Cache Performance II

cache operation (associative)

cache operation (associative)

cache operation (associative)

 111001 offset

Tag-Index-Offset formulas

 number of blocks per set ("ways")$S=2^{s}$ number of sets
(set) index bits
block size
(block) offset bits
$t=m-(s+b) \quad$ tag bits
$C=B \times S \times E \quad$ cache size (excluding metadata)

Tag-Index-Offset exercise

```
m
E
S=2
s
B=2
b
t=m-(s+b) tag bits
C=B\timesS\timesE cache size (excluding metadata)
```

My desktop:
L1 Data Cache: 32 KB, 8 blocks/set, 64 byte blocks
L2 Cache: 256 KB, 4 blocks/set, 64 byte blocks
L3 Cache: $8 \mathrm{MB}, 16$ blocks/set, 64 byte blocks
Divide the address 0×34567 into tag, index, offset for each cache.

T-I-O exercise: L1

quantity
 value for L1

block size (given) $\quad B=64$ Byte
$B=2^{b}$ (b: block offset bits)

T-I-O exercise: L1

quantity
block size (given) $\quad B=64$ Byte
$B=2^{b}$ (b: block offset bits)
block offset bits $\quad b=6$

T-I-O exercise: L1

quantity

value for L1
block size (given) $\quad B=64$ Byte
$B=2^{b}$ (b: block offset bits)
block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$

T-I-O exercise: L1

quantity
block size (given) $\quad B=64$ Byte
$B=2^{b}$ (b: block offset bits)
block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$
$S=\frac{C}{B \times E}(S:$ number of sets $)$

T-I-O exercise: L1

quantity
block size (given) $\quad B=64$ Byte
$B=2^{b}$ (b: block offset bits)
block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$

$$
\begin{aligned}
S & =\frac{C}{B \times E}(S: \text { number of sets }) \\
S & =\frac{32 \mathrm{~KB}}{64 \text { Byte } \times 8}=64
\end{aligned}
$$

number of sets

T-I-O exercise: L1

quantity
block size (given) $\quad B=64$ Byte
$B=2^{b}$ (b: block offset bits)
block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$

$$
\begin{aligned}
& S=\frac{C}{B \times E}(S: \text { number of sets }) \\
& S=\frac{32 \mathrm{~KB}}{64 \mathrm{Byte} \times 8}=64 \\
& S=2^{s}(s: \text { set index bits })
\end{aligned}
$$

set index bits
$s=\log _{2}(64)=6$

T-I-O results

	L1	L2	L3
sets	64	1024	8192
block offset bits	6	6	6
set index bits	6	10	13
tag bits	(the rest)		

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$
L1:
bits 6-11 (L1 set): $010101=0 \times 15$
bits 12- (L1 tag): 0×34

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$
L1:
bits 6-11 (L1 set): $010101=0 \times 15$
bits 12- (L1 tag): 0×34

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$
L2:
bits 6-15 (set for L2): $0100010101=0 \times 115$ bits 16-: 0×3

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$
L2:
bits 6-15 (set for L2): $0100010101=0 \times 115$ bits 16-: 0×3

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6

set index bits \quad	6	10	13

tag bits
(the rest)
$\begin{array}{cccccc}0 \times 34567: & 3 & 4 & 5 & 6 & 7 \\ 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$
L3:
bits 6-18 (set for L3): $0110100010101=$ $0 x$ D15
bits 18-: $0 x 0$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j})$
for (int $k=0 ; k<N ;++k)$ $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)

$$
B[i * N+j]+=A[i * N+k] * A[k * N+j] ;
$$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$ for (int i = 0; i < N; ++i) for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)

$$
B[i * N+j]+=A[i * N+k] * A[k * N+j] ;
$$

performance

alternate view 1: cycles/instruction

alternate view 2: cycles/operation

loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
$k i j$ order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
kij order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$ $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j) $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$ $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i)
for (int $j=0 ; j<N ;++j)$ $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$ for (int i = 0; i < N; ++i) for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ;++\mathrm{j}$)

$$
B[i * N+j]+=A[i * N+k] * A[k * N+j] ;
$$

L1 misses

L1 miss detail (1)

