Exceptions and Processes

Samira Khan
April 18, 2017



Control Flow

* Processors do only one thing:

* From startup to shutdown, a CPU simply reads and executes (interprets)
a sequence of instructions, one at a time

* This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst;
inst,

Time inst;
inst,
<shutdown>



Altering the Control Flow

e Up to now: two mechanisms for changing control flow:
* Jumps and branches
e Call and return
React to changes in program state

* Insufficient for a useful system:
Difficult to react to changes in system state

e Data arrives from a disk or a network adapter
* Instruction divides by zero

 User hits Ctrl-C at the keyboard

* System timer expires

» System needs mechanisms for “exceptional control flow”



Exceptional Control Flow

* Exists at all levels of a computer system

* Low level mechanisms

* 1. Exceptions

* Change in control flow in response to a system event
(i.e., change in system state)

* Implemented using combination of hardware and OS software

* Higher level mechanisms

2. Process context switch
* Implemented by OS software and hardware timer
* Overlaps execution with useful work from other process

* 3. Signals

* Implemented by OS software



Today

* Exceptional Control Flow
* Exceptions
* Processes

* Process Control



Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
* Kernel is the memory-resident part of the OS

* Examples of events: Divide by 0, arithmetic overflow, page
fault, 1/O request completes, typing Ctrl-C

User code Kernel code

«

Event =—— |_current Exception .
|_next Exception processing
by exception handler

* Return to |_current
* Return to |_next
*Abort




Exception Tables

Exception
numbers

Y

OL

n-1

Exception
Table

Code for
exception handler O

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

* Each type of event has a
unigue exception number k

* k =index into exception table
(a.k.a. interrupt vector)

e Handler k is called each time
exception k occurs



Running the Exception Handler

* Hardware saves the old program counter

* |dentifies location of exception handler via table
* Then jumps to that location

* OS code can save registers, etc.



(partial) Taxonomy

ECF

Asynchronous

/

Synchronous

I

Interrupts

Traps

Faults

Aborts




Asynchronous Exceptions (Interrupts)

» Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
* Handler returns to “next” instruction

* Examples:

* Timer interrupt

* Every few ms, an external timer chip triggers an interrupt

* Used by the kernel to take back control from user programs
* |/O interrupt from external device

* Hitting Ctrl-C at the keyboard

* Arrival of a packet from a network

* Arrival of data from a disk



Synchronous Exceptions

* Caused by events that occur as a result of executing
an instruction:
* Traps
* Intentional

* Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

* Faults
* Unintentional but possibly recoverable

* Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

* Either re-executes faulting (“current”) instruction or aborts
e Aborts

* Unintentional and unrecoverable

* Examples: illegal instruction, parity error, machine check

* Aborts current program



Note on Terminology

* Real world does not use consistent terms for exceptions
* We will follow textbook’s terms in this course

e However, in real world:
* ‘interrupt’ meaning what we call ‘exception’ (x86)

* ‘exception’ meaning what we call “fault’
* ‘fault’ meaning what we call ‘fault’ or ‘abort’ (ARM)

e ...and more



System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

13



System Call Example: Opening File

e User calls: open (filename,

options)

e Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open 1s syscall #2

e5d7e: 0f 05 syscall # Return value in S%rax

e5d80: 48 3d 01 fo ff ff cmp  $OxXFFfffffffffffO01,%rax

e5Sdfa: c3 retq

User code Kernel code Srax contains syscall number

Other arguments in $rdi,

syscalld Exception $rsi, $rdx, srl0, 3r8, $r9
cmp Return value in $rax

N Open flle
Returns

y

Negative value is an error
corresponding to negative
errno



SySte M Ca | | Almost like a functlon caII

Transfer of control
* User calls: open (fl * On return, executes next instruction
Passes arguments using calling convention

* Calls __open functic .
e Getsresultin $rax

00000000000e5d70 < Qne Important exception!

e5d79: b8 02 00 E’.‘ffwte‘: bytKim?'_l
e5d7e:  Of 05 ITferent set of privileges

e5d80: 48 3d 91 ° And other differences:
o e E.g., “address” of “function” is in $rax
ebdfa: c3 * Useserrno

* Etc.
User code Kernel code m Srax contains syscall number

m Otherargumentsin $rdi,
syscally, Exception $rsi, $rdx, $rl10, $r8, $r9

cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

v



Fault Example: Page Fault

int a[1000];
» User writes to memory location main ()
{
* That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10
User code Kernel code

