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• Cache	Performance



Cache	Abstraction	and	Metrics

• Cache	hit	rate	=	(#	hits)	/	(#	hits	+	#	misses)	=	(#	hits)	/	(#	accesses)
• Average	memory	access	time	(AMAT)
=	(	hit-rate	*	hit-latency	)	+	(	miss-rate	*	miss-latency	)
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Direct-Mapped	Cache:	Placement	and	Access
• Assume	byte-addressable	memory:		256	bytes,	8-byte	blocks	
à 32	blocks

• Assume	cache:	64	bytes,	8	blocks
• Direct-mapped:	A	block	can	go	to	only	one	location

• Addresses	with	same	index	contend	for	the	same	location
• Cause	conflict	misses
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Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

00	|	000	|	000	-
00	|	000	|	111

Memory

01	|	000	|	000	-
01	|	000	|	111

10	|	000	|	000	-
10	|	000	|	111

11	|	000	|	000	-
11	|	000	|	111

11	|	111	|	000	-
11	|	111	|	111

B

A



=? MUX
byte in block

Hit? Data

0
0
0
0
0
0
0
0

A,	B,	A,	B,	A,	B
A	=	0b	00	000	xxx
B	=	0b	01	000	xxx Tag store Data store

8-bit address

tag index byte in block

3 bits2 bits 3 bits

00 000 XXX

tag index byte in block

0

1
2
3
4
5

6
7

A

MISS:	Fetch	A	and	update	tag

Direct-Mapped	Cache:	Placement	and	Access



00 XXXXXXXXX

=? MUX
byte in block

Hit? Data

1
0
0
0
0
0
0
0

A,	B,	A,	B,	A,	B
A	=	0b	00	000	xxx
B	=	0b	01	000	xxx Tag store Data store

8-bit address

tag index byte in block

3 bits2 bits 3 bits

00 000 XXX

tag index byte in block

0

1
2
3
4
5

6
7

A

Direct-Mapped	Cache:	Placement	and	Access



00 XXXXXXXXX

=? MUX
byte in block

Hit? Data

1
0
0
0
0
0
0
0

A,	B,	A,	B,	A,	B
A	=	0b	00	000	xxx
B	=	0b	01	000	xxx Tag store Data store

8-bit address

tag index byte in block

3 bits2 bits 3 bits

01 000 XXX

tag index byte in block

0

1
2
3
4
5

6
7

B

Tags	do	not	match:	MISS

Direct-Mapped	Cache:	Placement	and	Access



01 YYYYYYYYYY

=? MUX
byte in block

Hit? Data

1
0
0
0
0
0
0
0

A,	B, A,	B,	A,	B
A	=	0b	00	000	xxx
B	=	0b	01	000	xxx Tag store Data store

8-bit address

tag index byte in block

3 bits2 bits 3 bits

01 000 XXX

tag index byte in block

0

1
2
3
4
5

6
7

B

Fetch	block	B,	update	tag

Direct-Mapped	Cache:	Placement	and	Access



01 YYYYYYYYYY

=? MUX
byte in block

Hit? Data

1
0
0
0
0
0
0
0

A,	B,	A, B,	A,	B
A	=	0x	00	000	xxx
B	=	0x	01	000	xxx Tag store Data store

8-bit address

tag index byte in block

3 bits2 bits 3 bits

00 000 XXX

tag index byte in block

0

1
2
3
4
5

6
7

A

Tags	do	not	match:	MISS

Direct-Mapped	Cache:	Placement	and	Access



00 XXXXXXXXX

=? MUX
byte in block

Hit? Data

1
0
0
0
0
0
0
0

A,	B,	A, B,	A,	B
A	=	0x	00	000	xxx
B	=	0x	01	000	xxx Tag store Data store

8-bit address

tag index byte in block

3 bits2 bits 3 bits

00 000 XXX

tag index byte in block

0

1
2
3
4
5

6
7

A

Fetch	block	A,	update	tag

Direct-Mapped	Cache:	Placement	and	Access



MUX

010

=?