L1 miss detail (2)

addresses

$A[k * 114+j]$
$A[k * 114+j+1]$
$A[(k+1) * 114+j]$
$A[(k+2) * 114+j]$ is at 10010101011100
$A[(k+9) \star 114+j]$ is at 11000000001100

addresses

$A[k * 114+j] \quad$ is at 10000000000100 $A[k * 114+j+1]$ is at 10000000001000 $A[(k+1) * 114+j]$ is at 10001110010100 $A[(k+2) * 114+j]$ is at 10010101011100
$A[(k+9) \star 114+j]$ is at 11000000001100
recall: 6 index bits, 6 block offset bits (L1)

conflict misses

powers of two - lower order bits unchanged
$A[k * 93+j]$ and $A[(k+11) * 93+j]:$
1023 elements apart (4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set
$A[k * 93+(j+1)]$ will not be cached (next i loop) even if in same block as $A[k * 93+j]$

L2 misses

systematic approach (1)

for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)

$$
B[i * N+j]+=A[i * N+k] * A[k * N+j] ;
$$

goal: get most out of each cache miss
if N is larger than the cache:
miss for $B_{i j}-1$ comptuation
miss for $A_{i k}-N$ computations
miss for $A_{k j}-1$ computation
effectively caching just 1 element

'flat' 2D arrays and cache blocks

array usage: kij order

array usage: kij order

\square
$B_{i j}$ reused in next outer loop probably not still in cache next time (but, at least some spatial locality)

- $A_{i k}$
$A_{x 0}$
$B_{i 0}$ to $B_{i N}$
for all k : for all i : for all $j: B_{i j}+=A_{i k} \times A_{k j}$ N calculations for $A_{i k}$

1 for $A_{k j}, B_{i j}$

inefficiencies

if N is large enough that a row doesn't fit in cache: keeping one block in cache accessing one element of that block
if N is small enough that a row does fit in cache: keeping one block in cache for $A_{i k}$, using one element keeping row in cache for $A_{k j}$, using N times

systematic approach (2)

for (int $k=0 ; k<N ;++k)$ \{
for (int i = 0; i < N; ++i) \{ $A_{i k}$ loaded once in this loop (N^{2} times): for (int $\mathrm{j}=0$; j < N ; ++j) $B_{i j}, A_{k j}$ loaded each iteration (if N big): $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
N^{3} multiplies, N^{3} adds
about 1 load per operation

a transformation

for (int $k k=0 ; k k<N ; k k+=2)$
for (int $k=k k ; k<k k+2 ;++k)$
for (int $i=0 ; i<N ; i+=2)$
for (int $j=0 ; j<N ;++j)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
split the loop over k - should be exactly the same (assuming even N)

a transformation

for (int $k k=0 ; k k<N ; k k+=2$)
for (int $k=k k ; k<k k+2 ;++k)$
for (int $i=0 ; i<N ; i+=2)$
for (int $j=0 ; j<N ;++j)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
split the loop over k - should be exactly the same (assuming even N)

simple blocking

for (int $k k=0 ; k k<N ; k k+=2$)
/* was here: for (int $k=k k ; k<k k+2 ;++k$)
for (int $i=0 ; i<N ; i+=2)$
for (int $j=0 ; j<N ;++j)$
for (int $k=k k ; k<k k+2 ;++k)$

$$
B[i * N+j]+=A[i * N+k] * A[k * N+j] ;
$$

now reorder split loop

simple blocking

for (int kt = 0; bk < N; kt += 2)
/* was here: for (int $k=k k ; k<k k+2 ;++k)$
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
for (int $k=k k ; k<k k+2 ;++k)$ $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
now reorder split loop

