
1

Changelog

Corrections made in this version not in first posting:
27 Mar 2017: slide 18: mark suspect numbers for 1
accumulator
5 May 2017: slide 7: “slower if” to “can be slower if”

1

notes on rotate

I probably set threshold too low
it’s possible to avoid strategies we want you to do
our reference solutions were biased toward old
size/platform — made it look harder

I think too late to reasonably change

to learn what you should learn…

aim for at least 1.65x or 1.70x, not 1.60x

smooth is more work, probably

2

loop optimizations

back to simpler example

long mean(long *A, int N) {
long sum = 0;
for (int i = 0; i < N; ++i)

sum += A[i];
return sum / N;

}

3

loop unrolling (ASM)
loop:

cmpl %edx, %esi
jle endOfLoop
addq (%rdi,%rdx,8), %rax
incq %rdx
jmp

endOfLoop:

loop:
cmpl %edx, %esi
jle endOfLoop
addq (%rdi,%rdx,8), %rax
addq 8(%rdi,%rdx,8), %rax
addq $2, %rdx
jmp loop
// plus handle leftover?

endOfLoop:
4

loop unrolling (ASM)
loop:

cmpl %edx, %esi
jle endOfLoop
addq (%rdi,%rdx,8), %rax
incq %rdx
jmp

endOfLoop:

loop:
cmpl %edx, %esi
jle endOfLoop
addq (%rdi,%rdx,8), %rax
addq 8(%rdi,%rdx,8), %rax
addq $2, %rdx
jmp loop
// plus handle leftover?

endOfLoop:
4

loop unrolling (C)

for (int i = 0; i < N; ++i)
sum += A[i];

int i;
for (i = 0; i + 1 < N; i += 2) {

sum += A[i];
sum += A[i+1];

}
// handle leftover, if needed
if (i < N)

sum += A[i];

5

more loop unrolling (C)

int i;
for (i = 0; i + 4 <= N; i += 4) {

sum += A[i];
sum += A[i+1];
sum += A[i+2];
sum += A[i+3];

}
// handle leftover, if needed
for (; i < N; i += 1)

sum += A[i];

6

automatic loop unrolling

loop unrolling is easy for compilers

…but often not done or done very much

why not?

can be slower if small number of iterations

larger code — could exceed instruction cache space

7

automatic loop unrolling

loop unrolling is easy for compilers

…but often not done or done very much

why not?

can be slower if small number of iterations

larger code — could exceed instruction cache space

7

loop unrolling performance

on my laptop with 992 elements (fits in L1 cache)
times unrolled cycles/element instructions/element
1 1.33 4.02
2 1.03 2.52
4 1.02 1.77
8 1.01 1.39
16 1.01 1.21
32 1.01 1.15

instruction cache/etc. overhead

1.01 cycles/element — latency bound
8

data flow model and limits

sum

+

+

+

+ sum (final)

load

load

load

load

A + i

+ 1

+ 1

+ 1

three ops/cycle
(if each one cycle)need to do additions
one-at-a-time
book’s name: critical path

9

data flow model and limits

sum

+

+

+

+ sum (final)

load

load

load

load

A + i

+ 1

+ 1

+ 1

three ops/cycle
(if each one cycle)

need to do additions
one-at-a-time
book’s name: critical path

9

data flow model and limits

sum

+

+

+

+ sum (final)

load

load

load

load

A + i

+ 1

+ 1

+ 1

three ops/cycle
(if each one cycle)

need to do additions
one-at-a-time
book’s name: critical path

9

better data-flow

sum1

+

+

+

sum2

+

+

+

load

load

load

load

load

load

A + i

+ 2

+ 2

A + i + 1

+ 2

+ 2

+

sum (final)

6 ops/time
two sum adds/time

4 units of time — 7 adds

10

better data-flow

sum1

+

+

+

sum2

+

+

+

load

load

load

load

load

load

A + i

+ 2

+ 2

A + i + 1

+ 2

+ 2

+

sum (final)

6 ops/time
two sum adds/time

4 units of time — 7 adds

10

better data-flow

sum1

+

+

+

sum2

+

+

+

load

load

load

load

load

load

A + i

+ 2

+ 2

A + i + 1

+ 2

+ 2

+

sum (final)