1
0
0
0

A,	B,	A, B,	A,	B
A	=	0b	000	00	xxx
B	=	0b	010	00	xxx

Tag store Data store

8-bit address

tag index byte in block

2 bits3 bits 3 bits

000 00 XXX

tag index byte in block

XXXXXXXXX

Data

0

1
2
3

A

YYYYYYYYYY000

=?

1
0
0
0

MUX
byte in block

Hit?

Logic

HIT

Set	Associative	Cache



Associativity	(and	Tradeoffs)
• Degree	of	associativity:	How	many	blocks	can	map	to	the	same	index	(or	
set)?

• Higher	associativity
++	Higher	hit	rate
-- Slower	cache	access	time	(hit	latency	and	data	access	latency)
-- More	expensive	hardware	(more	comparators)

• Diminishing	returns	from	higher
associativity

12
associativity

hit rate



Issues	in	Set-Associative	Caches
• Think	of	each	block	in	a	set	having	a	“priority”

• Indicating	how	important	it	is	to	keep	the	block	in	the	cache
• Key	issue:	How	do	you	determine/adjust	block	priorities?
• There	are	three	key	decisions	in	a	set:

• Insertion,	promotion,	eviction	(replacement)

• Insertion:	What	happens	to	priorities	on	a	cache	fill?
• Where	to	insert	the	incoming	block,	whether	or	not	to	insert	the	block

• Promotion:	What	happens	to	priorities	on	a	cache	hit?
• Whether	and	how	to	change	block	priority

• Eviction/replacement:	What	happens	to	priorities	on	a	cache	
miss?

• Which	block	to	evict	and	how	to	adjust	priorities
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Eviction/Replacement	Policy
• Which	block	in	the	set	to	replace on	a	cache	miss?

• Any	invalid	block	first
• If	all	are	valid,	consult	the	replacement	policy

• Random
• FIFO
• Least	recently	used	(how	to	implement?)
• Not	most	recently	used
• Least	frequently	used
• Hybrid	replacement	policies
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Least	Recently	Used	Replacement	Policy

• 4-way
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A B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRUMRU	-2MRU	-1LRU

ACCESS	PATTERN:	ACBD



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRUMRU	-2MRU	-1LRU

ACCESS	PATTERN:	ACBDE



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRUMRU	-2MRU	-1MRU

ACCESS	PATTERN:	ACBDE



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1MRU	-2MRU	-1MRU

ACCESS	PATTERN:	ACBDE



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1MRU	-2MRU	-2MRU

ACCESS	PATTERN:	ACBDE



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1LRUMRU	-2MRU

ACCESS	PATTERN:	ACBDE



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1LRUMRUMRU

ACCESS	PATTERN:	ACBDEB



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-1LRUMRUMRU	-1

ACCESS	PATTERN:	ACBDEB



Least	Recently	Used	Replacement	Policy

• 4-way
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E B C D

Tag store

Data store

=?=? =?=?

Logic Hit?

Set	0

MRU	-2LRUMRUMRU	-1

ACCESS	PATTERN:	ACBDEB



Implementing	LRU
• Idea:	Evict	the	least	recently	accessed	block
• Problem:	Need	to	keep	track	of	access	ordering	of	blocks

• Question:	2-way	set	associative	cache:
• What	do	you	need	to	implement	LRU	perfectly?

• Question:	16-way	set	associative	cache:	
• What	do	you	need	to	implement	LRU	perfectly?
• What	is	the	logic	needed	to	determine	the	LRU	victim?
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Approximations	of	LRU
• Most	modern	processors	do	not	implement	“true	LRU” (also	
called	“perfect	LRU”)	in	highly-associative	caches

• Why?
• True	LRU	is	complex
• LRU	is	an	approximation	to	predict	locality	anyway	(i.e.,	not	the	best	
possible	cache	management	policy)

• Examples:
• Not	MRU	(not	most	recently	used)

25



Cache	Replacement	Policy:	LRU	or	Random
• LRU	vs.	Random:	Which	one	is	better?