' Exception: page fault

movl \ >
N Copy page from
Return and disk to memory

| reexecute movl

y




Fault Example: Invalid Memory Reference

int a[1000];
main ()
{
al[5000] = 13;
}
80483b7: c7 05 60 3 04 08 0d movl $0xd, 0x804e360
User code Kernel code

l Exception: page fault

movl >

Detect invalid address

A 4

» Signal process

* Sends SIGSEGYV signal to user process

* User process exits with “segmentation fault”



Today

* Exceptional Control Flow
* Exceptions

* Processes

* Process Control

18



Processes

* Definition: A process is an instance of a
running program.

* One of the most profound ideas in computer
science

* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

* Logical control flow

* Each program seems to have exclusive use of the CPU

* Provided by kernel mechanism called context switching
* Private address space

* Each program seems to have exclusive use of main
memory.

* Provided by kernel mechanism called virtual memory

Memory

Stack

Heap

Data

Code

CPU

Registers




Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data ses Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

¢ Computer runs many processes simultaneously
* Applications for one or more users
* Web browsers, email clients, editors, ...

* Background tasks
* Monitoring network & 1/0 devices



Multiprocessing Example

Disks:

PID
99217-
33051
33006
84286
84285
559339~
54751
54739
54737
54719
54701
54661
54659

G2010

COMMAND
Microsoft Of
usbmuxd
iTunesHelper
bash

xterm
Microsoft Ex
sleep
launchdadd
top
automountd
ocspd

Grab

cookied

mcdLianl

#CPU
0,0
0,0

+
+
+
+
+
+

+
+
+

+

Mo oSO oo

+

0
0
0
0
0
0
&
0
0
0
0
0

* Running program
. System has 123 processes, 5 of which are active
* |dentified by Process ID (PID)

X| Xterm

Processes: 123 total, 5 running, 9 stuck, 1039 sleeping, 611 threads
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3.27% user, 5,15% sys, 91,56% idle
SharedLibs: 576K resident, OB data, OB linkedit,
MemRegions: 27958 total, 1127M resident, 35M private, 494M shared,
PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,
YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,
Networks: packets: 41046228/11G in, B6083096/77G out,
17874391/349G read, 12847373/594G written,

TIME #TH  #lI0  #PORT #MREG RPRVT
02:28.34 4 1 202 418 21M

00:04,10 3 1 47 B6 436K
00:01,23 2 1 5 78 728K
00:00,11 1 0 20 24 224K
00:00,83 1 0 32 73 BSEK
21:58,97 10 3 360 954 16M

00:00,00 1 0 17 20 92K

00:00,00 2 1 33 50 488K
00:02,53 171 0 30 29  1416K
00:00,02 7 1 53 64 860K
00:00,05 4 1 61 54  1268K
00:02,75 6 3 222+ 383+ 15M+
00:00,15 2 1 40 B1  3316K
AN+t R7 A 1 &7 a1 7ROAK

“top” on Ma

RSHRD
24H
216K
3124K
732K
872K
65H
212K
220K
216K
216K
2644K
26M+
224K

74101

RSIZE
21H
480K
1124K
484K
632K
46H
360K
1736K
2124K
2184K
3132K
40M+
4088K

1EM

YPRWT
66M
BOM
43H
174
9728K
114H
9632K
48M
174
53
50
7o+
42H

A9H

11447307

YSIZE
763M
24221
2429M
2378M
23821
1057H
2370
2409H
2378M
2413H
2426M
2556M+
2411H

2420M

21



Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data : Data cee Data
Code : Code Code
Saved Saved Saved
registers : registers registers

CPU

Registers

* Single processor executes multiple processes concurrently
* Process executions interleaved (multitasking)
» Address spaces managed by virtual memory system (later in course)
* Register values for nonexecuting processes saved in memory



Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap | : Heap Heap
Data : Data cee Data
Code : Code Code
Saved Saved Saved
registers : registers registers
CPU
Registers

* Save current registers in memory



Multiprocessing: The (Traditional) Reality
Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

» Schedule next process for execution



Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data e, Data
Code Code : Code
Saved Saved Saved
registers - | _registers : registers
N
CPU
Registers

* Load saved registers and switch address space (context switch)



Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data - Data e, Data
Code Code : Code
Saved Saved Saved
registers . - |_registers : registers
CPU— 1) CPU [t e Multicore processors
Registers | |: :[ [ Resgisters | |: * Multiple CPUs on single chip
................................ : e Share main memory (and some
caches)
* Each can execute a separate
process

* Scheduling of processors onto cores
done by kernel



Concurrent Processes

* Each process is a logical control flow.