6 ops/time
two sum adds/time

4 units of time — 7 adds

10

multiple accumulators

int i;
long sum1 = 0, sum2 = 0;
for (i = 0; i + 1 < N; i += 2) {

sum1 += A[i];
sum2 += A[i+1];

}
// handle leftover, if needed
if (i < N)

sum1 += A[i];
sum = sum1 + sum2;

11

multiple accumulators performance

on my laptop with 992 elements (fits in L1 cache)

16x unrolling, variable number of accumulators
accumulators cycles/element instructions/element
1 1.01 1.21
2 0.57 1.21
4 0.57 1.23
8 0.59 1.24
16 0.76 1.57

starts hurting after too many accumulators

why?
12

multiple accumulators performance

on my laptop with 992 elements (fits in L1 cache)

16x unrolling, variable number of accumulators
accumulators cycles/element instructions/element
1 1.01 1.21
2 0.57 1.21
4 0.57 1.23
8 0.59 1.24
16 0.76 1.57

starts hurting after too many accumulators

why?
12

8 accumulator assembly

sum1 += A[i + 0];
sum2 += A[i + 1];
...
...

addq (%rdx), %rcx // sum1 +=
addq 8(%rdx), %rcx // sum2 +=
subq $−128, %rdx // i +=
addq −112(%rdx), %rbx // sum3 +=
addq −104(%rdx), %r11 // sum4 =+
...
....
cmpq %r14, %rdx

register for each of the sum1, sum2, …variables:
13

16 accumulator assembly

compiler runs out of registers

starts to use the stack instead:
movq 32(%rdx), %rax // get A[i+13]
addq %rax, −48(%rsp) // add to sum13 on stack

code does extra cache accesses

also — already using all the adders available

so performance increase not possible

14

multiple accumulators performance

on my laptop with 992 elements (fits in L1 cache)

16x unrolling, variable number of accumulators
accumulators cycles/element instructions/element
1 1.01 1.21
2 0.57 1.21
4 0.57 1.23
8 0.59 1.24
16 0.76 1.57

starts hurting after too many accumulators

why?
15

maximum performance

2 additions per element:
one to add to sum
one to compute address

3/16 add/sub/cmp + 1/16 branch per element:
loop overhead
compiler not as efficient as it could have been

my machine: 4 add/etc. or branches/cycle
4 copies of ALU (effectively)

(2 + 2/16 + 1/16 + 1/16) ÷ 4 ≈ 0.57 cycles/element

16

multiple accumulators — multiply

same as before — but with multiply not add
accumulators cycles/element instructions/element
1 2.93(??) 1.21
2 1.51 1.21
4 1.02 1.23
8 1.03 1.24
16 1.05 1.64

throughput: 1 cycle/multiply (max of my hardware)

each takes ~3 cycles (according to Intel manual)
max throughput: at least 3 active at any time

17

other loop unrolling notes

full loop unrolling can be really good

no loop overhead at all

may help compiler make other optimizations
easier to reason about code without loop

18

compilers manage register usage

usually do a good job

keep things in registers if possible

but won’t tell you if they start using the stack instead

common reason for “optimization” to hurt
performance

19

remove redundant operations (1)

char number_of_As(const char *str) {
int count = 0;
for (int i = 0; i < strlen(str); ++i) {

if (str[i] == 'a')
count++;

}
return count;

}

20

remove redundant operations (1,
fix)

int number_of_As(const char *str) {
int count = 0;
int length = strlen(str);
for (int i = 0; i < length; ++i) {

if (str[i] == 'a')
count++;

}
return count;

}

call strlen once, not once per character!
Big-Oh improvement!

21

remove redundant operations (1,
fix)

int number_of_As(const char *str) {
int count = 0;
int length = strlen(str);
for (int i = 0; i < length; ++i) {

if (str[i] == 'a')
count++;

}
return count;

}

call strlen once, not once per character!
Big-Oh improvement!