• Example:	4-way	cache,	cyclic	references	to	A,	B,	C,	D,	E	
• 0%	hit	rate	with	LRU	policy

• Set	thrashing:	When	the	“program	working	set” in	a	set	is	
larger	than	set	associativity

• Random	replacement	policy	is	better	when	thrashing	occurs
• In	practice:

• Depends	on	workload
• Average	hit	rate	of	LRU	and	Random	are	similar

• Best	of	both	Worlds:	Hybrid	of	LRU	and	Random
• How	to	choose	between	the	two?	Set	sampling

• See	Qureshi	et	al.,	“A	Case	for	MLP-Aware	Cache	Replacement,“ ISCA	2006.
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What’s	In	A	Tag	Store	Entry?
• Valid	bit
• Tag
• Replacement	policy	bits

• Dirty	bit?
• Write	back	vs.	write	through	caches
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Handling	Writes	(I)
n When	do	we	write	the	modified	data	in	a	cache	to	the	next	level?

• Write	through:	At	the	time	the	write	happens
• Write	back:	When	the	block	is	evicted

• Write-back
+	Can	consolidate	multiple	writes	to	the	same	block	before	eviction

• Potentially	saves	bandwidth	between	cache	levels	+	saves	energy
-- Need	a	bit	in	the	tag	store	indicating	the	block	is	“dirty/modified”

• Write-through
+	Simpler
+	All	levels	are	up	to	date.	Consistent
-- More	bandwidth	intensive;	no	coalescing	of	writes
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Handling	Writes	(II)
• Do	we	allocate	a	cache	block	on	a	write	miss?

• Allocate	on	write	miss
• No-allocate	on	write	miss

• Allocate	on	write	miss
+	Can	consolidate	writes	instead	of	writing	each	of	them	individually	to	next	level
+	Simpler	because	write	misses	can	be	treated	the	same	way	as	read	misses
-- Requires	(?)	transfer	of	the	whole	cache	block

• No-allocate
+	Conserves	cache	space	if	locality	of	writes	is	low	(potentially	better	cache	hit	rate)
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Instruction	vs.	Data	Caches
• Separate	or	Unified?

• Unified:
+	Dynamic	sharing	of	cache	space:	no	overprovisioning	that	might	
happen	with	static	partitioning	(i.e.,	split	I	and	D	caches)

-- Instructions	and	data	can	thrash	each	other	(i.e.,	no	guaranteed	space	
for	either)

-- I	and	D	are	accessed	in	different	places	in	the	pipeline.	Where	do	we	
place	the	unified	cache	for	fast	access?

• First	level	caches	are	almost	always	split	
• Mainly	for	the	last	reason	above

• Second	and	higher	levels	are	almost	always	unified
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Multi-level	Caching	in	a	Pipelined	Design
• First-level	caches	(instruction	and	data)

• Decisions	very	much	affected	by	cycle	time
• Small,	lower	associativity
• Tag	store	and	data	store	accessed	in	parallel

• Second-level,	third-level	caches
• Decisions	need	to	balance	hit	rate	and	access	latency
• Usually	large	and	highly	associative;	latency	less	critical
• Tag	store	and	data	store	accessed	serially

• Serial	vs.	Parallel	access	of	levels
• Serial:	Second	level	cache	accessed	only	if	first-level	misses
• Second	level	does	not	see	the	same	accesses	as	the	first

• First	level	acts	as	a	filter	(filters	some	temporal	and	spatial	locality)
• Management	policies	are	therefore	different
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Cache	Performance



Cache	Parameters	vs.	Miss/Hit	Rate
• Cache	size

• Block	size

• Associativity

• Replacement	policy
• Insertion/Placement	policy
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Cache	Size
• Cache	size:	total	data	(not	including	tag)	capacity

