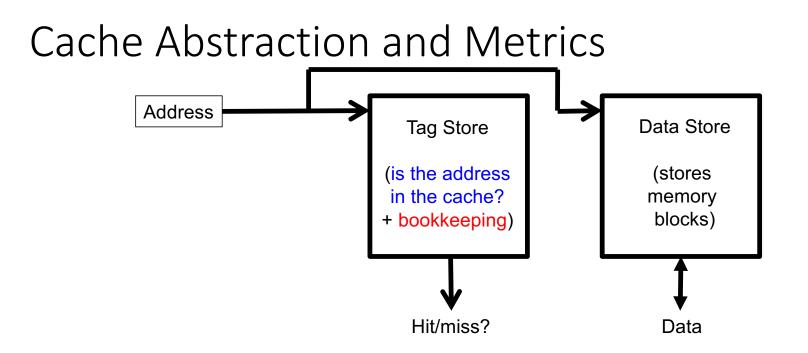
Cache Performance

Samira Khan March 28, 2017

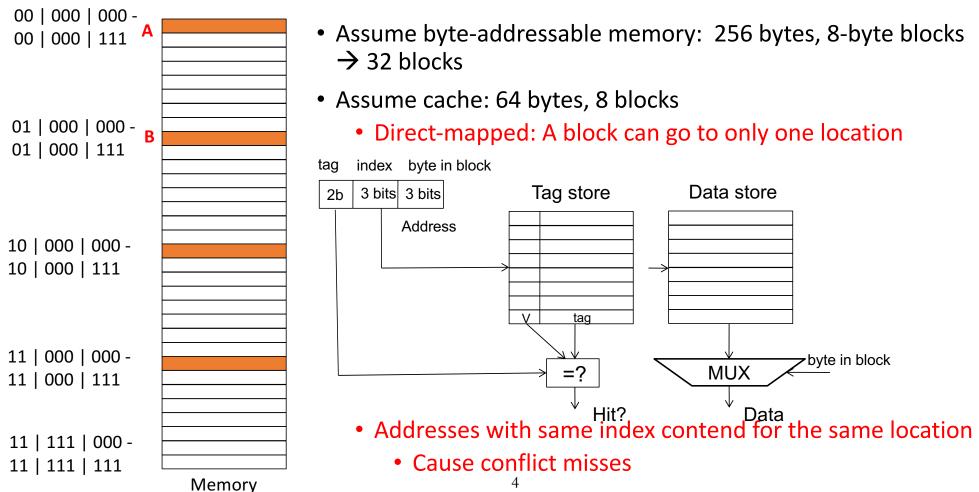
Agenda

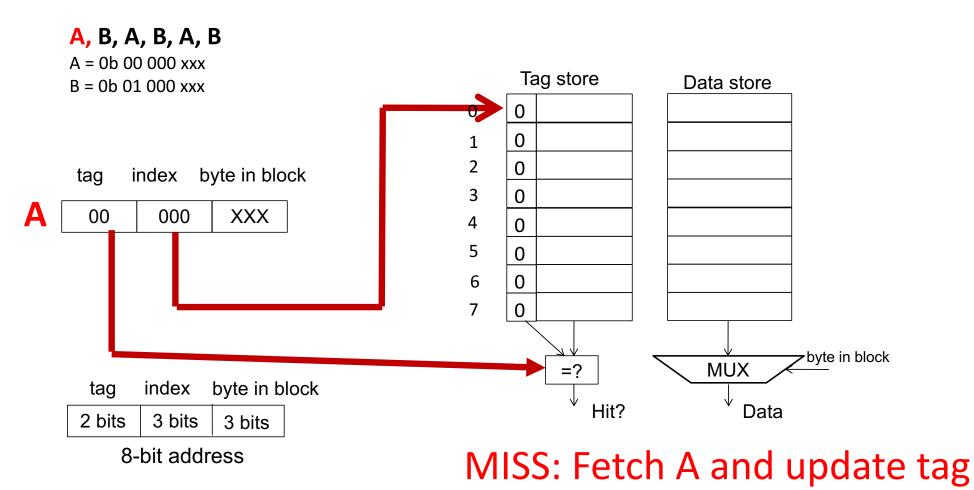
- Review from last lecture
 - Cache access
 - Associativity
- Replacement
- Cache Performance

