4/18/17

Exceptions and Processes

Samira Khan
April 18,2017

Control Flow

* Processors do only one thing:
* From startup to shutdown, a CPU simply reads and executes (interprets)
a sequence of instructions, one at a time
 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst;
inst,
Time insts
inst,

shutdown>

Altering the Control Flow

* Up to now: two mechanisms for changing control flow:
« Jumps and branches
* Call and return
React to changes in program state

« Insufficient for a useful system:
Difficult to react to changes in system state
« Data arrives from a disk or a network adapter
* Instruction divides by zero
* User hits Ctrl-C at the keyboard
* System timer expires

« System needs mechanisms for “exceptional control flow”

Exceptional Control Flow

* Exists at all levels of a computer system

* Low level mechanisms
* 1. Exceptions

+ Change in control flow in response to a system event
(i.e., change in system state)

* Implemented using combination of hardware and OS software
* Higher level mechanisms
* 2. Process context switch
* Implemented by OS software and hardware timer
+ Overlaps execution with useful work from other process
* 3. Signals
* Implemented by OS software

4/18/17

Today

* Exceptional Control Flow
* Exceptions

* Processes

* Process Control

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page
fault, I/O request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler
* Return to |_current
*Return to |_next
*Abort

Exception Tables

Code for * Each type of event has a
Exception exception handler 0 unique exception number k
Table /[W

exceptionhandler . + k= index into exception table

(a.k.a. interrupt vector)

Code for
2 exception handler 2

* Handler kis called each time
exception k occurs

Code for
exception handler n-1

Running the Exception Handler

* Hardware saves the old program counter

« |dentifies location of exception handler via table
* Then jumps to that location

* OS code can save registers, etc.

4/18/17

(partial) Taxonom

Asynchronous

Interrupts Traps] [Faults] [Aborts

Asynchronous Exceptions (Interrupts)

* Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
 Handler returns to “next” instruction

* Examples:
* Timer interrupt
* Every few ms, an external timer chip triggers an interrupt
* Used by the kernel to take back control from user programs
« 1/0 interrupt from external device
* Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
* Arrival of data from a disk

Synchronous Exceptions

* Caused by events that occur as a result of executing
an instruction:

* Traps
* Intentional
* Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

* Faults
+ Unintentional but possibly recoverable
+ Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions

* Either re-executes faulting (“current”) instruction or aborts

* Aborts
* Unintentional and unrecoverable
+ Examples: illegal instruction, parity error, machine check
« Aborts current program

Note on Terminology

* Real world does not use consistent terms for exceptions
* We will follow textbook’s terms in this course

* However, in real world:
* ‘interrupt’ meaning what we call ‘exception’ (x86)
* ‘exception’ meaning what we call ‘fault’
 ‘fault’ meaning what we call ‘fault’ or ‘abort’ (ARM)
* ...and more

4/18/17

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

System Call Example: Opening File

« User calls: open (filename, options)

* Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
of 05 syscall # Return value in %rax
48 3d 01 fo ff ff cmp soxfffffffffffffool,srax

[} retq
Wegreart Kernel code m %rax contains syscall number
m Other arguments in $rdi,
=l Exception %rsi, $rdx, $rl0, 8, $r9
&R openfile "™ Return value in trax
Returns = Negative value is an error

corresponding to negative

1 errno "
SySte m Call [Aimostiike a function cai
*+ Transfer of control .
* User calls: open (£i = On return, executes next instruction Fa u lt EXa m ple ‘ Page Fa u lt Int 2[1000];
+ Calls_open functic | Za:ée,s,zﬁuir,r,lzr:::smg calling convention « User writes to memory location main ()
{
—_— + That portion (page) of user’s memory a[500] = 13;
00000000000e5d70 < gne |mportant exception! is currently on disk)
PRy * Executed by Kernel
egg?' gi gg 90 || Different setof privileges 80483b7: <7 05 10 9d 04 08 0d movl $0xd,0x8049d10
e5d7e:
e5d80: 48 3d o1 ° Andother differences:
« E.g, “address” of “function” is in %rax
c3} * Useserrno
* Etc. User code Kernel code
User code Kernel code m %rax contains syscall number 5
Y Exception: page fault
m Other arguments in $rdi, movl
Copy page from