• bigger	can	exploit	temporal	locality	better
• not	ALWAYS	better

• Too	large	a	cache	adversely	affects	hit	and	miss	latency
• smaller	is	faster	=>	bigger	is	slower
• access	time	may	degrade	critical	path

• Too	small	a	cache
• doesn’t	exploit	temporal	locality	well
• useful	data	replaced	often

• Working	set:	the	whole	set	of	data																																																				
the	executing	application	references	

• Within	a	time	interval	

34

hit rate

cache size

“working set”
size



Block	Size
• Block	size	is	the	data	that	is	associated	with	an	address	tag	

• Too	small	blocks
• don’t	exploit	spatial	locality	well
• have	larger	tag	overhead

• Too	large	blocks
• too	few	total	#	of	blocks	à less

temporal	locality	exploitation
• waste	of	cache	space	and	bandwidth/energy	
if	spatial	locality	is	not	high

• Will	see	more	examples	later
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hit rate

block
size



Associativity
• How	many	blocks	can	map	to	the	same	index	(or	set)?

• Larger	associativity
• lower	miss	rate,	less	variation	among	programs
• diminishing	returns,	higher	hit	latency

• Smaller	associativity
• lower	cost
• lower	hit	latency

• Especially	important	for	L1	caches

• Power	of	2	associativity	required?

36

associativity

hit rate



Higher	Associativity

• 4-way

37

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?
8-bit address

tag index byte in block

1 bits4 bits 3 bits



Higher	Associativity

• 3-way
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Tag store

Data store

=?=? =?

MUX

MUX
byte in block

Logic Hit?
8-bit address

tag index byte in block

1 bits4 bits 3 bits



Classification	of	Cache	Misses
• Compulsory	miss	

• first	reference	to	an	address	(block)	always	results	in	a	miss
• subsequent	references	should	hit	unless	the	cache	block	is	
displaced	for	the	reasons	below

• Capacity	miss	
• cache	is	too	small	to	hold	everything	needed
• defined	as	the	misses	that	would	occur	even	in	a	fully-associative	
cache	(with	optimal	replacement)	of	the	same	capacity											

• Conflict	miss	
• defined	as	any	miss	that	is	neither	a	compulsory	nor	a	capacity	
miss
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How	to	Reduce	Each	Miss	Type
• Compulsory

• Caching	cannot	help
• Prefetching

• Conflict
• More	associativity
• Other	ways	to	get	more	associativity	without	making	the	
cache	associative

• Victim	cache
• Hashing
• Software	hints?

• Capacity
• Utilize	cache	space	better:	keep	blocks	that	will	be	referenced
• Software	management:	divide	working	set	such	that	each	
“phase” fits	in	cache
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Cache	Performance
with	Code	Examples



Matrix	Sum

int sum1(int matrix[4][8]) {
int sum = 0;
for (int i = 0; i < 4; ++i) {

for (int j = 0; j < 8; ++j) {
sum += matrix[i][j];

}
}

}
access	pattern:
matrix[0][0],	[0][1],	[0][2],	…,	[1][0]	…



Exploiting	Spatial	Locality

[0][0]-[0][1]
[0][2]-[0][3]
[0][4]-[0][5]
[0][6]-[0][7]

8B	cache	block,	4	blocks,	LRU,	4B	integer
Access	pattern	matrix[0][0],	[0][1],	[0][2],	…,	[1][0]	…

Cache	Blocks

[1][0]-[1][1]
[0][2]-[0][3]
[0][4]-[0][5]
[0][6]-[0][7]

[0][0]	àmiss
[0][1]	à hit
[0][2]	àmiss
[0][3]	à hit
[0][4]	àmiss
[0][5]	à hit
[0][6]	àmiss
[0][7]	à hit
[1][0]	àmiss
[1][1]	à hit

Replace



Exploiting	Spatial	Locality

• block	size	and	spatial	locality
• larger	blocks	— exploit	spatial	locality
• …	but	larger	blocks	means	fewer	blocks	for	same	size
• less	good	at	exploiting	temporal	locality