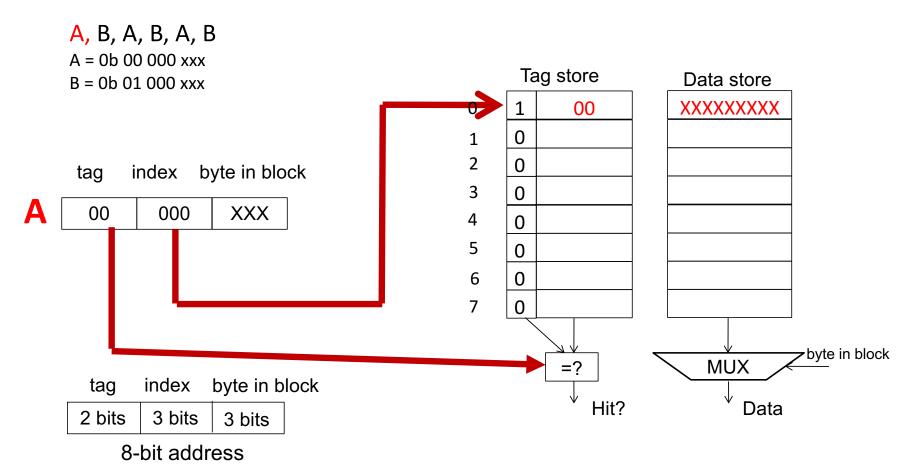


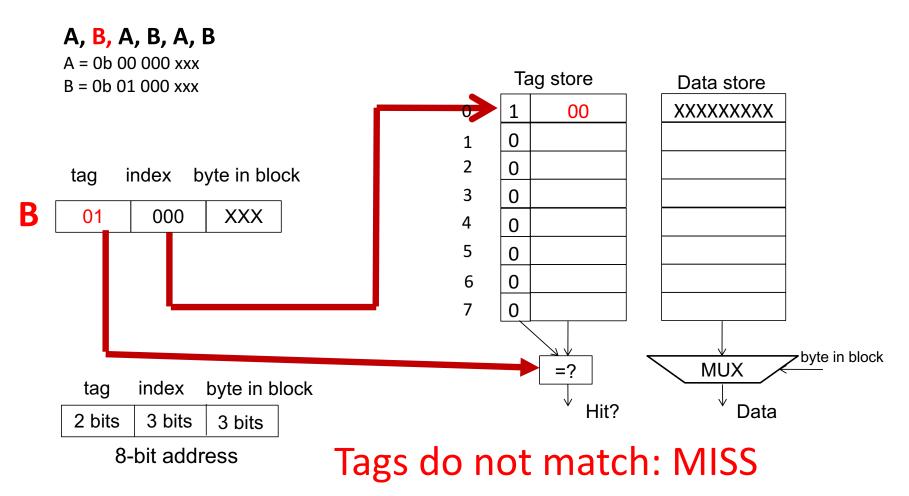
- Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
- Average memory access time (AMAT)

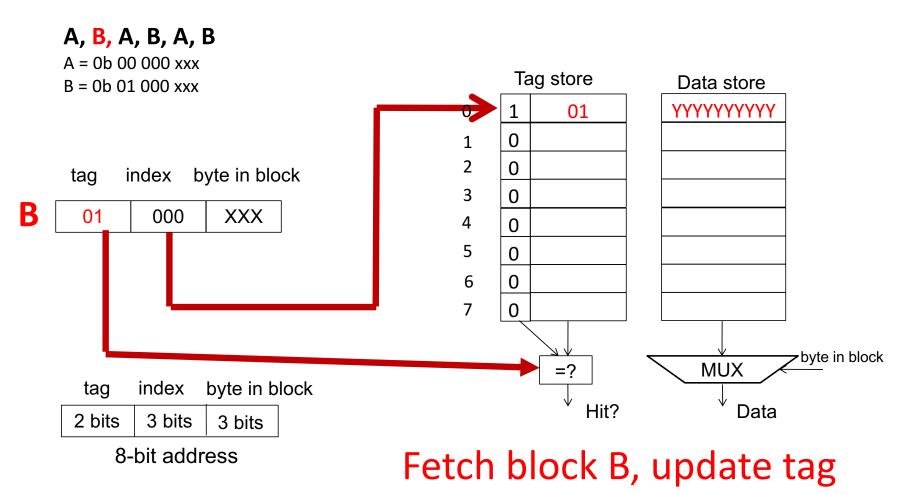
= (hit-rate * hit-latency) + (miss-rate * miss-latency)