%rsi, $rdx, 3710, 318, 319
Return value in $rax

Negative value is an error
corresponding to negative

errno 15

Exception

syscal
e Open file

Returns

disk to memory

Return an
reexecute mov/

4/18/17

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

movl
Detect invalid address
Signal process

* Sends SIGSEGV signal to user process
* User process exits with “segmentation fault”

Today

* Exceptional Control Flow
* Exceptions

* Processes

* Process Control

Processes

« Definition: A process is an instance of a
running program.
 One of the most profound ideas in computer
science
* Not the same as “program” or “processor”

* Process provides each program with two key AT
abstractions: Stack
* Logical control flow Heap
* Each program seems to have exclusive use of the CPU Data
* Provided by kernel mechanism called context switching Code
* Private address space 0
+ Each program seems to have exclusive use of main
memory.
* Provided by kernel mechanism called virtual memory

Multiprocessing: The Illusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
cPU cPU cpPu

[[Registers] [Resgisters | [[Registers |

« Computer runs many processes simultaneously
* Applications for one or more users
* Web browsers, email clients, editors, ...
+ Background tasks
* Monitoring network & I/O devices

4/18/17

Multiprocessing Example

x| xterm

{
Processes: 123 total, § running, 9 stuck, 109 sleeping, 611 threads 11:47:07
103, 1,13, 1,14 CPU usage: 3,272 user, 5,16% sys, SL.56¢ idle

ata, OB linkedit.
27958 total, 1127H resident, 35M private, 434 shared.
Physhen: 1035H uired, 1974l active, 10621 inactive, 4076H used, 18 free.
VMz 280G usize, 10311 frameuork vsize, 23075213(1) pageins, 5843367(0) pageouts.
Netuorks: packsts: 41046228/115 in, B0B3036/775 out,
Disks: 17874331/3435 read, 12847373/534G written. I

PID COMMAND #CPUTINE _ WIH #4Q WPORT WHREG RPRVT RSHRD RSIZE WPRVT VSIZE
93217~ Hicrosoft OF 0,0 02:28.34 4 1 202 418 21N 24 21H oM 7e3M
33051 usbmod 0. 147 6 4K 216K 480K BOH 2422
3006 1TunesHelper 1055 78 728 32k 1124 43 2429
84286 bash X 020 24 24 TN 48K 1M 2378
84285 xtern X 0 3@ 73 BEK &K 6K g7k 23
55333~ Hicrosoft Ex 0. 3 30 954 1M SH d6M 1LM 1057
54751 sleep 0 17 20 9K 21K 360k 9K 2870M
54733 launchdadd 133 50 4@k 2200 736K 43N 2409
54737 top 0 30 23 146K 216K 2124 1M 2378
54719 autonountd 1 B3 B4 BBOK 216K 20B4K GIM 2413
54701 ocepd 1 BL 54 1283C 2844k 33K G0N 2426
54861 Grab X 3 222+ 383+ 1GM 26He dOMe 7SHe 2956Hs
54659 cookied 0,0 00001152 1 40 6L 336K 22K d0BBK 42 2411

* RURRIAE PFrogram "top” on'Mae
* System has 123 processes, 5 of which are active
* Identified by Process ID (PID)

Multiprocessing: The (Traditional) Reality

Memory
Stack 3 Stack Stack
Heap 9 Heap Heap
Data : Data Data
Code | : Code Code
Saved | Saved Saved

- |Lregisters | [registers registers
cPU

'

« Single processor executes multiple processes concurrently
* Process executions interleaved (multitasking)
+ Address spaces managed by virtual memory system (later in course)
* Register values for nonexecuting processes saved in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack
Heap Heap
B Data Data
Code Code
M e I
registers registers

