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Agenda

• Logistics
• Review	from	last	lecture

• Out-of-order	execution

• Data	flow	model
• Superscalar	processor
• Caches



Final	Exam

• Combined final exam 7-10PM on Tuesday,	9	May	2017
• Any	conflict?

• Please	fill	out	the	form
• https://goo.gl/forms/TVOlvx76N4RiEItC2
• Also	linked	from	the	schedule	page



AN	IN-ORDER	PIPELINE

• Problem:	A	true	data	dependency	stalls	dispatch	of	
younger	instructions	into	functional	(execution)	units

• Dispatch:	Act	of	sending	an	instruction	to	a	functional	
unit
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CAN	WE	DO	BETTER?
• What	do	the	following	two	pieces	of	code	have	in	common	
(with	respect	to	execution	in	the	previous	design)?

• Answer:	First	ADD	stalls	the	whole	pipeline!
• ADD	cannot	dispatch	because	its	source	registers	unavailable
• Later	independent instructions	cannot	get	executed

• How	are	the	above	code	portions	different?
• Answer:	Load	latency	is	variable	(unknown	until	runtime)
• What	does	this	affect?	Think	compiler	vs.	microarchitecture

IMUL  R3 ß R1, R2
ADD   R3 ß R3, R1
ADD   R1 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9

LD      R3 ß R1 (0)
ADD   R3 ß R3, R1
ADD   R1 ß R6, R7
IMUL  R5 ß R6, R8
ADD   R7 ß R9, R9
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IN-ORDER	VS.	OUT-OF-ORDER	DISPATCH
• In	order	dispatch	+	precise	exceptions:

• Out-of-order	dispatch	+	precise	exceptions:

• 16	vs.	12	cycles
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TOMASULO’S	ALGORITHM
• OoO with	register	renaming	invented	by	Robert	
Tomasulo

• Used	in	IBM	360/91	Floating	Point	Units
• Tomasulo,	“An	Efficient	Algorithm	for	Exploiting	Multiple	Arithmetic	
Units,”

• IBM	Journal	of	R&D,	Jan.	1967

• What	is	the	major	difference	today?
• Precise	exceptions:	IBM	360/91	did	NOT	have	this
• Patt,	Hwu,	Shebanow,	“HPS,	a	new	microarchitecture:	rationale	and	
introduction,”MICRO	1985.

• Patt et	al.,	“Critical	issues	regarding	HPS,	a	high	performance	
microarchitecture,”MICRO	1985.
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Out-of-Order	Execution	\w	Precise	Exception

• Variants	are	used	in	most	high-performance	
processors
• Initially	in	Intel	Pentium	Pro,	AMD	K5		
• Alpha	21264,	MIPS	R10000,	IBM	POWER5,	

IBM	z196,	Oracle	UltraSPARC T4,	ARM	Cortex	
A15

• The	Pentium	Chronicles:	The	People,	Passion,	and	
Politics	Behind	Intel's	Landmark	Chips	by	Robert	
P.	Colwell



Agenda

• Logistics
• Review	from	last	lecture

• Out-of-order	execution

• Data	flow	model
• Superscalar	processor
• Caches



The	Von	Neumann	Model/Architecture
• Also	called	stored	program	computer	(instructions	in	
memory).	Two	key	properties:

• Stored	program
• Instructions	stored	in	a	linear	memory	array
• Memory	is	unified	between	instructions	and	data

• The	interpretation	of	a	stored	value	depends	on	the	control	signals

• Sequential	instruction	processing
• One	instruction	processed	(fetched,	executed,	and	completed)	at	a	time
• Program	counter	(instruction	pointer)	identifies	the	current	instr.
• Program	counter	is	advanced	sequentially except	for	control	transfer	
instructions
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When is a value interpreted as an instruction?



The	Dataflow	Model	(of	a	Computer)
• Von	Neumann	model:	An	instruction	is	fetched	and	
executed	in	control	flow	order	

• As	specified	by	the	instruction	pointer
• Sequential	unless	explicit	control	flow	instruction

• Dataflow	model:	An	instruction	is	fetched	and	executed	
in	data	flow	order

• i.e.,	when	its	operands	are	ready
• i.e.,	there	is	no	instruction	pointer
• Instruction	ordering	specified	by	data	flow	dependence

• Each	instruction	specifies	“who” should	receive	the	result
• An	instruction	can	“fire” whenever	all	operands	are	received

• Potentially	many	instructions	can	execute	at	the	same	time
• Inherently	more	parallel
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Von	Neumann	vs	Dataflow
• Consider	a	Von	Neumann	program	

