
Caches
Samira	Khan	

March	23,	2017

Agenda

• Review	from	last	lecture
• Data	flow	model
• Memory	hierarchy

• More	Caches

The	Dataflow	Model	(of	a	Computer)
• Von	Neumann	model:	An	instruction	is	fetched	and	
executed	in	control	flow	order	

• As	specified	by	the	instruction	pointer
• Sequential	unless	explicit	control	flow	instruction

• Dataflow	model:	An	instruction	is	fetched	and	executed	
in	data	flow	order

• i.e.,	when	its	operands	are	ready
• i.e.,	there	is	no	instruction	pointer
• Instruction	ordering	specified	by	data	flow	dependence

• Each	instruction	specifies	“who” should	receive	the	result
• An	instruction	can	“fire” whenever	all	operands	are	received

• Potentially	many	instructions	can	execute	at	the	same	time
• Inherently	more	parallel

3

Data	Flow	Advantages/Disadvantages
• Advantages

• Very	good	at	exploiting	irregular	parallelism
• Only	real	dependencies	constrain	processing

• Disadvantages
• Debugging	difficult	(no	precise	state)

• Interrupt/exception	handling	is	difficult	(what	is	precise	state	
semantics?)

• Too	much	parallelism?	(Parallelism	control	needed)
• High	bookkeeping	overhead	(tag	matching,	data	storage)
• Memory	locality	is	not	exploited

4

OOO	EXECUTION:	
RESTRICTED	DATAFLOW

• An	out-of-order	engine	dynamically	builds	the	dataflow	
graph of	a	piece	of	the	program

• which	piece?

• The	dataflow	graph	is	limited	to	the	instruction	window
• Instruction	window:	all	decoded	but	not	yet	retired	
instructions

• Can	we	do	it	for	the	whole	program?	

5

An	Example

6

OUT

The	Memory	Hierarchy

Ideal	Memory
• Zero	access	time	(latency)
• Infinite	capacity
• Zero	cost
• Infinite	bandwidth	(to	support	multiple	accesses	in	
parallel)

8

The	Problem
• Ideal	memory’s	requirements	oppose	each	other

• Bigger	is	slower
• Bigger	à Takes	longer	to	determine	the	location

• Faster	is	more	expensive
• Memory	technology:	SRAM	vs.	DRAM	vs.	Disk	vs.	Tape

• Higher	bandwidth	is	more	expensive
• Need	more	banks,	more	ports,	higher	frequency,	or	faster	
technology

9

Why	Memory	Hierarchy?
• We	want	both	fast	and	large

• But	we	cannot	achieve	both	with	a	single	level	of	memory

• Idea:	Have	multiple	levels	of	storage	(progressively	bigger	and	slower	as	
the	levels	are	farther	from	the	processor)	and	ensure	most	of	the	data	
the	processor	needs	is	kept	in	the	fast(er)	level(s)

10

The	Memory	Hierarchy

11

fast
small

big	but	slow

move	what	you	use	here

backup
everything
here

With	good	locality	of	
reference,	memory	
appears	as	fast	as
and	as	large	as		

fa
st
er
	p
er
	b
yt
e

ch
ea
pe

r	p
er
	b
yt
e

Memory	Locality
• A	“typical” program	has	a	lot	of	locality	in	memory	references

• typical	programs	are	composed	of	“loops”

• Temporal:	A	program	tends	to	reference	the	same	memory	location	
many	times	and	all	within	a	small	window	of	time

• Spatial:	A	program	tends	to	reference	a	cluster	of	memory	locations	at	a	
time	

• most	notable	examples:	
• instruction	memory	references	
• array/data	structure	references

12

Hierarchical	Latency	Analysis
• For	a	given	memory	hierarchy	level	i it	has	a	technology-intrinsic	access	time	of	ti, The	
perceived	access	time	Ti is	longer	than	ti

• Except	for	the	outer-most	hierarchy,	when	looking	for	a	given	address	there	is	
• a	chance	(hit-rate	hi)	you	“hit” and	access	time	is	ti
• a	chance	(miss-rate	mi)	you	“miss” and	access	time	ti +Ti+1	
• hi	+	mi =	1

• Thus

Ti =	hi·ti +	mi·(ti +	Ti+1)
Ti =	ti +	mi	·Ti+1	

• Miss-rate	of	just	the	references	that	missed	at	Li-1		

13

Hierarchy	Design	Considerations
• Recursive	latency	equation

Ti =	ti +	mi	·Ti+1			
• The	goal:	achieve	desired	T1	within	allowed	cost
• Ti » ti is	desirable

• Keep	mi low
• increasing	capacity	Ci lowers	mi, but	beware	of	increasing	ti
• lower	mi	by	smarter	management	(replacement::anticipate	what	you	don’t	
need,	prefetching::anticipate	what	you	will	need)

• Keep	Ti+1 low
• faster	lower	hierarchies,	but	beware	of	increasing	cost
• introduce	intermediate	hierarchies	as	a	compromise	