* Two processes run concurrently (are concurrent) if their
flows overlap in time

* Otherwise, they are sequential

* Examples (running on single core):
 Concurrent: A&B,A&C
e Sequential: B& C

Process A Process B Process C

Time




User View of Concurrent Processes

* Control flows for concurrent processes are physically
disjoint in time

* However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time N




Context Switching

* Processes are managed by a shared chunk of memory-
resident OS code called the kernel

* Important: the kernel is not a separate process, but rather
runs as part of some existing process.

* Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code } context switch
Time
user code

kernel code } context switch

user code



Context

* all registers values

* %rax %rbx, ..., %rsp, ...

 condition codes

* program counter

* j.e. all visible state in your CPU except memory



Hmmm, How Does This Work?!

00007FFFFFFFFFFF

400000
000000

Solution: Virtual Memory (next lecture)

Process 1

Stack

1

Shared
Libraries

Heap

Data

Text

Process 2

Stack

!

Shared
Libraries

Heap

Data

Text

00007FFFFFFFFFFF

400000
000000

Process n
Stack

1

Shared
Libraries

Heap

Data

Text

31



Context

* all registers values

* %rax %rbx, ..., %rsp, ...

 condition codes

* program counter

» address space: map from program to real addresses



Today

* Exceptional Control Flow
* Exceptions
* Processes

* Process Control

33



System Call Error Handling

* On error, Linux system-level functions typically return -1
and set global variable errno to indicate cause.

 Hard and fast rule:

* You must check the return status of every system-level function
* Only exception is the handful of functions that return void

* Example:

if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %$s\n", strerror (errno));
exit (-1);




Error-reporting functions

e Can simplify somewhat using an error-reporting function:

void unix error(char *msg) /* Unix-style error */

{

W o

fprintf (stderr, $s: %$s\n", msg, strerror (errno));

exit (-1);

if ((pid = fork()) < 0)
unix error ("fork error");

35



Error-handling Wrappers

* We simplify the code we present to you even further by using error-handling wrappers:

pid t Fork(void)
{
pid t pid;

if ((pid = fork()) < 0)
unix error ("Fork error");
return pid;

pid = Fork();

* NOT what you generally want to do in a real application



Creating and Terminating Processes

From a programmer’s perspective, we can think of a
process as being in one of three states

* Running

* Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped

* Process execution is suspended and will not be scheduled
until further notice (next lecture when we study signals)

* Terminated
* Process is stopped permanently



Terminating Processes

* Process becomes terminated for one of three reasons:

» Receiving a signal whose default action is to terminate (next
lecture)

e Returning from the main routine
 Calling the exit function

*volid exit (int status)
 Terminates with an exit status of status
* Convention: normal return status is O, nonzero on error

* Another way to explicitly set the exit status is to return an
integer value from the main routine

e exit is called once but never returns.



Creating Processes

* Parent process creates a new running child process
by calling fork

* int fork(void)
e Returns O to the child process, child’s PID to parent
process

 Child is almost identical to parent:

* Child get an identical (but separate) copy of the parent’s virtual
address space.

* Child has a different PID than the parent

 fork s interesting (and often confusing) because
it is called once but returns twice



fork Example

int main(int argc,

{

char** argv)

m Call once, return twice
m Concurrent execution

pid t pid;
int x = 1; ® Can’t predict execution
order of parent and child
pid = Fork();
if (pid == 0) { /* Child */
printf ("child x=%d\n", ++x);
return O;
1
/* Parent */
printf ("parent: x=%d\n", --x);
return O;
} fork.c
linux> ./fork linux> ./fork linux> ./fork linux> ./fork
parent: x=0 child xX=2 parent: x=0 parent: x=0
child X=2 parent: x=0 child X=2 child X=2




fork Example

int main(int argc,

{

char** argv)

pid t pid;

int x = 1;

pid = Fork();

if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x);
printf ("child : x=%d\n", ++x);

return 0;