* Save current registers in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved

registers registers registers

* Schedule next process for execution

4/18/17

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack 3 Stack
Heap Heap . Heap
Data Data 9 oo Data
Code Code . Code

ave ave 5 ave
registers registers | registers
TT
cPU

:

* Load saved registers and switch address space (context switch)

Multiprocessing: The (Modern) Reality

Memory
Stack Stack E Stack
Heap Heap c Heap
Data Data o Data
: [Code Code | - Code
: [Saved Saved | - Saved
« | registers registers | registers

€U |1« Multicore processors

: * Multiple CPUs on single chip
.......... : « Share main memory (and some
caches)
* Each can execute a separate
process
« Scheduling of processors onto cores
done by kernel

Concurrent Processes

* Each process is a logical control flow.
« Two processes run concurrently (are concurrent) if their
flows overlap in time
* Otherwise, they are sequential
« Examples (running on single core):
* Concurrent: A& B,A&C
* Sequential: B & C

Process A Process B Process C
: I
Time | "TTTTooommmoooomisommsooeooo [
[
J [

User View of Concurrent Processes

* Control flows for concurrent processes are physically
disjoint in time

* However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C
T
Time I]
I [

4/18/17

Context Switching

* Processes are managed by a shared chunk of memory-
resident OS code called the kernel
« Important: the kernel is not a separate process, but rather
runs as part of some existing process.

« Control flow passes from one process to another via a

context switch
Process A

Time H

| Process B

user code
kernel code } context switch
user code

kernel code } context switch

user code

Context

« all registers values

* %rax %rbx, ..., %rsp, ...

* condition codes

* program counter

« i.e. all visible state in your CPU except memory

Hmmm, How Does This Work?!

Process 1

Process 2

Process n

stack

Stack

Shared
Libraries

Shared
Libraries

Heap

Heap

Data

Data

Te
400000
000000

Solution: Virtual Memory (next lecture)

0000
Stack

Shared
Libraries

Heap

Data

e
400000
000000

Context

« all registers values

* %rax %rbx, ..., %rsp, ...

« condition codes

* program counter

 address space: map from program to real addresses

4/18/17

Today

* Exceptional Control Flow
* Exceptions

* Processes

* Process Control

System Call Error Handling
« On error, Linux system-level functions typically return -1
and set global variable errno to indicate cause.

* Hard and fast rule:
* You must check the return status of every system-level function
* Only exception is the handful of functions that return void

* Example:

f ((pid = fork()) < 0) (
fprintf (stderr, "fork err
exit(-1);

strerror (errno));

Error-reporting functions

* Can simplify somewhat using an error-reporting function:

d unix_error(char *msg) /* Unix-style e

fprintf (stderr, "$s: %s\n", msg, strerror(errno));
exit(-1);

if ((pid = fork()) < 0)
unix_error ("fork error");

Error-handling Wrappers

* We simplify the code we present to you even further by using error-handling wrappers:

if ((pid = fork()) < 0)
unix_error ("Fork error");
return pid;

pid = Fork()

+ NOT what you generally want to do in a real application

4/18/17

Creating and Terminating Processes

From a programmer’s perspective, we can think of a
process as being in one of three states

* Running
* Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

* Stopped
* Process execution is suspended and will not be scheduled
until further notice (next lecture when we study signals)

* Terminated
* Process is stopped permanently

Terminating Processes

* Process becomes terminated for one of three reasons:
* Receiving a signal whose default action is to terminate (next
lecture)
* Returning from the main routine
* Calling the exi t function

*void exit (int status)
« Terminates with an exit status of status
* Convention: normal return status is 0, nonzero on error

* Another way to explicitly set the exit status is to return an
integer value from the main routine

* exit is called once but never returns.