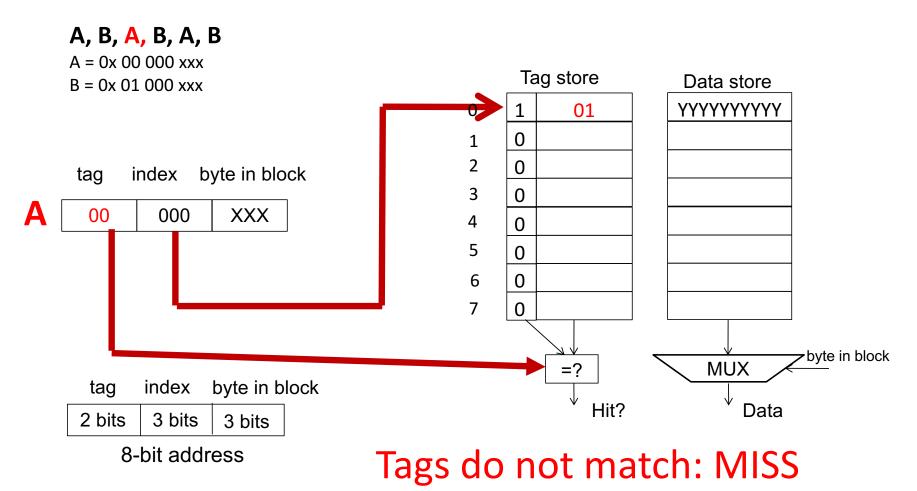


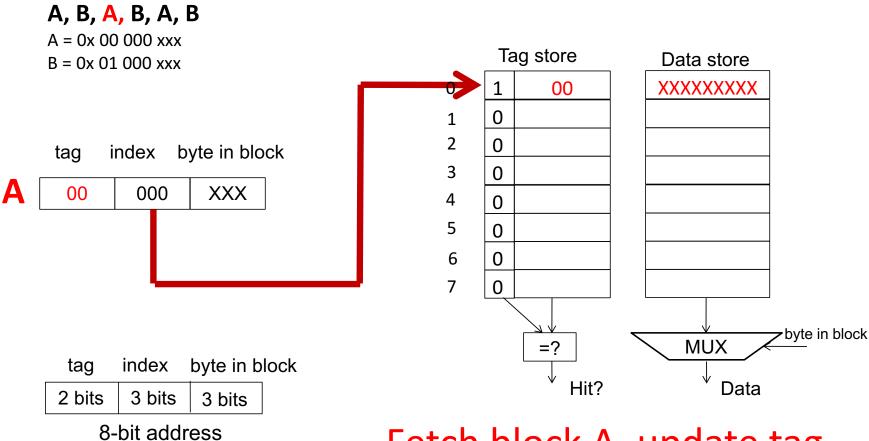






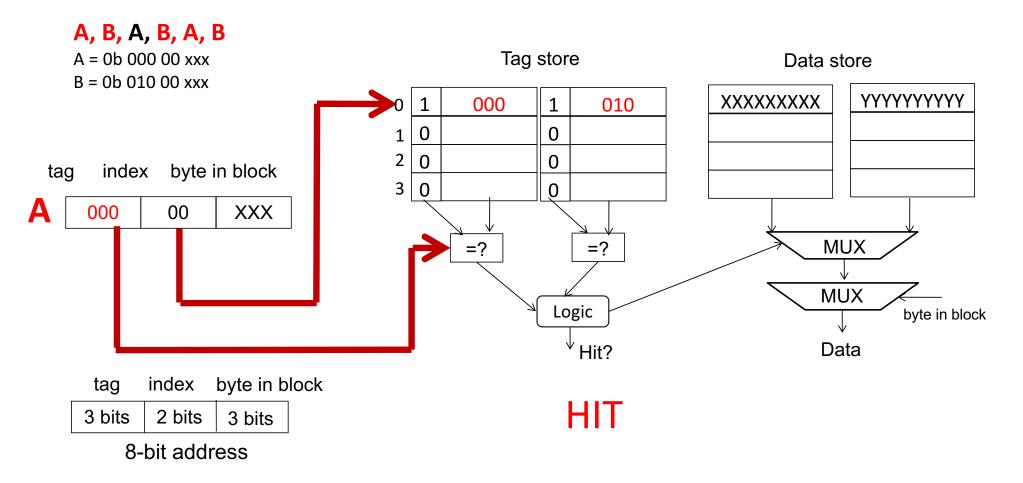






Fetch block A, update tag

Set Associative Cache



Associativity (and Tradeoffs)

- Degree of associativity: How many blocks can map to the same index (or set)?
- Higher associativity
 - ++ Higher hit rate
 - -- Slower cache access time (hit latency and data access latency)
 - -- More expensive hardware (more comparators)
- Diminishing returns from higher associativity

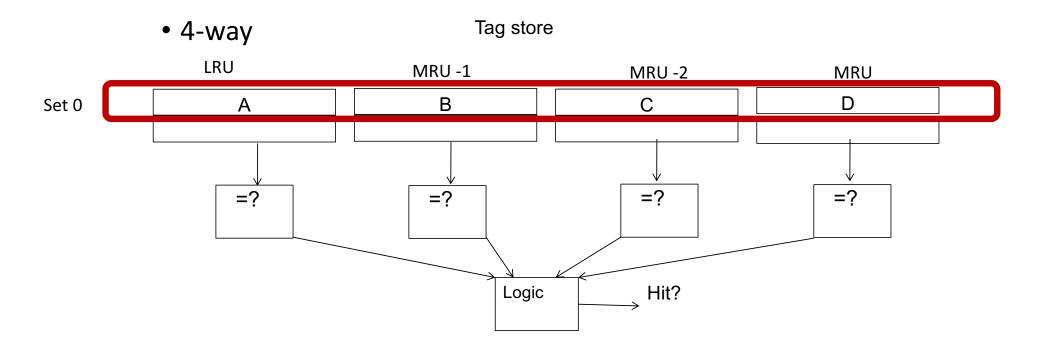
hit rate	
	associativity

Issues in Set-Associative Caches

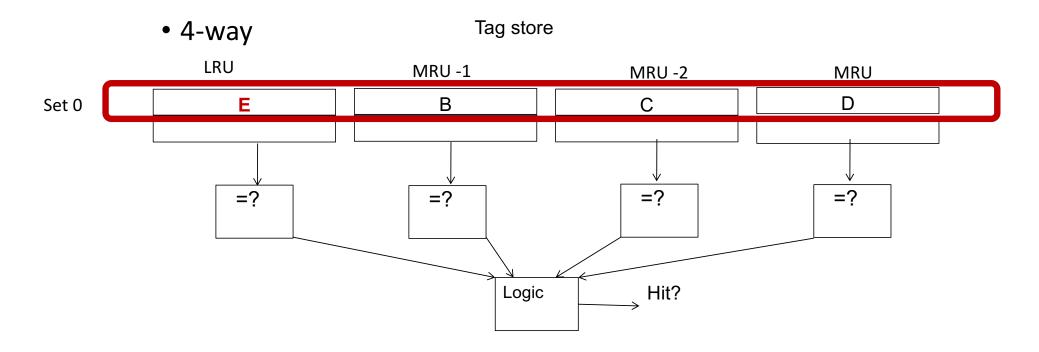
- Think of each block in a set having a "priority"
 - Indicating how important it is to keep the block in the cache
- Key issue: How do you determine/adjust block priorities?
- There are three key decisions in a set:
 - Insertion, promotion, eviction (replacement)
- Insertion: What happens to priorities on a cache fill?
 - Where to insert the incoming block, whether or not to insert the block
- Promotion: What happens to priorities on a cache hit?
 - Whether and how to change block priority
- Eviction/replacement: What happens to priorities on a cache miss?
 - Which block to evict and how to adjust priorities

