
Exceptions	and	Processes
Samira	Khan
April	20,	2017

Review	from	last	lecture

• Exceptions
• Events	that	require	nonstandard	control	flow
• Generated	externally	(interrupts)	or	internally	(traps	and	faults)

• Processes
• At	any	given	time,	system	has	multiple	active	processes
• Only	one	can	execute	at	a	time	on	any	single	core
• Each	process	appears	to	have	total	control	of	
processor	+	private	memory	space

2

Asynchronous	Exceptions	(Interrupts)

• Caused	by	events	external	to	the	processor
• Indicated	by	setting	the	processor’s	interrupt	pin
• Handler	returns	to	“next”	instruction

• Examples:
• Timer	interrupt

• Every	few	ms,	an	external	timer	chip	triggers	an	interrupt
• Used	by	the	kernel	to	take	back	control	from	user	programs

• I/O	interrupt	from	external	device
• Hitting	Ctrl-C	at	the	keyboard
• Arrival	of	a	packet	from	a	network
• Arrival	of	data	from	a	disk

3

Synchronous	Exceptions
• Caused	by	events	that	occur	as	a	result	of	executing	
an	instruction:
• Traps

• Intentional
• Examples:	system	calls,	breakpoint	traps,	special	instructions
• Returns	control	to	“next”	instruction

• Faults
• Unintentional	but	possibly	recoverable	
• Examples:	page	faults	(recoverable),	protection	faults	
(unrecoverable),	floating	point	exceptions

• Either	re-executes	faulting	(“current”)	instruction	or	aborts
• Aborts

• Unintentional	and	unrecoverable
• Examples:	illegal	instruction,	parity	error,	machine	check
• Aborts	current	program

4

ECF	Exists	at	All	Levels	of	a	System
• Exceptions
• Hardware	and	operating	system	kernel	software

• Process	Context	Switch
• Hardware	timer	and	kernel	software

• Signals
• Kernel	software	and	application	software

5

Taxonomy

Asynchronous
Synchronous

Interrupts Traps Faults Aborts

ECF

Signals

Handled	in	user	process

Handled	in	kernel

6

Fault	Example:	Invalid	Memory	Reference

• Sends	SIGSEGV signal	to	user	process
• User	process	exits	with	“segmentation	fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	code Kernel	code

Exception:	page	fault

Detect	invalid	address
movl

Signal	process

7

Signals
• A	signal is	a	small	message	that	notifies	a	process	that	an	
event	of	some	type	has	occurred	in	the	system
• Akin	to	exceptions	and	interrupts
• Sent	from	the	kernel	(sometimes	at	the	request	of	another	
process)	to	a	process

• Signal	type	is	identified	by	small	integer	ID’s	(1-30)
• Only	information	in	a	signal	is	its	ID	and	the	fact	that	it	arrived

ID Name Default	Action Corresponding	Event
2 SIGINT Terminate User	typed	ctrl-c	
9 SIGKILL Terminate Kill	program	(cannot	override	or	ignore)

11 SIGSEGV Terminate	 Segmentation	violation
14 SIGALRM Terminate Timer	signal
17 SIGCHLD Ignore Child	stopped	or	terminated

8

Signal	Concepts:	Sending	a	Signal
• Kernel	sends (delivers)	a	signal	to	a	destination	process
by	updating	some	state	in	the	context	of	the	destination	
process

• Kernel	sends	a	signal	for	one	of	the	following	reasons:
• Kernel	has	detected	a	system	event	such	as	divide-by-zero	
(SIGFPE)	or	the	termination	of	a	child	process	(SIGCHLD)
• Another	process	has	invoked	the	kill system	call	to	
explicitly	request	the	kernel	to	send	a	signal	to	the	destination	
process

9

Signal	Concepts:	Receiving	a	Signal
• A	destination	process	receives a	signal	when	it	is	forced	by	
the	kernel	to	react	in	some	way	to	the	delivery	of	the	signal

• Some	possible	ways	to	react:
• Ignore the	signal	(do	nothing)
• Terminate the	process	(with	optional	core	dump)
• Catch the	signal	by	executing	a	user-level	function	called	signal	
handler
• Akin	to	a	hardware	exception	handler	being	called	in	response	to	an	
asynchronous	interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

10

Signal	Concepts:	Pending	and	Blocked	
Signals
• A	signal	is	pending if	sent	but	not	yet	received
• There	can	be	at	most	one	pending	signal	of	any	particular	
type
• Important:	Signals	are	not	queued

• If	a	process	has	a	pending	signal	of	type	k,	then	subsequent	signals	of	
type	k	that	are	sent	to	that	process	are	discarded