• What	is	the	significance	of	the	program	order?
• What	is	the	significance	of	the	storage	locations?

nWhich	model	is	more	natural	to	you	as	a	programmer?
12
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More	on	Data	Flow
• In	a	data	flow	machine,	a	program	consists	of	data	flow	
nodes

• A	data	flow	node	fires	(fetched	and	executed)	when	all	it	
inputs	are	ready

• i.e.	when	all	inputs	have	tokens

• Data	flow	node	and	its	ISA	representation
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Data	Flow	Nodes
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An	Example
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What	does	this	model	perform?
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What	does	this	model	perform?
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What	does	this	model	perform?
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What	does	this	model	perform?
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Hamming	Distance

int hamming_distance(unsigned a,	unsigned b)	{	
int dist = 0;	
unsigned	val = a	^ b;	//	Count	the	number	of	bits	set
while (val != 0)	{	 //	A	bit	is	set,	so	increment	the	count	and	clear	the	bit
dist++;	val &= val - 1;	
}	

//	Return	the	number	of	differing	bits
return dist;	
}



Hamming	Distance

• Number	of	positions	at	which	the	corresponding symbols	are	different.
• The	Hamming	distance	between:

• "karolin"	and	"kathrin"	is	3
• 1011101 and 1001001 is	2
• 2173896 and 2233796 is	3



RICHARD	HAMMING

22

• Best	known	for	Hamming	Code
• Won	Turing	Award	in	1968
• Was	part	of	the	Manhattan	Project
• Worked	in	Bell	Labs	for	30	years

• You	and	Your	Research	is	mainly	his	
advice	to	other	researchers
• Had	given	the	talk	many	times	during	

his	life	time
• http://www.cs.virginia.edu/~robins/Y

ouAndYourResearch.html



Data	Flow	Advantages/Disadvantages
• Advantages

• Very	good	at	exploiting	irregular	parallelism
• Only	real	dependencies	constrain	processing

• Disadvantages
• Debugging	difficult	(no	precise	state)

• Interrupt/exception	handling	is	difficult	(what	is	precise	state	
semantics?)

• Too	much	parallelism?	(Parallelism	control	needed)
• High	bookkeeping	overhead	(tag	matching,	data	storage)
• Memory	locality	is	not	exploited
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OOO	EXECUTION:	
RESTRICTED	DATAFLOW

• An	out-of-order	engine	dynamically	builds	the	dataflow	
graph of	a	piece	of	the	program

• which	piece?

• The	dataflow	graph	is	limited	to	the	instruction	window
• Instruction	window:	all	decoded	but	not	yet	retired	
instructions

• Can	we	do	it	for	the	whole	program?	
• Why	would	we	like	to?
• In	other	words,	how	can	we	have	a	large	instruction	
window? 24
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Superscalar	Processor
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Superscalar	Processor

• Ideally:	in	an	n-issue	superscalar,	n	instructions	are	fetched,	decoded,	
executed,	and	committed	per	cycle	

• In	practice:
• Data,	control,	and	structural	hazards	spoil	issue	flow	
• Multi-cycle	instructions	spoil	commit	flow	

• Buffers	at	issue	(issue	queue)	and	commit	(reorder	buffer)	
• Decouple	these	stages	from	the	rest	of	the	pipeline	and	regularize	
somewhat	breaks	in	the	flow	



Problems?
• Fetch

• May	be	located	at	different	cachelines
• More	than	one	cache	lookup	is	required	in	the	same	cycle	

• What	if	there	are	branches?
• Branch	prediction	is	required	within	the	instruction	fetch	stage	

• Decode/Execute
• Replicate	(ok)	

• Issue
• Number	of	dependence	tests	increases	quadratically (bad)	

• Register	read/write
• Number	of	register	ports	increases	linearly	(bad)	

• Bypass/forwarding	
• Increases	quadratically (bad)



The	Memory	Hierarchy



Memory	in	a	Modern	System
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Ideal	Memory
• Zero	access	time	(latency)
• Infinite	capacity
• Zero	cost
• Infinite	bandwidth	(to	support	multiple	accesses	in	
parallel)
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The	Problem
• Ideal	memory’s	requirements	oppose	each	other

• Bigger	is	slower
• Bigger	à Takes	longer	to	determine	the	location

• Faster	is	more	expensive
• Memory	technology:	SRAM	vs.	DRAM	vs.	Disk	vs.	Tape

• Higher	bandwidth	is	more	expensive
• Need	more	banks,	more	ports,	higher	frequency,	or	faster	
technology
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Memory	Technology:	DRAM
• Dynamic	random	access	memory
• Capacitor	charge	state	indicates	stored	value

