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Review	from	last	lecture

• Exceptions
• Events	that	require	nonstandard	control	flow
• Generated	externally	(interrupts)	or	internally	(traps	and	faults)

• Processes
• At	any	given	time,	system	has	multiple	active	processes
• Only	one	can	execute	at	a	time	on	any	single	core
• Each	process	appears	to	have	total	control	of	
processor	+	private	memory	space
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Asynchronous	Exceptions	(Interrupts)

• Caused	by	events	external	to	the	processor
• Indicated	by	setting	the	processor’s	interrupt	pin
• Handler	returns	to	“next”	instruction

• Examples:
• Timer	interrupt

• Every	few	ms,	an	external	timer	chip	triggers	an	interrupt
• Used	by	the	kernel	to	take	back	control	from	user	programs

• I/O	interrupt	from	external	device
• Hitting	Ctrl-C	at	the	keyboard
• Arrival	of	a	packet	from	a	network
• Arrival	of	data	from	a	disk
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Synchronous	Exceptions
• Caused	by	events	that	occur	as	a	result	of	executing	
an	instruction:
• Traps

• Intentional
• Examples:	system	calls,	breakpoint	traps,	special	instructions
• Returns	control	to	“next”	instruction

• Faults
• Unintentional	but	possibly	recoverable	
• Examples:	page	faults	(recoverable),	protection	faults	
(unrecoverable),	floating	point	exceptions

• Either	re-executes	faulting	(“current”)	instruction	or	aborts
• Aborts

• Unintentional	and	unrecoverable
• Examples:	illegal	instruction,	parity	error,	machine	check
• Aborts	current	program
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ECF	Exists	at	All	Levels	of	a	System
• Exceptions
• Hardware	and	operating	system	kernel	software

• Process	Context	Switch
• Hardware	timer	and	kernel	software

• Signals
• Kernel	software	and	application	software
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Taxonomy

Asynchronous
Synchronous

Interrupts Traps Faults Aborts

ECF

Signals

Handled	in	user	process

Handled	in	kernel
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Fault	Example:	Invalid	Memory	Reference

• Sends	SIGSEGV signal	to	user	process
• User	process	exits	with	“segmentation	fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl   $0xd,0x804e360

User	code Kernel	code

Exception:	page	fault

Detect	invalid	address
movl

Signal	process
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Signals
• A	signal is	a	small	message	that	notifies	a	process	that	an	
event	of	some	type	has	occurred	in	the	system
• Akin	to	exceptions	and	interrupts
• Sent	from	the	kernel	(sometimes	at	the	request	of	another	
process)	to	a	process

• Signal	type	is	identified	by	small	integer	ID’s	(1-30)
• Only	information	in	a	signal	is	its	ID	and	the	fact	that	it	arrived

ID Name Default	Action Corresponding	Event
2 SIGINT Terminate User	typed	ctrl-c	
9 SIGKILL Terminate Kill	program	(cannot	override	or	ignore)

11 SIGSEGV Terminate	 Segmentation	violation
14 SIGALRM Terminate Timer	signal
17 SIGCHLD Ignore Child	stopped	or	terminated
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Signal	Concepts:	Sending	a	Signal
• Kernel	sends (delivers)	a	signal	to	a	destination	process
by	updating	some	state	in	the	context	of	the	destination	
process

• Kernel	sends	a	signal	for	one	of	the	following	reasons:
• Kernel	has	detected	a	system	event	such	as	divide-by-zero	
(SIGFPE)	or	the	termination	of	a	child	process	(SIGCHLD)
• Another	process	has	invoked	the	kill system	call	to	
explicitly	request	the	kernel	to	send	a	signal	to	the	destination	
process
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Signal	Concepts:	Receiving	a	Signal
• A	destination	process	receives a	signal	when	it	is	forced	by	
the	kernel	to	react	in	some	way	to	the	delivery	of	the	signal

• Some	possible	ways	to	react:
• Ignore the	signal	(do	nothing)
• Terminate the	process	(with	optional	core	dump)
• Catch the	signal	by	executing	a	user-level	function	called	signal	
handler
• Akin	to	a	hardware	exception	handler	being	called	in	response	to	an	
asynchronous	interrupt:

(2) Control passes 
to signal handler 

(3) Signal  
handler runs

(4) Signal handler
returns to 
next instruction

Icurr
Inext

(1) Signal received 
by process 
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Signal	Concepts:	Pending	and	Blocked	
Signals
• A	signal	is	pending if	sent	but	not	yet	received
• There	can	be	at	most	one	pending	signal	of	any	particular	
type
• Important:	Signals	are	not	queued

• If	a	process	has	a	pending	signal	of	type	k,	then	subsequent	signals	of	
type	k	that	are	sent	to	that	process	are	discarded