Alternate	Matrix	Sum

int sum2(int matrix[4][8]) {
int sum = 0;
//	swapped	loop	order
for (int j = 0; j < 8; ++j) {

for (int i = 0; i < 4; ++i) {
sum += matrix[i][j];

}
}

}
access	pattern:
• matrix[0][0],	[1][0],	[2][0],	[3][0],	[0][1],	[1][1],	[2][1],	[3][1],…,	…



Bad	at	Exploiting	Spatial	Locality

[0][0]-[0][1]
[1][0]-[1][1]
[2][0]-[2][1]
[3][0]-[3][1]

8B	cache	block,	4B	integer
Access	pattern	matrix[0][0],	[1][0],	[2][0],	[3][0],	[0][1],	[1][1],	[2][1],	[3][1],…,	…

Cache	Blocks

[0][2]-[0][3]
[1][0]-[1][1]
[2][0]-[2][1]
[3][0]-[3][1]

[0][2]-[0][3]
[1][2]-[1][3]
[2][0]-[2][1]
[3][0]-[3][1]

[0][0]	àmiss
[1][0]	àmiss
[2][0]	àmiss
[3][0]	àmiss
[0][1]	à hit
[1][1]	à hit
[2][1]	à hit
[3][1]	à hit
[0][2]	àmiss
[1][2]	àmiss

Replace Replace



A	note	on	matrix	storage

• A	—>	N	X N	matrix:	represented	as	an	2D	array
• makes	dynamic	sizes	easier:
• float	A_2d_array[N][N];
• float	*A_flat =	malloc(N	*	N);
• A_flat[i *	N	+	j]	===	A_2d_array[i][j]



Matrix	Squaring

𝐵"# = 	&𝐴"( ∗ 𝐴(#

*

(+,
/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];



Matrix	Squaring

𝐴--	𝐴-,	𝐴-.	𝐴-/
𝐴,-	𝐴,,	𝐴,.	𝐴,/
𝐴.-	𝐴.,	𝐴..	𝐴./
𝐴/-	𝐴/,	𝐴/.	𝐴//

𝑩𝟎𝟎	𝐵-,	𝐵-.	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-- = 	&𝐴-( ∗ 𝐴(-

*

(+-

𝐵-- = (𝐴--∗ 𝐴--) + (𝐴-,∗ 𝐴,-) + (𝐴-.∗ 𝐴.-) + (𝐴-/∗ 𝐴/-)



Matrix	Squaring

𝑨𝟎𝟎	𝐴-,	𝐴-.	𝐴-/
𝐴,-	𝐴,,	𝐴,.	𝐴,/
𝐴.-	𝐴.,	𝐴..	𝐴./
𝐴/-	𝐴/,	𝐴/.	𝐴//

𝑩𝟎𝟎	𝐵-,	𝐵-.	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-- = 	&𝐴-( ∗ 𝐴(-

*

(+-

𝐵-- = (𝑨𝟎𝟎∗ 𝑨𝟎𝟎) + (𝐴-,∗ 𝐴,-) + (𝐴-.∗ 𝐴.-) + (𝐴-/∗ 𝐴/-)



Matrix	Squaring

𝑨𝟎𝟎	𝑨𝟎𝟏	𝐴-.	𝐴-/
𝑨𝟏𝟎	𝐴,,	𝐴,.	𝐴,/
𝐴.-	𝐴.,	𝐴..	𝐴./
𝐴/-	𝐴/,	𝐴/.	𝐴//

𝑩𝟎𝟎	𝐵-,	𝐵-.	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-- = 	&𝐴-( ∗ 𝐴(-

*

(+-

𝐵-- = (𝐴--∗ 𝐴--) + (𝑨𝟎𝟏∗ 𝑨𝟏𝟎) + (𝐴-.∗ 𝐴.-) + (𝐴-/∗ 𝐴/-)