• Whether	the	capacitor	is	charged	or	discharged	indicates	
storage	of	1	or	0

• 1	capacitor
• 1	access	transistor

• Capacitor	leaks	through	the	RC	path
• DRAM	cell	loses	charge	over	time
• DRAM	cell	needs	to	be	refreshed
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• Static	random	access	memory
• Two	cross	coupled	inverters	store	a	single	bit

• Feedback	path	enables	the	stored	value	to	be	stable	in	the	
“cell”

• 4	transistors	for	storage
• 2	transistors	for	access

Memory	Technology:	SRAM
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DRAM	vs.	SRAM
• DRAM

• Slower	access	(capacitor)
• Higher	density	(1T	1C	cell)
• Lower	cost
• Requires	refresh	(power,	performance,	circuitry)
• Manufacturing	requires	putting	capacitor	and	logic	together

• SRAM
• Faster	access	(no	capacitor)
• Lower	density	(6T	cell)
• Higher	cost
• No	need	for	refresh
• Manufacturing	compatible	with	logic	process	(no	capacitor)
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The	Problem
• Bigger	is	slower

• SRAM,	512	Bytes,	sub-nanosec
• SRAM,		KByte~MByte,	~nanosec
• DRAM,	Gigabyte,	~50	nanosec
• Hard	Disk,	Terabyte,	~10	millisec

• Faster	is	more	expensive	(dollars	and	chip	area)
• SRAM,	<	10$	per	Megabyte
• DRAM,	<	1$	per	Megabyte
• Hard	Disk	<	1$	per	Gigabyte
• These	sample	values	scale	with	time

• Other	technologies	have	their	place	as	well	
• Flash	memory,	PC-RAM,	MRAM,	RRAM	(not	mature	yet)
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Why	Memory	Hierarchy?
• We	want	both	fast	and	large

• But	we	cannot	achieve	both	with	a	single	level	of	memory

• Idea:	Have	multiple	levels	of	storage	(progressively	bigger	and	slower	as	
the	levels	are	farther	from	the	processor)	and	ensure	most	of	the	data	
the	processor	needs	is	kept	in	the	fast(er)	level(s)
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The	Memory	Hierarchy
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Memory	Hierarchy
• Fundamental	tradeoff

• Fast	memory:	small
• Large	memory:	slow

• Idea:	Memory	hierarchy

• Latency,	cost,	size,	
bandwidth
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Locality
• One’s	recent	past	is	a	very	good	predictor	of	his/her	near	future.

• Temporal	Locality:		If	you	just	did	something,	it	is	very	likely	that	you	
will	do	the	same	thing	again	soon

• since	you	are	here	today,	there	is	a	good	chance	you	will	be	here	again	and	
again	regularly

• Spatial	Locality:		If	you	did	something,	it	is	very	likely	you	will	do	
something	similar/related	(in	space)

• every	time	I	find	you	in	this	room,	you	are	probably	sitting	close	to	the	same	
people
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Memory	Locality
• A	“typical” program	has	a	lot	of	locality	in	memory	references

• typical	programs	are	composed	of	“loops”

• Temporal:	A	program	tends	to	reference	the	same	memory	location	
many	times	and	all	within	a	small	window	of	time

• Spatial:	A	program	tends	to	reference	a	cluster	of	memory	locations	at	a	
time	

• most	notable	examples:	
• instruction	memory	references	
• array/data	structure	references
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Caching	Basics:	Exploit	Temporal	Locality
• Idea:	Store	recently	accessed	data	in	automatically	managed	fast	
memory	(called	cache)

• Anticipation:	the	data	will	be	accessed	again	soon

• Temporal	locality	principle
• Recently	accessed	data	will	be	again	accessed	in	the	near	future
• This	is	what	Maurice	Wilkes	had	in	mind:

• Wilkes,	“Slave	Memories	and	Dynamic	Storage	Allocation,” IEEE	Trans.	On	Electronic	
Computers,	1965.