}

/* Parent */
printf ("parent:
printf ("parent:
return O;

—=X);
—=X);

x=%d\n",
x=%d\n",

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

= x has avalue of 1 when
fork returns in parent and
child

= Subsequent changes to x
are independent

linux> ./fork
parent: x=0
child : x=2
parent: x=-1
child : x=3




fork Example

int main(int argc,

{

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
printf ("child :
return O;

}

/* Parent */
printf ("parent:
return O0;

x=%d\n",

char** argv)

/* Child */
x=%d\n",

++x) ;

—=X);

fork.c

linux> ./fork
parent: x=0
child : x=2

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

® x has avalue of 1 when
fork returns in parent and
child

= Subsequent changes to x
are independent

" stdout isthe samein
both parent and child



Modeling fork with Process Graphs

* A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
* Each vertex is the execution of a statement
* a->b means a happens before b
* Edges can be labeled with current value of variables



Process Graph Example

int main(int argc,
{

pid t pid;

int x = 1;

pid = Fork();
if

return 0;
/* Parent */

printf ("parent:
return O;

(pid == 0) {
printf ("child

char** argv)

/* Child */

x=%d\n", ++x);

x=%d\n", --x);

fork.c

child: x=2
>0 >0
printf exit
x==1 parent: x=0
@ >@ #..
main for printf exit
k

Child

Parent

44



fork Example: Two consecutive forks

void fork2 ()

{
printf ("LO\n") ;

fork () ;
printf ("L1\n");
fork () ;

printf ("Bye\n") ;
} forks.c

L1l
printf
L0 Ll
@ >® >
printf for printf

k

Feasible output:
LO

L1

Bye

Bye

L1

Bye

Bye

Bye
°
printf
Bye

fork printf

Bye
)
printf
Bye

fork printf

Infeasible output:
L0

Bye

L1

Bye

L1

Bye

Bye

45



fork Example: Nested forksin

parent

void fork4 ()

{

printf ("LO\n") ;

if (fork() != 0) {
printf ("L1\n");
1if (fork() != 0) {

printf ("L2\n") ;
}
}
printf ("Bye\n") ;
forks.c

Bye

LO

pr=intf

Bye
prg.ntf

L2 Bye
ro—————>

printf fork printf £

Feasible output:
LO

L1

Bye

Bye

L2

Bye

ork printf printf

Infeasible output:
LO

Bye

Ll

Bye

Bye

L2

46



fork Example: Nested forksin

children

void forkb5 ()
{
printf ("LO\n") ;
if (fork() == 0) {
printf ("L1\n");
if (fork() == 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
} forks.c

Ll

L2 Bye

»0.
printf

L0 Bye
o ————r—>®
printf fork printf

Feasible output:
L0

Bye

L1

L2

Bye

Bye

pig.ntf pJ.EIntf
Bye

fork printf

Infeasible output:
L0

Bye

L1

Bye

Bye

L2

47



execve: Loading and Running Programs

* int execve(char *filename, char *argv([], char *envpl[])

* Loads and runs in the current process:
* Executable file filename

* Can be object file or script file (e.g., #! /bin/bash)
* ..with argument list argv

* By convention argv[0]==filename
* ..and environment variable list envp
* “name=value” strings (e.g., USER=droh)
* Overwrites code, data, and stack
* Retains PID, open files and signal context

e Called once and never returns
» ...except if thereis an error



execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp [n-1] ——> "PWD=/usr/droh"
: envp [0] —> "USER=droh"
environ >
myargv[argc] = NULL
(argc == 3) myargv[z] ——> "/usr/include"
myargv[l] 5 "_1t"
myargv ———> a2 ey [0 —> "/bin/1s"

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv[0], myargv, environ) < 0) {
printf ("$s: Command not found.\n", myargv[0]);
exit (1) ;




summary

* Exceptions
* Events that require nonstandard control flow
* Generated externally (interrupts) or internally (traps and faults)

* Processes
* At any given time, system has multiple active processes
* Only one can execute at a time on any single core

* Each process appears to have total control of
processor + private memory space



Summary (cont.)

e Spawning processes
e Call fork
* One call, two returns

* Process completion
e Callexit
* One call, no return

* Loading and running programs
* Call execve (or variant)
* One call, (normally) no return



Exceptions and Processes

Samira Khan
April 18, 2017