Matrix	Squaring

𝑨𝟎𝟎	𝑨𝟎𝟏	𝑨𝟎𝟐	𝐴-/
𝑨𝟏𝟎	𝐴,,	𝐴,.	𝐴,/
𝑨𝟐𝟎	𝐴.,	𝐴..	𝐴./
𝐴/-	𝐴/,	𝐴/.	𝐴//

𝑩𝟎𝟎	𝐵-,	𝐵-.	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-- = 	&𝐴-( ∗ 𝐴(-

*

(+-

𝐵-- = (𝐴--∗ 𝐴--) + (𝐴-,∗ 𝐴,-) + (𝑨𝟎𝟐∗ 𝑨𝟐𝟎) + (𝐴-/∗ 𝐴/-)



Matrix	Squaring

𝑨𝟎𝟎	𝑨𝟎𝟏	𝑨𝟎𝟐	𝑨𝟎𝟑
𝑨𝟏𝟎	𝐴,,	𝐴,.	𝐴,/
𝑨𝟐𝟎	𝐴.,	𝐴..	𝐴./
𝑨𝟑𝟎	𝐴/,	𝐴/.	𝐴//

𝑩𝟎𝟎	𝐵-,	𝐵-.	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-- = 	&𝐴-( ∗ 𝐴(-

*

(+-

𝐵-- = (𝐴--∗ 𝐴--) + (𝐴-,∗ 𝐴,-) + (𝐴-.∗ 𝐴.-) + (𝑨𝟎𝟑∗ 𝑨𝟑𝟎)

Aik has	spatial	locality



Matrix	Squaring

𝑨𝟎𝟎	𝑨𝟎𝟏	𝑨𝟎𝟐	𝑨𝟎𝟑
𝐴,-	𝑨𝟏𝟏	𝐴,.	𝐴,/
𝐴.-	𝑨𝟐𝟏	𝐴..	𝐴./
𝐴/-	𝑨𝟑𝟏	𝐴/.	𝐴//

𝐵--	𝑩𝟎𝟏	𝐵-.	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-, = 	&𝐴-( ∗ 𝐴(,

*

(+-

𝑩𝟎𝟏 = (𝑨𝟎𝟎∗ 𝑨𝟎𝟏) + (𝑨𝟎𝟏∗ 𝑨𝟏𝟏) + (𝑨𝟎𝟐∗ 𝑨𝟐𝟏) + (𝑨𝟎𝟑∗ 𝑨𝟑𝟏)

Aik has	spatial	locality



Matrix	Squaring

𝑨𝟎𝟎	𝑨𝟎𝟏	𝑨𝟎𝟐	𝑨𝟎𝟑
𝐴,-	𝐴,,	𝑨𝟏𝟐	𝐴,/
𝐴.-	𝐴.,	𝑨𝟐𝟐	𝐴./
𝐴/-	𝐴/,	𝑨𝟑𝟐	𝐴//

𝐵--	𝐵-,	𝑩𝟎𝟐	𝐵-/
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝐵-. = 	&𝐴-( ∗ 𝐴(.

*

(+-

𝑩𝟎𝟐 = (𝑨𝟎𝟎∗ 𝑨𝟎𝟐) + (𝑨𝟎𝟏∗ 𝑨𝟏𝟐) + (𝑨𝟎𝟐∗ 𝑨𝟐𝟐) + (𝑨𝟎𝟑∗ 𝑨𝟑𝟐)

Aik has	spatial	locality



Conclusion

•Aik has	spatial	locality
•Bij has	temporal	locality



Matrix	Squaring

𝐵"# = 	&𝐴"( ∗ 𝐴(#
*

(+,
/* version 2: outer	loop	is	k,	middle	is j */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];

Access pattern k = 0, i = 0
B[0][0]  = A[0][0] * A[0][0] 
B[0][1] = A[0][0] * A[0][1]
B[0][2] = A[0][0] * A[0][2]
B[0][3] = A[0][0] * A[0][3]