Eviction/Replacement Policy

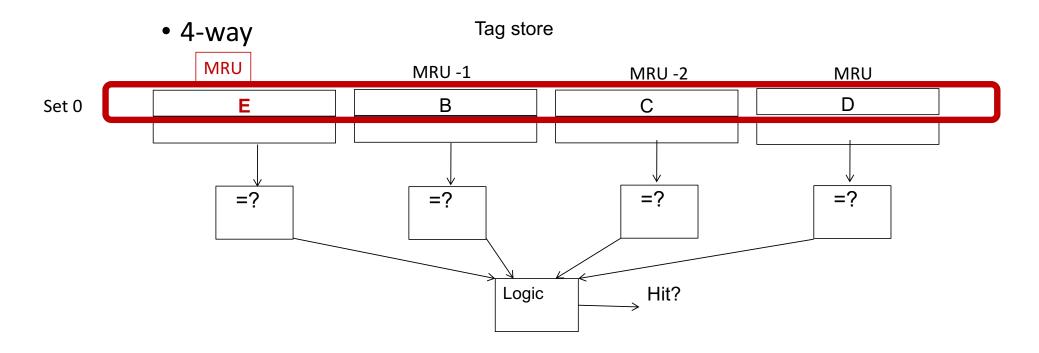
- Which block in the set to replace on a cache miss?
 - Any invalid block first
 - If all are valid, consult the replacement policy
 - Random
 - FIFO
 - Least recently used (how to implement?)
 - Not most recently used
 - Least frequently used
 - Hybrid replacement policies