• A	process	can	block the	receipt	of	certain	signals
• Blocked	signals	can	be	delivered,	but	will	not	be	received	until	
the	signal	is	unblocked

• A	pending	signal	is	received	at	most	once

11

Signal	Concepts:	Pending/Blocked	Bits
• Kernel	maintains	pending and	blocked bit	vectors	
in	the	context	of	each	process
• pending:	represents	the	set	of	pending	signals

• Kernel	sets	bit	k in	pending when	a	signal	of	type	k is	delivered
• Kernel	clears	bit	k in	pending when	a	signal	of	type	k is	received	

• blocked:	represents	the	set	of	blocked	signals
• Can	be	set	and	cleared	by	using	the	sigprocmask function
• Also	referred	to	as	the	signal	mask.

12

Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C

13

Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C

14

Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C1

15

Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C1

16

Signal	Concepts:	Sending	a	Signal

Process	A

Process	B

Process	C

kernel

User	level

Pending	for	A Blocked	for	A
Pending	for	B Blocked	for	B
Pending	for	C Blocked	for	C0

17

Sending	Signals:	Process	Groups
• Every	process	belongs	to	exactly	one	process	group

Fore-
ground
job

Back-
ground
job	#1

Back-
ground
job	#2

Shell

Child Child

pid=10
pgid=10

Foreground	
process	group	20

Background
process	group	32

Background
process	group	40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return	process	group	of	current	process

setpgid()
Change	process	group	of	a	process	(see	
text	for	details)

18

Sending	Signals	with /bin/kill Program
• /bin/kill program	
sends	arbitrary	signal	
to	a	process	or	process	
group

• Examples
• /bin/kill –9
24818
Send	SIGKILL	to	process	24818

• /bin/kill –9 –
24817
Send	SIGKILL	to	every	process	in	
process	group	24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

19

Sending	Signals	from	the	Keyboard
• Typing	ctrl-c	(ctrl-z)	causes	the	kernel	to	send	a	SIGINT	(SIGTSTP)	to	every	
job	in	the	foreground	process	group.
• SIGINT	– default	action	is	to	terminate	each	process	
• SIGTSTP	– default	action	is	to	stop	(suspend)	each	process

Fore-
ground
job

Back-
ground
job	#1

Back-
ground
job	#2

Shell

Child Child

pid=10
pgid=10

Foreground	
process	group	20

Background
process	group	32

Background
process	group	40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

20

Example	of	ctrl-c and	ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT	(process	state)	Legend:

First	letter:
S:	sleeping
T:	stopped
R:	running

Second	letter:
s:	session	leader
+:	foreground	proc	group

See	“man	ps”	for	more	
details

21

Sending	Signals	with	kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */
while(1)

;
}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

} forks.c
22

Receiving	Signals
• Suppose kernel	is	returning	from	an	exception	
handler	and	is	ready	to	pass	control	to	process	p

Process	A Process	B

user	code

kernel	code

user	code

kernel	code

user	code

context	switch

context	switch

Time

23

Receiving	Signals
• Suppose kernel	is	returning	from	an	exception	handler	
and	is	ready	to	pass	control	to	process	p

• Kernel	computes pnb = pending & ~blocked
• The	set	of	pending	nonblocked signals	for	process	p

• If		(pnb == 0)	
• Pass	control	to	next	instruction	in	the	logical	flow	for	p

• Else
• Choose	least	nonzero	bit	k in	pnb and	force	process	p to	
receive signal	k

• The	receipt	of	the	signal	triggers	some	action by	p
• Repeat	for	all	nonzero	k in	pnb
• Pass	control	to	next	instruction	in	logical	flow	for	p

24

Default	Actions

• Each	signal	type	has	a	predefined	default	action,	which	is	one	of:
• The	process	terminates
• The	process	stops	until	restarted	by	a	SIGCONT	signal
• The	process	ignores	the	signal

25

Installing	Signal	Handlers
• The	signal function	modifies	the	default	action	associated	
with	the	receipt	of	signal	signum:
• handler_t *signal(int signum, handler_t
*handler)

• Different	values	for	handler:
• SIG_IGN:	ignore	signals	of	type	signum
• SIG_DFL:	revert	to	the	default	action	on	receipt	of	signals	of	type	
signum

• Otherwise,	handler is	the	address	of	a	user-level	signal	handler
• Called	when	process	receives	signal	of	type	signum
• Referred	to	as	“installing”	the	handler
• Executing	handler	is	called	“catching”	or	“handling”	the	signal
• When	the	handler	executes	its	return	statement,	control	passes	back	to	
instruction	in	the	control	flow	of	the	process	that	was	interrupted	by	
receipt	of	the	signal