simple blocking - expanded

for (int $k k=0 ; k k<N ; k k+=2)$ \{ for (int $i=0 ; i<N ; i+=2)\{$ for (int $\mathbf{j}=0 ; j<N ;++j)$ \{ /* process a "block": */ $B[i * N+j]+=A[i * N+k k] * A[k k * N+j] ;$ $B[i * N+j]+=A[i * N+k k+1] * A[(k k+1) * N+j] ;$ \}
\}
\}

simple blocking - expanded

for (int $k k=0 ; k k<N ; k k+=2)$ \{
for (int $i=0 ; i<N ; i+=2)$ \{ for (int j $=0 ; j<N ;++j)$ \{ /* process a "block": */ $B[i * N+j]+=A[i * N+k k]$ * $A[k k * N+j] ;$ $B[i * N+j]+=A[i * N+k k+1] * A[(k k+1) * N+j] ;$
\}
\}
\}
Temporal locality in $B_{i j} \mathrm{~s}$

simple blocking - expanded

More spatial locality in $A_{i k}$

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            B[i*N+j] += A[i*N+kk] * A[kk*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
    }
}
```

Still have good spatial locality in $A_{k j}, B_{i j}$

improvement in read misses

simple blocking (2)

same thing for i in addition to k ?
for (int kt = 0; kt < N; kt += 2) \{ for (int ii = 0; ii < N; ii += 2) \{ for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$) \{ /* process a "block": */
for (int $k=k k ; k<k k+2 ;++k)$
for (int i = 0; i < ii + 2; ++i)

$$
B[i * N+j]+=A[i * N+k] * A[k * N+j] ;
$$

\}
\}

simple blocking - expanded

for (int $k=0 ; k<N ; k+=2)$ \{ for (int i = 0; i < N; i += 2) \{ for (int j = 0; j < N; ++j) \{ /* process a "block": */ $B_{i+0, j} \quad+=A_{i+0, k+0} \quad * A_{k+0, j}$ $B_{i+0, j}+=A_{i+0, k+1} \quad * A_{k+1, j}$ $B_{i+1, j}+=A_{i+1, k+0} \quad * A_{k+0, j}$ $B_{i+1, j}+=A_{i+1, k+1} \quad * A_{k+1, j}$ \} \}
\}

simple blocking - expanded

for (int $k=0 ; k<N ; k+=2)$ \{ for (int i = 0; i < N; i += 2) \{ for (int j = 0; j < N; ++j) \{ /* process a "block": */ $B_{i+0, j} \quad+=A_{i+0, k+0} \quad * A_{k+0, j}$ $B_{i+0, j}+=A_{i+0, k+1} \quad * A_{k+1, j}$ $B_{i+1, j}+=A_{i+1, k+0} \quad \star A_{k+0, j}$ $B_{i+1, j}+=A_{i+1, k+1} \quad * A_{k+1, j}$ \} \}
\}
Now $A_{k j}$ reused in inner loop - more calculations per load!

array usage (better)

more temporal locality:
N calculations for each $A_{i k}$
2 calculations for each $B_{i j}$ (for $k, k+1$)
2 calculations for each $A_{k j}($ for $k, k+1)$

array usage (better)

more spatial locality:
calculate on each $A_{i, k}$ and $A_{i, k+1}$ together both in same cache block - same amount of cache loads

generalizing cache blocking

for (int kt = 0; kt < N; kt += K) \{ for (int ii = 0; ii < N; ii += I) \{ with I by K block of A cached:
for (int jj = 0; jj < N; jj += J) \{ with K by J block of A, I by J block of B cached: for i, j, k in I by J by K block: $B[i * N+j]+=A[i * N+k]$ * $A[k * N+j]$; \}
\}
\}

generalizing cache blocking

for (int kk = 0; kk < N; kk += K) \{ for (int ii = 0; ii < N; ii += I) \{ with I by K block of A cached:
for (int jj = 0; jj < N; jj += J) \{ with K by J block of A, I by J block of B cached: for i, j, k in I by J by K block: $B[i * N+j]+=A[i * N+k]$ * $A[k \times N+j] ;$
\}
\}
\}
$B_{i j}$ used K times for one miss

generalizing cache blocking

for (int kk = 0; kk < N; kk += K) \{ for (int ii = 0; ii < N; ii += I) \{ with I by K block of A cached:
for (int jj = 0; jj < N; jj += J) \{ with K by J block of A, I by J block of B cached: for i, j, k in I by J by K block: $B[i * N+j]+=A[i * N+k]$ * $A[k \times N+j] ;$ \} \}