• A	process	can	block the	receipt	of	certain	signals
• Blocked	signals	can	be	delivered,	but	will	not	be	received	until	
the	signal	is	unblocked

• A	pending	signal	is	received	at	most	once

11



Signal	Concepts:	Pending/Blocked	Bits
• Kernel	maintains	pending and	blocked bit	vectors	
in	the	context	of	each	process
• pending:	represents	the	set	of	pending	signals

• Kernel	sets	bit	k in	pending when	a	signal	of	type	k is	delivered
• Kernel	clears	bit	k in	pending when	a	signal	of	type	k is	received	

• blocked:	represents	the	set	of	blocked	signals
• Can	be	set	and	cleared	by	using	the	sigprocmask function
• Also	referred	to	as	the	signal	mask.
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Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C
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Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C
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Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C1

15



Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C1
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Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C0
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Sending	Signals:	Process	Groups
• Every	process	belongs	to	exactly	one	process	group

Fore-
ground
job

Back-
ground
job	#1

Back-
ground
job	#2

Shell

Child Child

pid=10
pgid=10

Foreground	
process	group	20

Background
process	group	32

Background
process	group	40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return	process	group	of	current	process

setpgid()
Change	process	group	of	a	process	(see	
text	for	details)
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Sending	Signals	with /bin/kill Program
• /bin/kill program	
sends	arbitrary	signal	
to	a	process	or	process	
group

• Examples
• /bin/kill –9 
24818
Send	SIGKILL	to	process	24818

• /bin/kill –9 –
24817
Send	SIGKILL	to	every	process	in	
process	group	24817

linux> ./forks 16 
Child1: pid=24818 pgrp=24817 
Child2: pid=24819 pgrp=24817 

linux> ps
PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh
24818 pts/2    00:00:02 forks 
24819 pts/2    00:00:02 forks 
24820 pts/2    00:00:00 ps
linux> /bin/kill -9 -24817 
linux> ps

PID TTY          TIME CMD 
24788 pts/2    00:00:00 tcsh
24823 pts/2    00:00:00 ps
linux> 
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Sending	Signals	from	the	Keyboard
• Typing	ctrl-c	(ctrl-z)	causes	the	kernel	to	send	a	SIGINT	(SIGTSTP)	to	every	
job	in	the	foreground	process	group.
• SIGINT	– default	action	is	to	terminate	each	process	
• SIGTSTP	– default	action	is	to	stop	(suspend)	each	process

Fore-
ground
job

Back-
ground
job	#1

Back-
ground
job	#2

Shell

Child Child

pid=10
pgid=10

Foreground	
process	group	20

Background
process	group	32

Background
process	group	40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

20



Example	of	ctrl-c and	ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w

PID TTY      STAT   TIME COMMAND
27699 pts/8    Ss     0:00 -tcsh
28107 pts/8    T      0:01 ./forks 17
28108 pts/8    T      0:01 ./forks 17
28109 pts/8    R+     0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY      STAT   TIME COMMAND
27699 pts/8    Ss     0:00 -tcsh
28110 pts/8    R+     0:00 ps w

STAT	(process	state)	Legend:

First	letter:
S:	sleeping
T:	stopped
R:	running

Second	letter:
s:	session	leader
+:	foreground	proc	group

See	“man	ps”	for	more	
details
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Sending	Signals	with	kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */
while(1)

;
}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

} forks.c
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Receiving	Signals
• Suppose kernel	is	returning	from	an	exception	
handler	and	is	ready	to	pass	control	to	process	p

Process	A Process	B

user	code

kernel	code

user	code

kernel	code

user	code

context	switch

context	switch

Time
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Receiving	Signals
• Suppose kernel	is	returning	from	an	exception	handler	
and	is	ready	to	pass	control	to	process	p

• Kernel	computes pnb = pending & ~blocked
• The	set	of	pending	nonblocked signals	for	process	p

• If		(pnb == 0)	
• Pass	control	to	next	instruction	in	the	logical	flow	for	p

• Else
• Choose	least	nonzero	bit	k in	pnb and	force	process	p to	
receive signal	k

• The	receipt	of	the	signal	triggers	some	action by	p
• Repeat	for	all	nonzero	k in	pnb
• Pass	control	to	next	instruction	in	logical	flow	for	p
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Default	Actions

• Each	signal	type	has	a	predefined	default	action,	which	is	one	of:
• The	process	terminates
• The	process	stops	until	restarted	by	a	SIGCONT	signal
• The	process	ignores	the	signal
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Installing	Signal	Handlers
• The	signal function	modifies	the	default	action	associated	
with	the	receipt	of	signal	signum:
• handler_t *signal(int signum, handler_t
*handler)

• Different	values	for	handler:
• SIG_IGN:	ignore	signals	of	type	signum
• SIG_DFL:	revert	to	the	default	action	on	receipt	of	signals	of	type	
signum