Creating Processes

* Parent process creates a new running child process
by calling fork

*int fork(void)
* Returns 0 to the child process, child’s PID to parent
process
« Child is almost identical to parent:
* Child get an identical (but separate) copy of the parent’s virtual
address space.
+ Child has a different PID than the parent

» fork is interesting (and often confusing) because
it is called once but returns twice

fork Example

Int main(int acgc, char** argv) m Call once, return twice
t m Concurrent execution

=1; = Can't predict execution
order of parent and child

ild *

: x=%d\n", ++x);

d\n", --x);

return 0;
} fork.c

Tinux> ./fork
parent: x=0
child : x=2

linux> ./fork
child : x=2
parent: x=0

Tinux> ./fork
parent: x=0
child : x=2

Tinux> ./fork
parent: x=0
child : x=2

10

4/18/17

fork Example

main (int argc, char** argv)

: x=%d\n", --x);
: x=%d\n", --x);

pid = Fork();

£ (pid == 0) * Child *
printf (" x=%d\n", ++x);
printf ild : x=8d\n", ++x);
return 0;

m Call once, return twice
m Concurrent execution
® Can't predict execution
order of parent and child
m Duplicate but separate
address space
= x has avalue of 1 when
fork returns in parent and
child
® Subsequent changes to x
are independent

fork Example

T e (e S, @ fen) Call once, return twice
i e . Concurrent execution

=1; = Can't predict execution
order of parent and child
(pid == 0) { /* Child * Duplicate but separate
oo s address space
} = x has avalue of 1 when
. fork returns in parent and

pid = Fork();

* pare .

printf ("parent: x=%d\n", --x); child

return 0; = Subsequent changes to x
} fork.c

are independent
stdout is the same in
both parent and child

Modeling fork with Process Graphs
« A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
* Each vertex is the execution of a statement

* a->b means a happens before b

* Edges can be labeled with current value of variables

Process Graph Example

t main(int argc, char** argv)

{

pid_t

=1;

pid = Fork();

if (pid == 0) { /* C
printf ("child
return 0;

printf ("
return 0;

11

4/18/17

fork Example: Two consecutive forks

{

oid fork2()
L1
Prihtt

printf ("LO\n"); fork printf

fork() ;

printf("L1\n"); tf
fork () ;

printf ("Bye\n");

forks.c prfnte for printf fork printf

Feasible output: Infeasible output:

fork Example: Nested forks in
parent

forkd ()
printf ("LO\n"); Bye Bye
if (fork() != 0 PEInte Frinte
PELREE (L L0 11 12 Bye
4F feeEe() printf fork printf fork printf printf
T
b
}
printf (" ") . "
corks o | Feasible output Infeasible output:
L0 L0
T
By
Bye
L2
Bye

fork Example: Nested forks in

children

o0id fork5 ()

L2 Bye
printf ("LO\ RERET pEinte
if (fork()

if (fork()
print(

\n"); |printf fork printf

Feasible output: Infeasible output:
0

execve: Loading and Running Programs

+ int execve(char *filename, char *argv[], char *envp[])
* Loads and runs in the current process:
* Executable file filename
+ Can be object file or script file (e.g., # ! /bin/bash)
* ..with argument list argv
* By convention argv[0]==filename
« ..and environment variable list envp
* “name=value” strings (e.g., USER=droh)
* Overwrites code, data, and stack
* Retains PID, open files and signal context
* Called once and never returns
« ..except if there is an error

12

4/18/17

execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp[n-1] —> "PWD=/usr/droh"
environ envp[0] —> "USER=droh
myargvargc] = NULL
(arge == 3) myargv[2] —> "/usr/include"
Tyargv (1] 5 »1cen
nyargy ——s [FETIVI0T W/bin/ls"
T ((pid = Fork()) == z program *
if (execve(myargv[0], mya <0) {
printf ("&s: myargv(0]) ;
exit (1)

Summary

* Exceptions
« Events that require nonstandard control flow
« Generated externally (interrupts) or internally (traps and faults)

* Processes
« At any given time, system has multiple active processes
* Only one can execute at a time on any single core

« Each process appears to have total control of
processor + private memory space

Summary (cont.)

* Spawning processes
 Call fork
* One call, two returns
* Process completion
* Callexit
« One call, no return
* Loading and running programs
* Call execve (or variant)
* One call, (normally) no return

Exceptions and Processes

Samira Khan
April 18, 2017

13