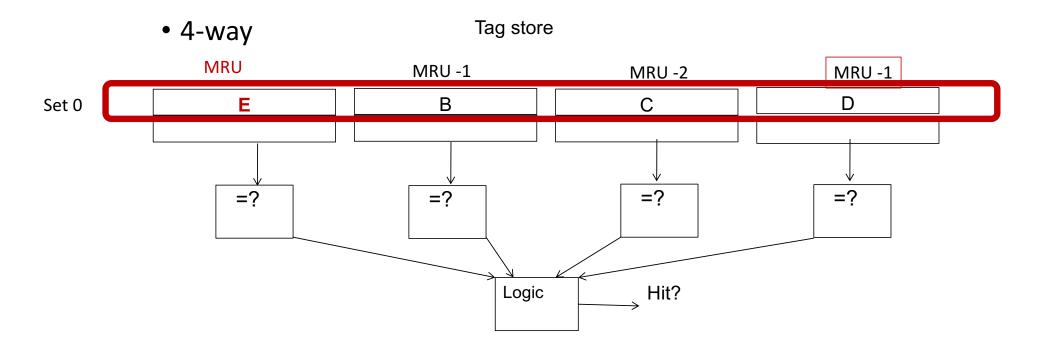
Data store



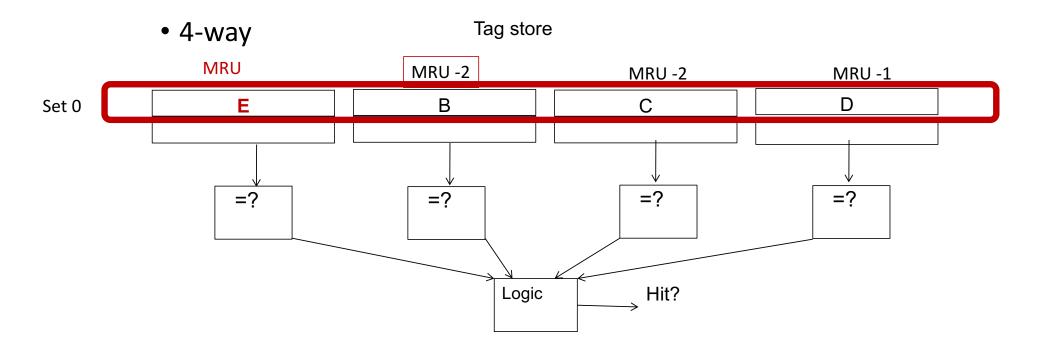
Data store



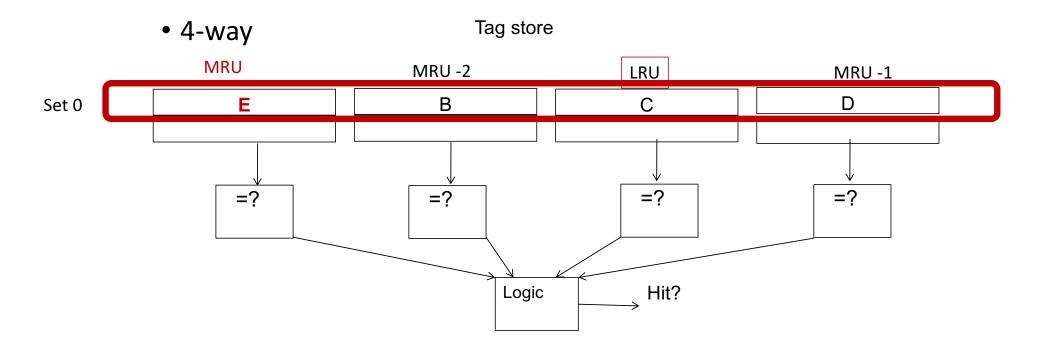
Data store



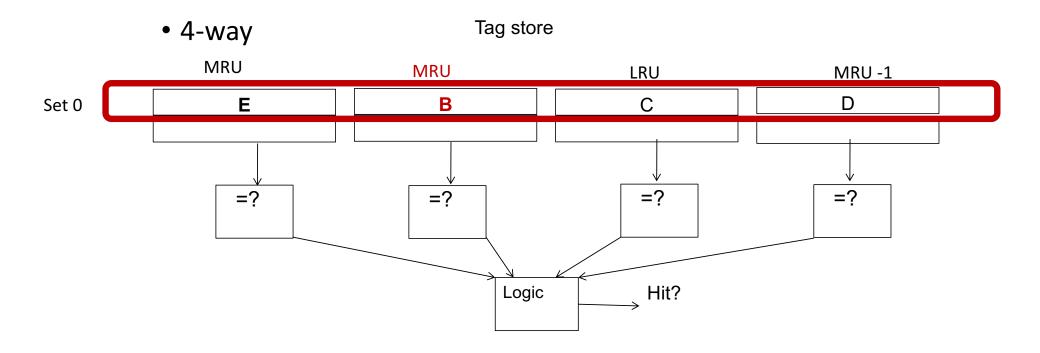
Data store



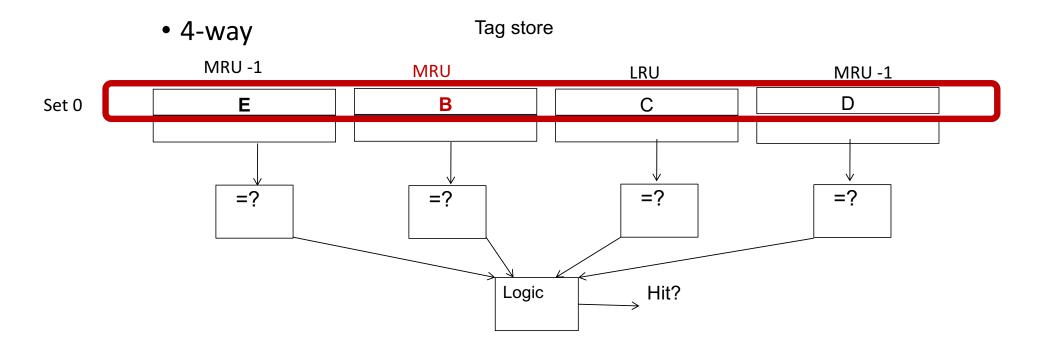
Data store



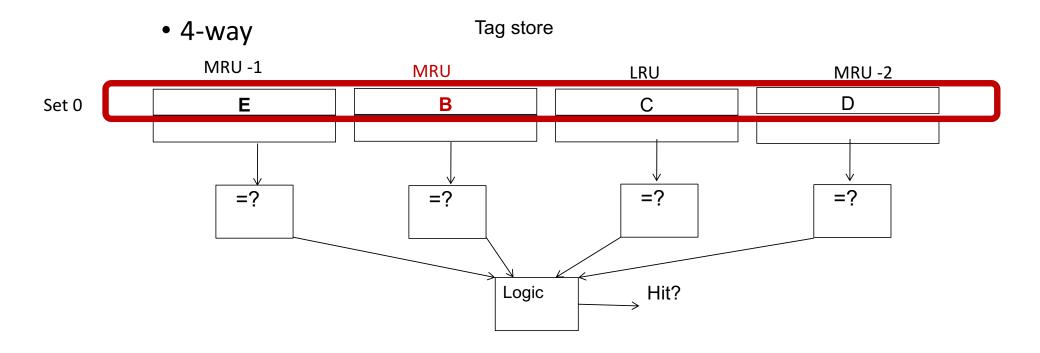
Data store



Data store



Data store



Data store

Implementing LRU

- Idea: Evict the least recently accessed block
- Problem: Need to keep track of access ordering of blocks
- Question: 2-way set associative cache:
 - What do you need to implement LRU perfectly?
- Question: 16-way set associative cache:
 - What do you need to implement LRU perfectly?
 - What is the logic needed to determine the LRU victim?

Approximations of LRU

- Most modern processors do not implement "true LRU" (also called "perfect LRU") in highly-associative caches
- Why?
 - True LRU is complex
 - LRU is an approximation to predict locality anyway (i.e., not the best possible cache management policy)
- Examples:
 - Not MRU (not most recently used)

Cache Replacement Policy: LRU or Random

- LRU vs. Random: Which one is better?
 - Example: 4-way cache, cyclic references to A, B, C, D, E
 - 0% hit rate with LRU policy
- Set thrashing: When the "program working set" in a set is larger than set associativity
 - Random replacement policy is better when thrashing occurs
- In practice:
 - Depends on workload
 - Average hit rate of LRU and Random are similar
- Best of both Worlds: Hybrid of LRU and Random
 - How to choose between the two? Set sampling
 - See Qureshi et al., "A Case for MLP-Aware Cache Replacement," ISCA 2006.

What's In A Tag Store Entry?

- Valid bit
- Tag
- Replacement policy bits
- Dirty bit?
 - Write back vs. write through caches

Handling Writes (I)

- When do we write the modified data in a cache to the next level?
 - Write through: At the time the write happens
 - Write back: When the block is evicted
- Write-back
 - + Can consolidate multiple writes to the same block before eviction
 - Potentially saves bandwidth between cache levels + saves energy
 - -- Need a bit in the tag store indicating the block is "dirty/modified"
- Write-through
 - + Simpler
 - + All levels are up to date. Consistent
 - -- More bandwidth intensive; no coalescing of writes

Handling Writes (II)

- Do we allocate a cache block on a write miss?
 - Allocate on write miss
 - No-allocate on write miss
- Allocate on write miss
 - + Can consolidate writes instead of writing each of them individually to next level
 - + Simpler because write misses can be treated the same way as read misses
 - -- Requires (?) transfer of the whole cache block
- No-allocate
 - + Conserves cache space if locality of writes is low (potentially better cache hit rate)

Instruction vs. Data Caches

- Separate or Unified?
- Unified:
 - + Dynamic sharing of cache space: no overprovisioning that might happen with static partitioning (i.e., split I and D caches)
 - -- Instructions and data can thrash each other (i.e., no guaranteed space for either)
 - -- I and D are accessed in different places in the pipeline. Where do we place the unified cache for fast access?
- First level caches are almost always split
 - Mainly for the last reason above
- Second and higher levels are almost always unified