21

remove redundant operations (2)

int shiftArray(int *source, int *dest, int N, int amount) {
for (int i = 0; i < N; ++i) {

if (i + amount < N)
dest[i] = source[i + amount];

else
dest[i] = source[N − 1];

}
}

compare i + amount to N many times

22

remove redundant operations (2,
fix)

int shiftArray(int *source, int *dest, int N, int amount) {
int i;
for (i = 0; i + amount < N; ++i) {

dest[i] = source[i + amount];
}
for (; i < N; ++i) {

dest[i] = source[N − 1];
}

}

eliminate comparisons

23

constant multiplies/divides (1)

unsigned int fiveEights(unsigned int x) {
return x * 5 / 8;

}

fiveEights:
leal (%rdi,%rdi,4), %eax
shrl $3, %eax
ret

24

constant multiplies/divides (2)

int oneHundredth(int x) {
return x / 100;

}

oneHundredth:
movl %edi, %eax
movl $1374389535, %edx
sarl $31, %edi
imull %edx
sarl $5, %edx
movl %edx, %eax
subl %edi, %eax
ret

25

constant multiplies/divides

compiler is very good at handling

…but need to actually use constants

26

optimizing real programs

spend effort where it matters

e.g. 90% of program time spent reading files, but
optimize computation?

e.g. 90% of program time spent in routine A, but
optimize B?

27

profilers

first step — tool to determine where you spend time

tools exist to do this for programs

example on Linux: perf

28

perf usage

sampling profiler
stops periodically, takes a look at what’s running

perf record OPTIONS program
example OPTIONS:
-F 1500 — record 1500/second
--call-graph=dwarf — record stack traces

perf report or perf annotate

29

children/self

“children” — samples in function or things it called

“self” — samples in function alone

30

demo

31

other profiling techniques

count number of times each function is called

not sampling — exact counts, but higher overhead
might give less insight into amount of time

32

tuning optimizations

biggest factor: how fast is it actually

setup a benchmark
make sure it’s realistic (right size? uses answer? etc.)

compare the alternatives

33

cache feature: prefetching

processors can bring values into cache before
requested

called prefetching

method one: CPU looks for periodic access patterns
mostly just makes code faster

method two: explicit hints from programmer
(“prefetch instruction”)

34

vector instructions

modern processors have registers that hold “vector”
of values

example: X86-64 has 128-bit registers
4 ints or 4 floats or 2 doubles or …

128-bit registers named %xmm0 through %xmm15

instructions that act on all values in register

35

example vector instruction

paddd %xmm0, %xmm1 (packed add dword (32-bit))

Suppose registers contain (interpreted as 4 ints)
%xmm0: [1, 2, 3, 4]
%xmm1: [5, 6, 7, 8]

Result will be:
%xmm1: [6, 8, 10, 12]

36

vector instructions

void add(int * restrict a, int * restrict b) {
for (int i = 0; i < 128; ++i)

a[i] += b[i];
}

add:
xorl %eax, %eax // init. loop counter

the_loop:
movdqu (%rdi,%rax), %xmm0 // load 4 from A
movdqu (%rsi,%rax), %xmm1 // load 4 from B
paddd %xmm1, %xmm0 // add 4 elements!
movups %xmm0, (%rdi,%rax) // store 4 in A
addq $16, %rax // +4 ints = +16
cmpq $512, %rax // 512 = 4 * 128
jne the_loop
rep ret

37

wiggles on prior graphs

0 200 400 600 800 1000
N

0.0

0.1

0.2

0.3

0.4

0.5 cycles per multiply/add [optimized loop]

unblocked
blocked

variance from this optimization

multiples of 8 were easier with naive implementation

38

vector instructions efficiency

do a lot more work per instruction

easy to implement: more copies of ALU

hard for compilers to use
need to compress 4 loop iterations into one
what if some operation doesn’t have obvious
instruction?
what if there might be aliasing?

but modern compilers sometimes manage to do this

39

prefetching

processors try to fetch blocks into cache before
requested

main method: look for periodic patterns

usually this is just automatic

if not — special instructions to explicitly trigger

…or make your pattern more periodic

40

branch prediction

unpredictable branches are really slow on modern
CPUs

30+ mispredicted instructions squashed

what to do?
conditional moves?
less branches?

but — modern branch predictors usually right

41

	Loop optimizations
	Loop unrolling

	Multiply/divide
	Profilers, etc.

	Misc: Prefetching/SIMD