Access pattern k = 0, i = 1
B[1][0]  = A[1][0] * A[0][0] 
B[1][1] = A[1][0] * A[0][1]
B[1][2] = A[1][0] * A[0][2]
B[1][3] = A[1][0] * A[0][3]



Matrix	Squaring:	kij order

𝑨𝟎𝟎	𝑨𝟎𝟏	𝑨𝟎𝟐	𝑨𝟎𝟑
𝐴,-	𝐴,,	𝐴,.	𝐴,/
𝐴.-	𝐴.,	𝐴..	𝐴./
𝐴/-	𝐴/,	𝐴/.	𝐴//

𝑩𝟎𝟎	𝑩𝟎𝟏	𝑩𝟎𝟐	𝑩𝟎𝟑
𝐵,-	𝐵,,	𝐵,.	𝐵,/
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝑩𝟎𝟎 = (𝑨𝟎𝟎∗ 𝑨𝟎𝟎) + (𝐴-,∗ 𝐴,-) + (𝐴-.∗ 𝐴.-) + (𝐴-/∗ 𝐴/-)
𝑩𝟎𝟏 = (𝑨𝟎𝟎∗ 𝑨𝟎𝟏) + (𝐴-,∗ 𝐴,,) + (𝐴-.∗ 𝐴.,) + (𝐴-/∗ 𝐴/,)
𝑩𝟎𝟐 = (𝑨𝟎𝟎∗ 𝑨𝟎𝟐) + (𝐴-,∗ 𝐴,.) + (𝐴-.∗ 𝐴..) + (𝐴-/∗ 𝐴/.)
𝑩𝟎𝟑 = (𝑨𝟎𝟎∗ 𝑨𝟎𝟑) + (𝐴-,∗ 𝐴,/) + (𝐴-.∗ 𝐴./) + (𝐴-/∗ 𝐴//)



Matrix	Squaring:	kij order

𝑨𝟎𝟎	𝑨𝟎𝟏	𝑨𝟎𝟐	𝑨𝟎𝟑
𝑨𝟏𝟎	𝐴,,	𝐴,.	𝐴,/
𝐴.-	𝐴.,	𝐴..	𝐴./
𝐴/-	𝐴/,	𝐴/.	𝐴//

𝐵--	𝐵-,	𝐵-.	𝐵-/
𝑩𝟏𝟎	𝑩𝟏𝟏	𝑩𝟏𝟐	𝑩𝟏𝟑
𝐵.-	𝐵.,	𝐵..	𝐵./
𝐵/-	𝐵/,	𝐵/.	𝐵//

j
i

𝑩𝟏𝟎 = (𝑨𝟏𝟎∗ 𝑨𝟎𝟎) + (𝐴,,∗ 𝐴,-) + (𝐴,.∗ 𝐴.-) + (𝐴,/∗ 𝐴/-)
𝑩𝟏𝟏 = (𝑨𝟏𝟎∗ 𝑨𝟎𝟏) + (𝐴,,∗ 𝐴,,) + (𝐴,.∗ 𝐴.,) + (𝐴,/∗ 𝐴/,)
𝑩𝟏𝟐 = (𝑨𝟏𝟎∗ 𝑨𝟎𝟐) + (𝐴,,∗ 𝐴,.) + (𝐴,.∗ 𝐴..) + (𝐴,/∗ 𝐴/.)
𝑩𝟏𝟑 = (𝑨𝟏𝟎∗ 𝑨𝟎𝟑) + (𝐴,,∗ 𝐴,/) + (𝐴,.∗ 𝐴./) + (𝐴,/∗ 𝐴//)

Bij ,	Akj have	spatial	locality
Aik has	temporal	locality



Matrix	Squaring

• kij order
•Bij ,	Akj have	spatial	locality
•Aik has	temporal	locality
• ijk order
•Aik has	spatial	locality
•Bij has	temporal	locality



Which	order	is	better?

Order	kij performs	much	better