Multi-level Caching in a Pipelined Design

- First-level caches (instruction and data)
 - Decisions very much affected by cycle time
 - Small, lower associativity
 - Tag store and data store accessed in parallel
- Second-level, third-level caches
 - Decisions need to balance hit rate and access latency
 - Usually large and highly associative; latency less critical
 - Tag store and data store accessed serially
- Serial vs. Parallel access of levels
 - Serial: Second level cache accessed only if first-level misses
 - Second level does not see the same accesses as the first
 - First level acts as a filter (filters some temporal and spatial locality)
 - Management policies are therefore different

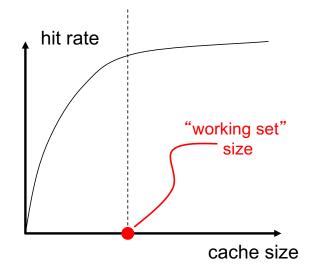
Cache Performance

Cache Parameters vs. Miss/Hit Rate

- Cache size
- Block size
- Associativity
- Replacement policy
 - Insertion/Placement policy

Cache Size

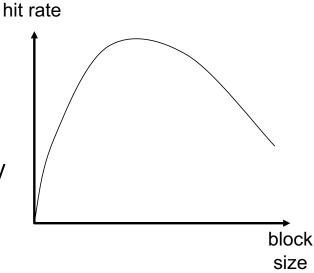
- Cache size: total data (not including tag) capacity
 - bigger can exploit temporal locality better
 - not ALWAYS better
- Too large a cache adversely affects hit and miss latency
 - smaller is faster => bigger is slower
 - access time may degrade critical path
- Too small a cache
 - doesn't exploit temporal locality well
 - useful data replaced often
- Working set: the whole set of data the executing application references
 - Within a time interval



Block Size

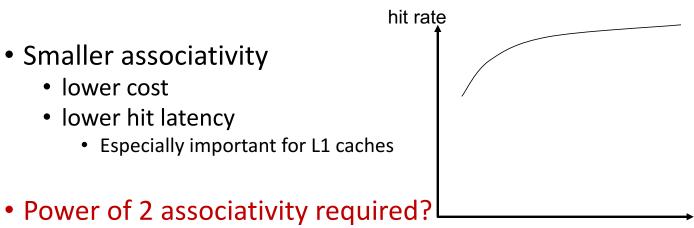
• Block size is the data that is associated with an address tag

- Too small blocks
 - don't exploit spatial locality well
 - have larger tag overhead
- Too large blocks
 - too few total # of blocks → less temporal locality exploitation
 - waste of cache space and bandwidth/energy if spatial locality is not high
 - Will see more examples later



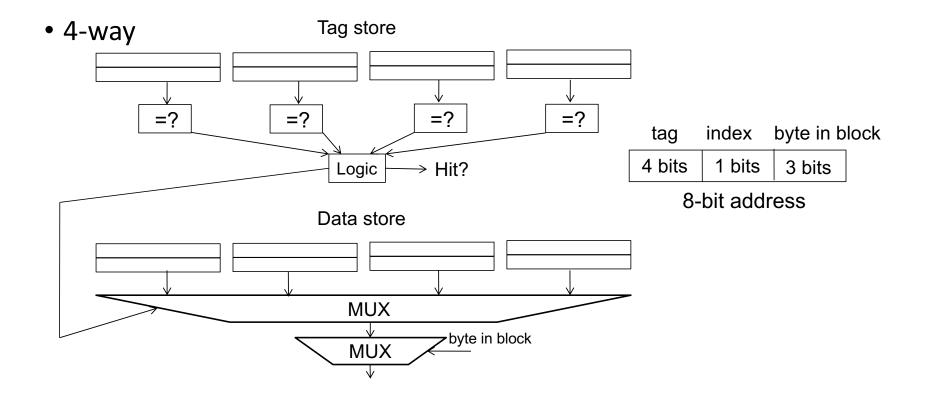
Associativity

- How many blocks can map to the same index (or set)?
- Larger associativity
 - lower miss rate, less variation among programs
 - diminishing returns, higher hit latency

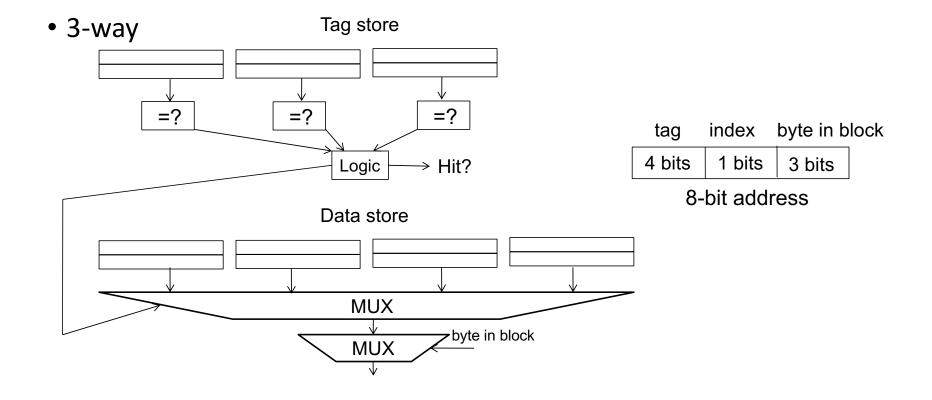


associativity

Higher Associativity



Higher Associativity



Classification of Cache Misses

- Compulsory miss
 - first reference to an address (block) always results in a miss
 - subsequent references should hit unless the cache block is displaced for the reasons below
- Capacity miss
 - cache is too small to hold everything needed
 - defined as the misses that would occur even in a fully-associative cache (with optimal replacement) of the same capacity
- Conflict miss
 - defined as any miss that is neither a compulsory nor a capacity miss