14

• 90nm	P4,	3.6	GHz
• L1	D-cache

• C1 =	16K
• t1 =	4	cyc int /	9	cycle	fp

• L2	D-cache
• C2 =1024	KB	
• t2 =	18	cyc int /	18	cyc fp

• Main	memory
• t3	=	~	50ns	or	180	cyc

• Notice
• best	case	latency	is	not	1	
• worst	case	access	latencies	are	into	500+	cycles

if	m1=0.1,	m2=0.1
T1=7.6,	T2=36

if	m1=0.01,	m2=0.01
T1=4.2,	T2=19.8

if	m1=0.05,	m2=0.01
T1=5.00,	T2=19.8

if	m1=0.01,	m2=0.50
T1=5.08,	T2=108

Intel Pentium 4 Example

Caching	Basics
• Block	(line):	Unit	of	storage	in	the	cache

• Memory	is	logically	divided	into	cache	blocks	that	map	to	locations	in	
the	cache

• When	data	referenced
• HIT:	If	in	cache,	use	cached	data	instead	of	accessing	memory
• MISS:	If	not	in	cache,	bring	block	into	cache

• Maybe	have	to	kick	something	else	out	to	do	it

• Some	important	cache	design	decisions
• Placement:	where	and	how	to	place/find	a	block	in	cache?
• Replacement:	what	data	to	remove	to	make	room	in	cache?
• Granularity	of	management:	large,	small,	uniform	blocks?
• Write	policy:	what	do	we	do	about	writes?
• Instructions/data:	Do	we	treat	them	separately?

16

Cache	Abstraction	and	Metrics

• Cache	hit	rate	=	(#	hits)	/	(#	hits	+	#	misses)	=	(#	hits)	/	(#	accesses)
• Average	memory	access	time	(AMAT)
=	(hit-rate	*	hit-latency)	+	(miss-rate	*	miss-latency)

• Aside:	Can	reducing	AMAT	reduce	performance?

17

Address
Tag Store

(is the address
in the cache?

+ bookkeeping)

Data Store

(stores
memory
blocks)

Hit/miss? Data

A	Basic	Hardware	Cache	Design
• We	will	start	with	a	basic	hardware	cache	design

• Then,	we	will	examine	a	multitude	of	ideas	to	make	it	
better

18

Blocks	and	Addressing	the	Cache
• Memory	is	logically	divided	into	fixed-size	blocks

• Each	block	maps	to	a	location	in	the	cache,	determined	by	the	index	bits	in	
the	address

• used	to	index	into	the	tag	and	data	stores	

• Cache	access:	
• 1)	index	into	the	tag	and	data	stores	with	index	bits	in	address	
• 2)	check	valid	bit	in	tag	store
• 3)	compare	tag	bits	in	address	with	the	stored	tag	in	tag	store

• If	a	block	is	in	the	cache	(cache	hit),	the	stored	tag	should	be	valid	and	match	
the	tag	of	the	block

19

8-bit address

tag index byte in block

3 bits2 bits 3 bits

Direct-Mapped	Cache:	Placement	and	Access
• Assume	byte-addressable	memory:											256	bytes,	8-byte	
blocks	à 32	blocks

20

00	|	000	|	000	-
00	|	000	|	111

Memory

01	|	000	|	000	-
01	|	000	|	111

10	|	000	|	000	-
10	|	000	|	111

11	|	000	|	000	-
11	|	000	|	111

11	|	111	|	000	-
11	|	111	|	111

Direct-Mapped	Cache:	Placement	and	Access
• Assume	byte-addressable	memory:											256	bytes,	8-byte	
blocks	à 32	blocks

• Assume	cache:	64	bytes,	8	blocks
• Direct-mapped:	A	block	can	go	to	only	one	location

21

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

00	|	000	|	000	-
00	|	000	|	111

Memory

01	|	000	|	000	-
01	|	000	|	111

10	|	000	|	000	-
10	|	000	|	111

11	|	000	|	000	-
11	|	000	|	111

11	|	111	|	000	-
11	|	111	|	111

Direct-Mapped	Cache:	Placement	and	Access
• Assume	byte-addressable	memory:											256	bytes,	8-byte	
blocks	à 32	blocks

• Assume	cache:	64	bytes,	8	blocks
• Direct-mapped:	A	block	can	go	to	only	one	location

• Addresses	with	same	index	contend	for	the	same	location
• Cause	conflict	misses

22

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

00	|	000	|	000	-
00	|	000	|	111

Memory

01	|	000	|	000	-
01	|	000	|	111

10	|	000	|	000	-
10	|	000	|	111

11	|	000	|	000	-
11	|	000	|	111

11	|	111	|	000	-
11	|	111	|	111

Direct-Mapped	Caches
• Direct-mapped	cache:	Two	blocks	in	memory	that	map	to	the	
same	index	in	the	cache	cannot	be	present	in	the	cache	at	the	
same	time

• One	index	à one	entry

• Can	lead	to	0%	hit	rate	if	more	than	one	block	accessed	in	an	
interleaved	manner	map	to	the	same	index	

• Assume	addresses	A	and	B	have	the	same	index	bits	but	different	tag	
bits

• A,	B,	A,	B,	A,	B,	A,	B,	…	à conflict	in	the	cache	index
• All	accesses	are	conflict	misses

23

• Addresses	0	and	8	always	conflict	in	direct	mapped	cache
• Instead	of	having	one	column	of	8,	have	2	columns	of	4	blocks

Set	Associativity

24

Tag store Data store

V tag

=?