• Otherwise,	handler is	the	address	of	a	user-level	signal	handler
• Called	when	process	receives	signal	of	type	signum
• Referred	to	as	“installing”	the	handler
• Executing	handler	is	called	“catching”	or	“handling”	the	signal
• When	the	handler	executes	its	return	statement,	control	passes	back	to	
instruction	in	the	control	flow	of	the	process	that	was	interrupted	by	
receipt	of	the	signal
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Signal	Handling	Example
void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main(int argc, char** argv)
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c
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Signals	Handlers	as	Concurrent	Flows

• A	signal	handler	is	a	separate	logical	flow	(not	process)	
that	runs	concurrently	with	the	main	program

Process	A	

while (1)
;

Process	A

handler(){
…

}

Process	B

Time
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Another	View	of	Signal	Handlers	as	Concurrent	
Flows

Signal	delivered
to	process	A

Signal	received
by	process	A

Process	A Process	B

user	code	(main)

kernel	code

user	code	(main)

kernel	code

user	code	(handler)

context	switch

context	switch

kernel	code

user	code	(main)

Icurr

Inext
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Nested	Signal	Handlers
• Handlers	can	be	interrupted	by	other	handlers

(2) Control passes 
to handler S

Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

Handler S Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main program

(7) Main program 
resumes 
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Blocking	and	Unblocking	Signals

• Implicit	blocking	mechanism
• Kernel	blocks	any	pending	signals	of	type	currently	being	handled.	
• E.g.,	A	SIGINT	handler	can’t	be	interrupted	by	another	SIGINT

• Explicit	blocking	and	unblocking	mechanism
• sigprocmask function

• Supporting	functions
• sigemptyset – Create	empty	set
• sigfillset – Add	every	signal	number	to	set
• sigaddset – Add	signal	number	to	set
• sigdelset – Delete	signal	number	from	set
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Temporarily	Blocking	Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…
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Safe	Signal	Handling
• Handlers	are	tricky	because	they	are	concurrent	
with	main	program	and	share	the	same	global	data	
structures.
• Shared	data	structures	can	become	corrupted.

• For	now	here	are	some	guidelines	to	help	you	avoid	
trouble.	
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Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

34



Async-Signal-Safety
• Function	is	async-signal-safe	if	either	reentrant	(e.g.,	all	
variables	stored	on	stack	frame)	or	non-interruptible	by	
signals.
• Posix guarantees	117	functions	to	be	async-signal-safe	
• Source:	“man 7 signal”
• Popular	functions	on	the	list:

• _exit, write, wait, waitpid, sleep, kill
• Popular	functions	that	are	not on	the	list:

• printf,		sprintf, malloc, exit 
• Unfortunate	fact:	write is	the	only	async-signal-safe	output	function
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Safely	Generating	Formatted	Output
• Use	the	reentrant	SIO	(Safe	I/O	library)

• ssize_t sio_puts(char s[]) /* Put string */
ssize_t sio_puts(char	s[])	/*	Put	string	*/	
{	

return	write(STDOUT_FILENO,	s,	sio_strlen(s));
}

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_puts("So you think you can stop the bomb with ctrl-
c, do you?\n");

sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

} sigintsafe.c
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Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register
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void child_handler(int sig) {
int olderrno = errno;
…
…
…

errno = olderrno;
}

forks.c 38



Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register
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struct two_int { int a, b; } data;

void signal_handler(int signum){
printf ("%d, %d\n", data.a, data.b);
alarm (1);

}

int main (void){
static struct two_int zeros = { 0, 0 }, ones = { 1, 1 };

signal (SIGALRM, signal_handler);

data = zeros;

alarm (1);

while (1)
{data = zeros; data = ones;}

}
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Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register
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Examples	of	Issues	with	Signals

• Pending	signals	are	not	queued

• Race	condition
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• Pending	signals	are	
not	queued
• For	each	signal	type,	one	
bit	indicates	whether	or	
not	signal	is	pending…
• …thus	at	most	one	
pending	signal	of	any	
particular	type.	