How to Reduce Each Miss Type

- Compulsory
 - Caching cannot help
 - Prefetching
- Conflict
 - More associativity
 - Other ways to get more associativity without making the cache associative
 - Victim cache
 - Hashing
 - Software hints?
- Capacity
 - Utilize cache space better: keep blocks that will be referenced
 - Software management: divide working set such that each "phase" fits in cache

Cache Performance with Code Examples

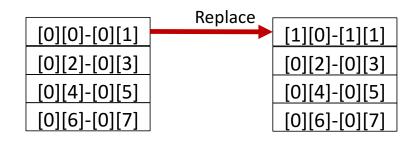
Matrix Sum

```
int sum1(int matrix[4][8]) {
    int sum = 0;
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 8; ++j) {
            sum += matrix[i][j];
            }
        }
    }
access pattern:
matrix[0][0], [0][1], [0][2], ..., [1][0] ...</pre>
```

Exploiting Spatial Locality

8B cache block, 4 blocks, LRU, 4B integer Access pattern matrix[0][0], [0][1], [0][2], ..., [1][0] ...

 $[0][0] \rightarrow miss$ $[0][1] \rightarrow hit$ $[0][2] \rightarrow miss$ $[0][3] \rightarrow hit$ $[0][4] \rightarrow miss$ $[0][5] \rightarrow hit$ $[0][6] \rightarrow miss$ $[0][7] \rightarrow hit$ $[1][0] \rightarrow miss$ $[1][1] \rightarrow hit$



Cache Blocks

Exploiting Spatial Locality

- block size and spatial locality
- larger blocks exploit spatial locality
- ... but larger blocks means fewer blocks for same size
- less good at exploiting temporal locality

Alternate Matrix Sum

```
int sum2(int matrix[4][8]) {
    int sum = 0;
    // swapped loop order
    for (int j = 0; j < 8; ++j) {
        for (int i = 0; i < 4; ++i) {
            for (int i = 0; i < 4; ++i) {
                sum += matrix[i][j];
            }
        }
    }
access pattern:</pre>
```

• matrix[0][0], [1][0], [2][0], [3][0], [0][1], [1][1], [2][1], [3][1],..., ...

Bad at Exploiting Spatial Locality

8B cache block, 4B integer

Access pattern matrix[0][0], [1][0], [2][0], [3][0], [0][1], [1][1], [2][1], [3][1],..., ...

 $[0][0] \rightarrow miss$ $[1][0] \rightarrow miss$ $[2][0] \rightarrow miss$ $[3][0] \rightarrow miss$ $[0][1] \rightarrow hit$ $[1][1] \rightarrow hit$ $[2][1] \rightarrow hit$

 $[3][1] \rightarrow hit$

 $[0][2] \rightarrow miss$

 $[1][2] \rightarrow miss$

 Replace
 Replace

 [0][0]-[0][1] [0][2]-[0][3]

 [1][0]-[1][1] [1][0]-[1][1]

 [2][0]-[2][1] [2][0]-[2][1]

 [3][0]-[3][1] [3][0]-[3][1]

Cache Blocks

A note on matrix storage

- A —> N X N matrix: represented as an 2D array
- makes dynamic sizes easier:
- float A_2d_array[N][N];
- float *A_flat = malloc(N * N);
- A_flat[i * N + j] === A_2d_array[i][j]

$$\begin{split} B_{ij} &= \sum_{k=1}^{n} A_{ik} * A_{kj} \\ \text{/* version 1: inner loop is k, middle is j */} \\ \text{for (int i = 0; i < N; ++i)} \\ \text{for (int j = 0; j < N; ++j)} \\ \text{for (int j = 0; k < N; ++k)} \\ \text{for (int k = 0; k < N; ++k)} \\ B[i*N+j] += A[i*N+k] * A[k*N+j]; \end{split}$$

 $\begin{array}{c|c} \boldsymbol{B}_{00} & B_{01} & B_{02} & B_{03} \\ B_{10} & B_{11} & B_{12} & B_{13} \\ B_{20} & B_{21} & B_{22} & B_{23} \\ B_{30} & B_{31} & B_{32} & B_{33} \end{array}$

 $\begin{array}{c} A_{00} \; A_{01} \; A_{02} \; A_{03} \\ A_{10} \; A_{11} \; A_{12} \; A_{13} \\ A_{20} \; A_{21} \; A_{22} \; A_{23} \\ A_{30} \; A_{31} \; A_{32} \; A_{33} \end{array}$

$$B_{00} = \sum_{k=0}^{n} A_{0k} * A_{k0}$$

n

 $j \quad \begin{array}{c} B_{00} & B_{01} & B_{02} & B_{03} \\ B_{10} & B_{11} & B_{12} & B_{13} \\ B_{20} & B_{21} & B_{22} & B_{23} \\ B_{30} & B_{31} & B_{32} & B_{33} \end{array}$

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

$$B_{00} = \sum_{k=0}^{n} A_{0k} * A_{k0}$$

 $j \quad \begin{array}{c} B_{00} & B_{01} & B_{02} & B_{03} \\ B_{10} & B_{11} & B_{12} & B_{13} \\ B_{20} & B_{21} & B_{22} & B_{23} \\ B_{30} & B_{31} & B_{32} & B_{33} \end{array}$

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

$$B_{00} = \sum_{k=0}^{n} A_{0k} * A_{k0}$$

 $j \quad \begin{array}{c} B_{00} & B_{01} & B_{02} & B_{03} \\ B_{10} & B_{11} & B_{12} & B_{13} \\ B_{20} & B_{21} & B_{22} & B_{23} \\ B_{30} & B_{31} & B_{32} & B_{33} \end{array}$