V tag

=?

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set
+ Accommodates conflicts better (fewer conflict misses)
-- More complex, slower access, larger tag store

SET

Hit?

8-bit address

tag index byte in block

2 bits3 bits 3 bits

Higher	Associativity
• 4-way

+	Likelihood	of	conflict	misses	even	lower
-- More	tag	comparators	and	wider	data	mux;	larger	tags

25

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?
8-bit address

tag index byte in block

1 bits4 bits 3 bits

Full	Associativity
• Fully	associative	cache

• A	block	can	be	placed	in	any cache	location

26

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

8-bit address

tag index byte in block

0 bit5 bits 3 bits

Exercise	on	Cache	Indexing	

• We	assumed	8	byte	blocks
• What	happens	if	we	have	16	byte	blocks?

• Cache	is	128B,	8	blocks
• Direct	mapped
• 2-way?
• 4-way?
• 8-way?

8-bit address

tag index byte in block

? bits? bits 4 bits

8-bit address
Direct mapped

tag index byte in block

3 bits1 bits 4 bits

Tag-Index-Offset

• m	memory	address	bits
• S	=	2s number	of	sets
• s	(set)	index	bits
• B	=	2b block	size
• b	(block)	offset	bits
• t	=	m	−	(s	+	b)	tag	bits
• C	=	B	* S	cache	size	(if	direct-mapped)

Associativity	(and	Tradeoffs)
• Degree	of	associativity:	How	many	blocks	can	map	to	the	same	index	(or	
set)?

• Higher	associativity
++	Higher	hit	rate
-- Slower	cache	access	time	(hit	latency	and	data	access	latency)
-- More	expensive	hardware	(more	comparators)

• Diminishing	returns	from	higher
associativity

29
associativity

hit rate

Issues	in	Set-Associative	Caches
• Think	of	each	block	in	a	set	having	a	“priority”

• Indicating	how	important	it	is	to	keep	the	block	in	the	cache
• Key	issue:	How	do	you	determine/adjust	block	priorities?
• There	are	three	key	decisions	in	a	set:

• Insertion,	promotion,	eviction	(replacement)

• Insertion:	What	happens	to	priorities	on	a	cache	fill?
• Where	to	insert	the	incoming	block,	whether	or	not	to	insert	the	block

• Promotion:	What	happens	to	priorities	on	a	cache	hit?
• Whether	and	how	to	change	block	priority

• Eviction/replacement:	What	happens	to	priorities	on	a	
cache	miss?

• Which	block	to	evict	and	how	to	adjust	priorities

30

Eviction/Replacement	Policy
• Which	block	in	the	set	to	replace on	a	cache	miss?

• Any	invalid	block	first
• If	all	are	valid,	consult	the	replacement	policy

• Random
• FIFO
• Least	recently	used	(how	to	implement?)
• Not	most	recently	used
• Least	frequently	used
• Hybrid	replacement	policies
• Optimal	replacement	policy?	

31

Least	Recently	Used	Replacement	Policy

• 4-way

32

A B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRUMRU	-2MRU	-1LRU

ACCESS	PATTERN:	ACBD

Least	Recently	Used	Replacement	Policy

• 4-way

33

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRUMRU	-2MRU	-1LRU

ACCESS	PATTERN:	ACBDE

Least	Recently	Used	Replacement	Policy

• 4-way

34

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRUMRU	-2MRU	-1MRU

ACCESS	PATTERN:	ACBDE

Least	Recently	Used	Replacement	Policy

• 4-way

35

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1MRU	-2MRU	-1MRU

ACCESS	PATTERN:	ACBDE

Least	Recently	Used	Replacement	Policy

• 4-way

36

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1MRU	-2MRU	-2MRU

ACCESS	PATTERN:	ACBDE

Least	Recently	Used	Replacement	Policy

• 4-way

37

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1LRUMRU	-2MRU

ACCESS	PATTERN:	ACBDE

Least	Recently	Used	Replacement	Policy

• 4-way

38

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1LRUMRUMRU

ACCESS	PATTERN:	ACBDEB

Least	Recently	Used	Replacement	Policy

• 4-way

39

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1LRUMRUMRU	-1

ACCESS	PATTERN:	ACBDEB

Least	Recently	Used	Replacement	Policy

• 4-way

40

E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-2LRUMRUMRU	-1

ACCESS	PATTERN:	ACBDEB

Eviction/Replacement	Policy
• Which	block	in	the	set	to	replace on	a	cache	miss?

• Any	invalid	block	first
• If	all	are	valid,	consult	the	replacement	policy

• Random
• FIFO
• Least	recently	used	(how	to	implement?)
• Not	most	recently	used
• Least	frequently	used
• Hybrid	replacement	policies
• Optimal	replacement	policy?	

41