• You	can’t	use	signals	
to	count	events,	such	as	
children	terminating.

volatile int ccount = 0;
void child_handler(int sig) {

int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {

Sleep(1);
exit(0);  /* Child exits */

}
}
while (ccount > 0) /* Parent spins */

;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
.	.	.(hangs)

Correct	Signal	
Handling

N == 5

This	code	is	incorrect!
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Correct	Signal	Handling
• Must	wait	for	all	terminated	child	processes
• Put		wait in	a	loop	to	reap	all	terminated	children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
errno = olderrno;

} whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>
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Synchronizing	Flows	to	Avoid	Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;
int n = N;  /* N = 5 */
Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = Fork()) == 0) { /* Child */

Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid);  /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

}

• Simple	shell	with	a	subtle	synchronization	error	
because	it	assumes	parent	runs	before	child.

procmask1.c 45



Synchronizing	Flows	to	Avoid	Races

void handler(int sig)
{

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
errno = olderrno;

}

• SIGCHLD	handler	for	a	simple	shell
• Blocks	all	signals	while	running	critical	code

procmask1.c
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Corrected	Shell	Program	without	Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;
int n = N; /* N = 5 */
Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);

}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid);  /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */

}
exit(0);

}

procmask2.c 47



Summary
• Signals	provide	process-level	exception	handling

• Can	generate	from	user	programs

• Can	define	effect	by	declaring	signal	handler

• Be	very	careful	when	writing	signal	handlers
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Additional	slides
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Portable	Signal	Handling
• Ugh!	Different	versions	of	Unix	can	have	different	signal	
handling	semantics
• Some	older	systems	restore	action	to	default	after	catching	signal
• Some	interrupted	system	calls	can	return	with	errno ==	EINTR
• Some	systems	don’t	block	signals	of	the	type	being	handled	

• Solution:	sigaction

handler_t *Signal(int signum, handler_t *handler)
{

struct sigaction action, old_action;

action.sa_handler = handler;
sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");

return (old_action.sa_handler);
} csapp.c 51



Nonlocal	Jumps:	setjmp/longjmp
• Powerful	(but	dangerous)	user-level	mechanism	for	
transferring	control	to	an	arbitrary	location
• Controlled	to	way	to	break	the	procedure	call	/	return	discipline
• Useful	for	error	recovery	and	signal	handling

• int setjmp(jmp_buf j)
• Must	be	called	before	longjmp
• Identifies	a	return	site	for	a	subsequent	longjmp
• Called	once,	returns	one	or	more	times

• Implementation:
• Remember	where	you	are	by	storing		the	current	register	
context,	stack	pointer,		and PC	value	in	jmp_buf

• Return	0
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setjmp/longjmp (cont)
• void longjmp(jmp_buf j, int i)
• Meaning:

• return	from	the	setjmp remembered	by	jump	buffer	j again	...	
• …	this	time	returning i instead	of	0

• Called	after	setjmp
• Called	once,	but	never returns

• longjmp Implementation:
• Restore	register	context	(stack	pointer,	base	pointer,	PC	value)	
from	jump	buffer	j
• Set	%eax (the	return	value)	to	i
• Jump	to	the	location	indicated	by	the	PC	stored	in	jump	buf j
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setjmp/longjmp Example
• Goal:	return	directly	to	original	caller	from	a	deeply-
nested	function

/* Deeply nested function foo */
void foo(void)
{

if (error1)
longjmp(buf, 1);

bar();
}

void bar(void)
{

if (error2)
longjmp(buf, 2);

}
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jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{

switch(setjmp(buf)) {
case 0:

foo();
break;

case 1:
printf("Detected an error1 condition in foo\n");
break;

case 2:
printf("Detected an error2 condition in foo\n");
break;

default:
printf("Unknown error condition in foo\n");

}
exit(0);

}

setjmp/longjm
p Example	(cont)
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Limitations	of	Nonlocal	Jumps
• Works	within	stack	discipline
• Can	only	long	jump	to	environment	of	function	that	has	
been	called	but	not	yet	completed
jmp_buf env;

P1()
{

if (setjmp(env)) {
/* Long Jump to here */

} else {
P2();

}
}

P2()
{  . . . P2(); . . . P3(); }

P3()
{

longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before	longjmp After	longjmp
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Limitations	of	Long	Jumps	(cont.)
• Works	within	stack	discipline
• Can	only	long	jump	to	environment	of	function	that	has	
been	called	but	not	yet	completed

jmp_buf env;

P1()
{

P2(); P3();
}

P2()
{

if (setjmp(env)) {
/* Long Jump to here */

}
}

P3()
{

longjmp(env, 1);
}

env

P1

P2

At	setjmp

P1

P3
env

At	longjmp

X

P1

P2

P2	returns

env
X
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Putting	It	All	Together:	A	Program	
That	Restarts	Itself	When	ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{

siglongjmp(buf, 1);
}

int main()
{

if (!sigsetjmp(buf, 1)) {
Signal(SIGINT, handler);
Sio_puts("starting\n");

}
else

Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart
starting
processing...
processing...
processing...
restarting
processing...
processing...
restarting
processing...
processing...
processing...

Ctrl-c

Ctrl-c
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Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

• G5:	Declare	global	flags	as	volatile sig_atomic_t
• flag:	variable	that	is	only	read	or	written	(e.g.	flag	=	1,	not	flag++)
• Flag	declared	this	way	does	not	need	to	be	protected		like	other	
globals

59