\}
$A_{i k}$ used $>J$ times for one miss

generalizing cache blocking

for (int kk = 0; kk < N; kk += K) \{ for (int ii = 0; ii < N; ii += I) \{ with I by K block of A cached:
for (int jj = 0; jj < N; jj += J) \{ with K by J block of A, I by J block of B cached: for i, j, k in I by J by K block: $B[i * N+j]+=A[i * N+k]$ * $A[k * N+j]$;

\}

\}
\}
$A_{k j}$ used I times for one miss

generalizing cache blocking

for (int kk = 0; kk < N; kk += K) \{ for (int ii = 0; ii < N; ii += I) \{ with I by K block of A cached: for (int jj = 0; jj < N; jj += J) \{ with K by J block of A, I by J block of B cached: for i, j, k in I by J by K block: $B[i * N+j]+=A[i * N+k]$ * $A[k * N+j] ;$
\}
\}
\}
catch: $I K+K J+I J$ elements must fit in cache

keeping values in cache

can't explicitly ensure values are kept in cache
...but reusing values effectively does this cache will try to keep recently used values
cache optimization idea: choose what's in the cache

array usage: block

$B_{i j}$ block $(I \times J)$
inner loop keeps "blocks" from A, B in cache

array usage: block

$B_{i j}$ calculation uses strips from A
K calculations for one load (cache miss)

array usage: block

$B_{i j}$ block $(I \times J)$
$A_{i k}$ calculation uses strips from A, B J calculations for one load (cache miss)

array usage: block

(approx.) $K I J$ fully cached calculations for $K I+I J+K J$ loads
(assuming everything stays in cache)

cache blocking efficiency

load $I \times K$ elements of $A_{i k}$:
do $>J$ multiplies with each
load $K \times J$ elements of $A_{k j}$: do I multiplies with each
load $I \times J$ elements of $B_{i j}$: do K adds with each
bigger blocks - more work per load!
catch: $I K+K J+I J$ elements must fit in cache

cache blocking rule of thumb

fill the most of the cache with useful data and do as much work as possible from that example: my desktop 32KB L1 cache $I=J=K=48$ uses $48^{2} \times 3$ elements, or 27 KB . assumption: conflict misses aren't important

view 2: divide and conquer

partial_square(float $\star A$, float $\star B$, int startI, int end, ...) \{
for (int $i=s t a r t I ; ~ i<e n d I ; ~++i) ~\{$ for (int $j=s t a r t J ; ~ j<e n d J ; ~++j) ~\{$
\} square (float $\star A$, float $\star B$, int $N)$ \{ for (int $\mathrm{ij}=0$; $\mathrm{i} \mathrm{i}<\mathrm{N}$; ii += BLOCK)
/* segment of A, B in use fits in cache! */ partial_square(

$$
\begin{aligned}
& \text { A, B, } \\
& \text { ii, ii + BLOCK, } \\
& \text { jj, jj + BLOCK, ...); }
\end{aligned}
$$

cache blocking ugliness - fringe

cache blocking ugliness - fringe

for (int kt = 0; kt < N; kt += K) \{
for (int ii = 0; ii < N; ii += I) \{ for (int jj = 0; jj < N; jj += J) \{
for (int $\mathrm{k}=\mathrm{kk} ; \mathrm{k}<\min (k k+K, N) ;++\mathrm{k})$ \{ // ...
\}
\}
\}
\}

cache blocking ugliness - fringe

for $(k k=0 ; k k+K<=N ; k k+=K)$ \{

$$
\text { for (ii = } 0 ; i i+I<=N ; i i+=I)\{
$$

for $(j j=0 ; j j+J<=N ; i i+=J)\{$ // ...
\} for (; jj < N; ++jj) \{
// handle remainder
\}
\}
for (; ii < N; ++ii) \{
// handle remainder
\}
\}
for (; bk < N; ++bk) \{
// handle remainder

cache blocking and miss rate

what about performance?

performance for big sizes

optimized loop???

