ones can execute)

* Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area
When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

* Instructions dispatched in dataflow (not control-flow) order

Benefit:
« Latency tolerance: Allows independent instructions to execute and
complete in the presence of a long latency operation

3/16/17

The Von Neumann Model/Architecture

« Also called stored program computer (instructions in
memory). Two key properties:

« Stored program
* Instructions stored in a linear memory array
* Memory is unified between instructions and data
* The interpretation of a stored value depends on the control signals
When is a value interpreted as an instruction?
 Sequential instruction processing
* One instruction processed (fetched, executed, and completed) at a time
= Program counter (instruction pointer) identifies the current instr.
* Program counter is advanced sequentially except for control transfer
instructions

The Dataflow Model (of a Computer)

* Von Neumann model: An instruction is fetched and
executed in control flow order
« As specified by the instruction pointer
« Sequential unless explicit control flow instruction

* Dataflow model: An instruction is fetched and executed
in data flow order
* i.e., when its operands are ready
.e., there is no instruction pointer
* Instruction ordering specified by data flow dependence
+ Each instruction specifies “who” should receive the result
* Aninstruction can “fire” whenever all operands are received
* Potentially many instructions can execute at the same time
+ Inherently more parallel

Von Neumann vs Dataflow

HConsider a Von Neumann program
QWhat is the significance of the program order?
QWhat is the significance of the storage locations?

a b
v<=a+b;
w<=b*2;
& 3
y<=v+w
z<=x*y

0 O
Sequential *

z
WWhich model is more natural to you as a programmer?
35

Dataflow

Data Flow Advantages/Disadvantages

* Advantages
* Very good at exploiting irregular parallelism
* Only real dependencies constrain processing

« Disadvantages
 Debugging difficult (no precise state)

« Interrupt/exception handling is difficult (what is precise state
semantics?)

* Too much parallelism? (Parallelism control needed)
* High bookkeeping overhead (tag matching, data storage)
* Memory locality is not exploited

36

3/16/17

000 EXECUTION:
RESTRICTED DATAFLOW

* An out-of-order engine dynamically builds the dataflow
graph of a piece of the program
* which piece?

* The dataflow graph is limited to the instruction window

* Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?
* Why would we like to?

* In other words, how can we have a large instruction
window?

GENERAL ORGANIZATION OF AN OO0 PROCESSOR

= Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

TOMASULO’S MACHINE: IBM 360/91

. § FP registers
from instruction unit

from memory

load

buffers store buffers

—

reservation

stations

FP FU FP FU
Common data bus

to memory

10