• “The	use	is	discussed	of	a	fast	core	memory	of,	say	32000	words	as	a	slave	to	a	slower	core	
memory	of,	say,	one	million	words	in	such	a	way	that	in	practical	cases	the	effective	access	
time	is	nearer	that	of	the	fast	memory	than	that	of	the	slow	memory.”
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Caching	Basics:	Exploit	Spatial	Locality
• Idea:	Store	addresses	adjacent	to	the	recently	accessed	one	in	automatically	
managed	fast	memory

• Logically	divide	memory	into	equal	size	blocks
• Fetch	to	cache	the	accessed	block	in	its	entirety

• Anticipation:	nearby	data	will	be	accessed	soon

• Spatial	locality	principle
• Nearby	data	in	memory	will	be	accessed	in	the	near	future

• E.g.,	sequential	instruction	access,	array	traversal
• This	is	what	IBM	360/85	implemented

• 16	Kbyte	cache	with	64	byte	blocks
• Liptay,	“Structural	aspects	of	the	System/360	Model	85	II:	the	cache,” IBM	Systems	Journal,	1968.
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The	Bookshelf	Analogy
• Book	in	your	hand
• Desk
• Bookshelf
• Boxes	at	home
• Boxes	in	storage

• Recently-used	books	tend	to	stay	on	desk
• Comp	Arch	books,	books	for	classes	you	are	currently	taking
• Until	the	desk	gets	full

• Adjacent	books	in	the	shelf	needed	around	the	same	
time

• If	I	have	organized/categorized	my	books	well	in	the	shelf
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Caching	in	a	Pipelined	Design
• The	cache	needs	to	be	tightly	integrated	into	the	pipeline	

• Ideally,	access	in	1-cycle	so	that	dependent	operations	do	not	stall

• High	frequency	pipeline	à Cannot	make	the	cache	large
• But,	we	want	a	large	cache	AND	a	pipelined	design

• Idea:	Cache	hierarchy
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A	Note	on	Manual	vs.	Automatic	Management
• Manual: Programmer	manages	data	movement	across	
levels
-- too	painful	for	programmers	on	substantial	programs
• still	done	in	some	embedded	processors	(on-chip	scratch	pad	
SRAM	in	lieu	of	a	cache)

• Automatic: Hardware	manages	data	movement	across	
levels,	transparently	to	the	programmer
++	programmer’s	life	is	easier
• the	average	programmer	doesn’t	need	to	know	about	it

• You	don’t	need	to	know	how	big	the	cache	is	and	how	it	works	to	write	a	
“correct” program!	(What	if	you	want	a	“fast” program?)
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Automatic	Management	in	Memory	Hierarchy
• Wilkes,	“Slave	Memories	and	Dynamic	Storage	Allocation,”
IEEE	Trans.	On	Electronic	Computers,	1965.

• “By	a	slave	memory	I	mean	one	which	automatically	
accumulates	to	itself	words	that	come	from	a	slower	main	
memory,	and	keeps	them	available	for	subsequent	use	
without	it	being	necessary	for	the	penalty	of	main	memory	
access	to	be	incurred	again.”
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A	Modern	Memory	Hierarchy
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Hierarchical	Latency	Analysis
• For	a	given	memory	hierarchy	level	i it	has	a	technology-intrinsic	access	time	of	ti, The	
perceived	access	time	Ti is	longer	than	ti

• Except	for	the	outer-most	hierarchy,	when	looking	for	a	given	address	there	is	
• a	chance	(hit-rate	hi)	you	“hit” and	access	time	is	ti
• a	chance	(miss-rate	mi)	you	“miss” and	access	time	ti +Ti+1	
• hi	+	mi =	1

• Thus

Ti =	hi·ti +	mi·(ti +	Ti+1)
Ti =	ti +	mi	·Ti+1	

• Miss-rate	of	just	the	references	that	missed	at	Li-1		
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Hierarchy	Design	Considerations
• Recursive	latency	equation

Ti =	ti +	mi	·Ti+1
• The	goal:	achieve	desired	T1	within	allowed	cost
• Ti » ti is	desirable

• Keep	mi low
• increasing	capacity	Ci lowers	mi, but	beware	of	increasing	ti
• lower	mi	by	smarter	management	(replacement::anticipate	what	you	don’t	
need,	prefetching::anticipate	what	you	will	need)

• Keep	Ti+1 low
• faster	lower	hierarchies,	but	beware	of	increasing	cost
• introduce	intermediate	hierarchies	as	a	compromise	
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• 90nm	P4,	3.6	GHz
• L1	D-cache

• C1 =	16K
• t1 =	4	cyc int /	9	cycle	fp

• L2	D-cache
• C2 =1024	KB	
• t2 =	18	cyc int /	18	cyc fp

• Main	memory
• t3	=	~	50ns	or	180	cyc

• Notice
• best	case	latency	is	not	1	
• worst	case	access	latencies	are	into	500+	cycles

if	m1=0.1,	m2=0.1
T1=7.6,	T2=36

if	m1=0.01,	m2=0.01
T1=4.2,	T2=19.8

if	m1=0.05,	m2=0.01
T1=5.00,	T2=19.8

if	m1=0.01,	m2=0.50
T1=5.08,	T2=108

Intel Pentium 4 Example