performance difference wasn't visible at small sizes until I optimized arithmetic in the loop
(by supplying better options to GCC)

1: loading $B_{i, j}$ through $B_{i, j+7}$ with one instruction
2: doing adds and multiplies with less instructions
3: simplifying address computations

optimized loop???

performance difference wasn't visible at small sizes until I optimized arithmetic in the loop
(by supplying better options to GCC)

1: loading $B_{i, j}$ through $B_{i, j+7}$ with one instruction
2: doing adds and multiplies with less instructions
3: simplifying address computations
but... how can that make cache blocking better???

overlapping loads and arithmetic

	load			load
ultiply	multiply	multiply	multiply	multip
add	add	add		add

speed of load might not matter if these are slower

register reuse

for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$

$$
B[i \star N+j]+=A[i * N+k] \star A[k * N+j] ;
$$

// optimize into:
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$ \{
 // faster than even sac
for (int $j=0 ; j<N ;++j)$ $B[i * N+j]+=A i k * A[k * N+j] ;$
\}
\}
can compiler do this for us?

can compiler do register reuse?

Not easily - What if $A=B$?
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i < N; ++i) \{ // want to preload $A[i \star N+k]$ here! for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$) \{ // but if $A=B$, modifying here! $B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$ \}
\}
\}

Automatic register reuse

Compiler would need to generate overlap check:
if ($(B>A+N * N| | B<A) \& \&$
$(B+N * N>A+N * N \|$
$B+N * N<A))$ \{
for (int $k=0 ; k<N ;++k)$ \{
for (int i = 0; i < N; ++i) \{
float Ait = A[i*N+k];
for (int $j=0 ; j<N ;++j)$ \{ $B[i * N+j]+=A i k * A[k * N+j] ;$ \}
\}
\}
\} else \{ /* other version */ \}

"register blocking"

for (int $k=0 ; k<N ;++k)$ \{ for (int i = 0; i < N; i += 2) \{
float Ai0k $=A[(i+0) * N+k] ;$
float Ailk = A[(i+1)*N + k];
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}+=2$) \{
float $A k j 0=A[k * N+j+0] ;$
float Akj1 = A[k*N + j+1];
$B[(i+0) \star N+j+0]+=A i 0 k * A k j 0 ;$ $B[(i+1) * N+j+0]+=A i l k$ * Akj0; $B[(i+0) \star N+j+1]+=A i 0 k * A k j 1 ;$ $B[(i+1) \star N+j+1]+=A i l k$ * Akj1; \}
\}
\}

cache blocking: summary

reorder calculation to reduce cache misses:
make explicit choice about what is in cache
perform calculations in cache-sized blocks
get more spatial and temporal locality temporal locality - reuse values in many calculations before they are replaced in the cache spatial locality - use adjacent values in calculations before cache block is replaced

avoiding conflict misses

problem - array is scattered throughout memory observation: 32 KB cache can store 32 KB contiguous array
contiguous array is split evenly among sets
solution: copy block into contiguous array

avoiding conflict misses (code)

process_block(ii, jj, kk) \{ float B_copy[I * J];
/* pseudocode for loop to save space */ for $i=i i$ to $i j+I, j=j j$ to $j j+J:$ B_copy $[i \not * J+j]=B[i \star N+j] ;$
for $i=\mathrm{i} i$ to $i \mathrm{i}+\mathrm{I}, \mathrm{j}=\mathrm{jj}$ to $j j+\mathrm{J}$,
B_copy $[i \star J+j]+=A[k \star N+j] \star A$ for all i, j:

$$
B[i \star N+j]=B_{-} \operatorname{copy}[i \star J+j] ;
$$

\}

prefetching