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

$$B_{00} = \sum_{k=0}^{n} A_{0k} * A_{k0}$$

 $j \quad \begin{array}{c} B_{00} & B_{01} & B_{02} & B_{03} \\ B_{10} & B_{11} & B_{12} & B_{13} \\ B_{20} & B_{21} & B_{22} & B_{23} \\ B_{30} & B_{31} & B_{32} & B_{33} \end{array}$

$$\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$$

$$B_{00} = \sum_{k=0}^{n} A_{0k} * A_{k0}$$

n

 $\begin{array}{c} \mathbf{j} \quad B_{00} \ \mathbf{B_{01}} \ B_{02} \ B_{03} \\ B_{10} \ B_{11} \ B_{12} \ B_{13} \\ B_{20} \ B_{21} \ B_{22} \ B_{23} \\ B_{30} \ B_{31} \ B_{32} \ B_{33} \end{array}$

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

 $A_{00} A_{01} A_{02} A_{03}$ A_{ik} has spatial locality

$$B_{01} = \sum_{k=0}^{n} A_{0k} * A_{k1}$$

20

 $\begin{array}{c} \mathbf{j} \quad B_{00} \ B_{01} \ \mathbf{B_{02}} \ B_{03} \\ B_{10} \ B_{11} \ B_{12} \ B_{13} \\ B_{20} \ B_{21} \ B_{22} \ B_{23} \\ B_{30} \ B_{31} \ B_{32} \ B_{33} \end{array}$

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

 $A_{00} A_{01} A_{02} A_{03}$ A_{ik} has spatial locality

$$B_{02} = \sum_{k=0}^{n} A_{0k} * A_{k2}$$

Conclusion

- A_{ik} has spatial locality
- B_{ij} has temporal locality

$$\begin{split} B_{ij} &= \sum_{k=1}^{n} A_{ik} * A_{kj} \\ \text{/* version 2: outer loop is k, middle is j */} \\ \text{for (int k = 0; k < N; ++k)} \\ \text{for (int i = 0; i < N; ++i)} \\ \text{for (int j = 0; j < N; ++j)} \\ \text{For (int j = 0; j < N; ++j)} \\ B[i*N+j] += A[i*N+k] * A[k*N+j]; \end{split}$$

Access pattern k = 0, i = 0 B[0][0] = A[0][0] * A[0][0] B[0][1] = A[0][0] * A[0][1] B[0][2] = A[0][0] * A[0][2]B[0][3] = A[0][0] * A[0][3] Access pattern k = 0, i = 1 B[1][0] = A[1][0] * A[0][0] B[1][1] = A[1][0] * A[0][1] B[1][2] = A[1][0] * A[0][2]B[1][3] = A[1][0] * A[0][3]

Matrix Squaring: kij order

 $\begin{array}{c} B_{00} B_{01} B_{02} B_{03} \\ B_{10} B_{11} B_{12} B_{13} \\ B_{20} B_{21} B_{22} B_{23} \\ B_{30} B_{31} B_{32} B_{33} \end{array}$

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

 $B_{00} = (A_{00} * A_{00}) + (A_{01} * A_{10}) + (A_{02} * A_{20}) + (A_{03} * A_{30})$ $B_{01} = (A_{00} * A_{01}) + (A_{01} * A_{11}) + (A_{02} * A_{21}) + (A_{03} * A_{31})$ $B_{02} = (A_{00} * A_{02}) + (A_{01} * A_{12}) + (A_{02} * A_{22}) + (A_{03} * A_{32})$ $B_{03} = (A_{00} * A_{03}) + (A_{01} * A_{13}) + (A_{02} * A_{23}) + (A_{03} * A_{33})$ Matrix Squaring: kij order

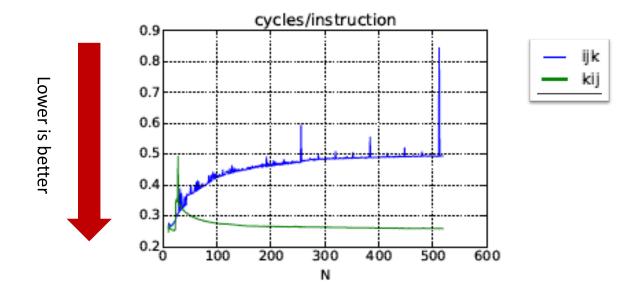
 B_{ij} , A_{kj} have spatial locality A_{ik} has temporal locality

 $\begin{array}{c} A_{00} \ A_{01} \ A_{02} \ A_{03} \\ A_{10} \ A_{11} \ A_{12} \ A_{13} \\ A_{20} \ A_{21} \ A_{22} \ A_{23} \\ A_{30} \ A_{31} \ A_{32} \ A_{33} \end{array}$

 $B_{10} = (A_{10} * A_{00}) + (A_{11} * A_{10}) + (A_{12} * A_{20}) + (A_{13} * A_{30})$ $B_{11} = (A_{10} * A_{01}) + (A_{11} * A_{11}) + (A_{12} * A_{21}) + (A_{13} * A_{31})$ $B_{12} = (A_{10} * A_{02}) + (A_{11} * A_{12}) + (A_{12} * A_{22}) + (A_{13} * A_{32})$ $B_{13} = (A_{10} * A_{03}) + (A_{11} * A_{13}) + (A_{12} * A_{23}) + (A_{13} * A_{33})$

- kij order
- ${}^{\bullet}\,B_{ij}^{}$, $A_{kj}^{}$ have spatial locality
- A_{ik} has temporal locality
- ijk order
- A_{ik} has spatial locality
- B_{ij} has temporal locality

Which order is better?



Order kij performs much better