processors detect sequential access patterns e.g. accessing memory address $0,8,16,24, \ldots$? processor will prefetch 32,48 , etc.
another way to take advantage of spatial locality part of why miss rate is so low

matrix sum

int sum1(int matrix[4][8]) \{

 int sum = 0;for (int i = 0; i < 4; ++i) \{ for (int j = 0; j < 8; ++j) \{ sum += matrix[i][j];
\}
\}
\}
access pattern:
matrix[0] [0], [0] [1], [0][2], ..., [1] [0] ...

matrix sum: spatial locality

matrix in memory (4 bytes/row)

$[0][0]$	iter. 0
$[0][1]$	iter. 1
$[0][2]$	iter. 2
$[0][3]$	iter. 3
$[0][4]$	iter. 4
$[0][5]$	iter. 5
$[0][6]$	iter. 6
$[0][7]$	iter. 7
$[1][0]$	iter. 8
$[1][1]$	iter. 9
...	

matrix sum: spatial locality

matrix in memory (4 bytes/row)

matrix sum: spatial locality

matrix in memory (4 bytes/row)

block size and spatial locality

larger blocks - exploit spatial locality
... but larger blocks means fewer blocks for same size
less good at exploiting temporal locality

alternate matrix sum

int sum2(int matrix[4][8]) \{
int sum = 0;
// swapped loop order for (int j = 0; j < 8; ++j) \{ for (int $i=0 ; i<4 ;++i)$ \{ sum += matrix[i][j];
\}
\}
\}
access pattern:
matrix[0][0], [1][0], [2] [0], ..., [0][1], ...

matrix sum: bad spatial locality

matrix in memory (4 bytes/row)

$[0][0]$	iter. 0
$[0][1]$	iter. 4
$[0][2]$	iter. 8
$[0][3]$	iter. 12
$[0][4]$	iter. 16
$[0][5]$	iter. 20
$[0][6]$	iter. 24
$[0][7]$	iter. 28
$[1][0]$	iter. 1
$[1][1]$	iter. 5
..	

matrix sum: bad spatial locality

matrix in memory (4 bytes/row)
8-byte $\begin{array}{lll}{[0][0]} & \text { ter. } 0 & \\ & \text { miss unless value not }\end{array}$ cache block?

$[0][1]$	ter. 4
$[0][2]$	iter. 8
$[0][3]$	iter. 12
$[0][4]$	iter. 16
$[0][5]$	iter. 20
$[0][6]$	iter. 24
$[0][7]$	iter. 28
$[1][0]$	iter. 1
$[1][1]$	iter. 5
..	\cdots

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8-way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16KB	1.59%	0.86%	0.56%	0.50%
64KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8-way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16KB	1.59%	0.86%	0.56%	0.50%
64KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

is LRU always better?

least recently used exploits temporal locality

making LRU look bad

$*$				
	least recently used			
	direct-mapped (2 sets)		fully-associative (1 set)	
read 0	miss:	mem[0]; -	miss:	mem[0], -*
read 1	miss:	mem[0]; mem[1]	miss:	$\operatorname{mem}[0]^{*}, \operatorname{mem}[1]$
read 3	miss:	$\operatorname{mem}[0] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[3], \operatorname{mem}[1]^{*}$
read 0	hit:	$\operatorname{mem}[0] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[3]^{*}, \operatorname{mem}[0]$
read 2	miss:	$\operatorname{mem}[2] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[2], \operatorname{mem}[0]^{*}$
read 3	hit:	$\operatorname{mem}[2] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[2]^{*}, \operatorname{mem}[3]$
read 1	hit:	$\operatorname{mem}[2] ; \operatorname{mem}[1]$	hit:	$\operatorname{mem}[1], \operatorname{mem}[3]^{*}$
read 2	hit:	$\operatorname{mem}[2] ; \operatorname{mem}[1]$	miss:	$\operatorname{mem}[1]^{*}, \operatorname{mem}[2]$

cache operation (associative)

cache operation (associative)

cache operation (associative)