26

Signal	Handling	Example
void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main(int argc, char** argv)
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c

27

Signals	Handlers	as	Concurrent	Flows

• A	signal	handler	is	a	separate	logical	flow	(not	process)	
that	runs	concurrently	with	the	main	program

Process	A	

while (1)
;

Process	A

handler(){
…

}

Process	B

Time

28

Another	View	of	Signal	Handlers	as	Concurrent	
Flows

Signal	delivered
to	process	A

Signal	received
by	process	A

Process	A Process	B

user	code	(main)

kernel	code

user	code	(main)

kernel	code

user	code	(handler)

context	switch

context	switch

kernel	code

user	code	(main)

Icurr

Inext

29

Nested	Signal	Handlers
• Handlers	can	be	interrupted	by	other	handlers

(2) Control passes
to handler S

Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main program

(7) Main program
resumes

30

Blocking	and	Unblocking	Signals

• Implicit	blocking	mechanism
• Kernel	blocks	any	pending	signals	of	type	currently	being	handled.	
• E.g.,	A	SIGINT	handler	can’t	be	interrupted	by	another	SIGINT

• Explicit	blocking	and	unblocking	mechanism
• sigprocmask function

• Supporting	functions
• sigemptyset – Create	empty	set
• sigfillset – Add	every	signal	number	to	set
• sigaddset – Add	signal	number	to	set
• sigdelset – Delete	signal	number	from	set

31

Temporarily	Blocking	Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

32

Safe	Signal	Handling
• Handlers	are	tricky	because	they	are	concurrent	
with	main	program	and	share	the	same	global	data	
structures.
• Shared	data	structures	can	become	corrupted.

• For	now	here	are	some	guidelines	to	help	you	avoid	
trouble.	

33

Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

34

Async-Signal-Safety
• Function	is	async-signal-safe	if	either	reentrant	(e.g.,	all	
variables	stored	on	stack	frame)	or	non-interruptible	by	
signals.
• Posix guarantees	117	functions	to	be	async-signal-safe	
• Source:	“man 7 signal”
• Popular	functions	on	the	list:

• _exit, write, wait, waitpid, sleep, kill
• Popular	functions	that	are	not on	the	list:

• printf,		sprintf, malloc, exit
• Unfortunate	fact:	write is	the	only	async-signal-safe	output	function

35

Safely	Generating	Formatted	Output
• Use	the	reentrant	SIO	(Safe	I/O	library)

• ssize_t sio_puts(char s[]) /* Put string */
ssize_t sio_puts(char	s[])	/*	Put	string	*/	
{	

return	write(STDOUT_FILENO,	s,	sio_strlen(s));
}

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_puts("So you think you can stop the bomb with ctrl-
c, do you?\n");

sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

} sigintsafe.c
36

Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

37

void child_handler(int sig) {
int olderrno = errno;
…
…
…

errno = olderrno;
}

forks.c 38

Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

39

struct two_int { int a, b; } data;

void signal_handler(int signum){
printf ("%d, %d\n", data.a, data.b);
alarm (1);

}

int main (void){
static struct two_int zeros = { 0, 0 }, ones = { 1, 1 };

signal (SIGALRM, signal_handler);

data = zeros;

alarm (1);

while (1)
{data = zeros; data = ones;}

}

40

0, 0
1, 1

(Skipping some output...)

0, 1
1, 1
1, 0
1, 0
...

Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	
handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

41

Examples	of	Issues	with	Signals

• Pending	signals	are	not	queued

• Race	condition

42

• Pending	signals	are	
not	queued
• For	each	signal	type,	one	
bit	indicates	whether	or	
not	signal	is	pending…
• …thus	at	most	one	
pending	signal	of	any	
particular	type.	

• You	can’t	use	signals	
to	count	events,	such	as	
children	terminating.

volatile int ccount = 0;
void child_handler(int sig) {

int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {

Sleep(1);
exit(0); /* Child exits */

}
}
while (ccount > 0) /* Parent spins */

;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
.	.	.(hangs)

Correct	Signal	
Handling

N == 5

This	code	is	incorrect!

43

Correct	Signal	Handling
• Must	wait	for	all	terminated	child	processes
• Put		wait in	a	loop	to	reap	all	terminated	children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
errno = olderrno;

} whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

44

Synchronizing	Flows	to	Avoid	Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;
int n = N; /* N = 5 */
Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = Fork()) == 0) { /* Child */

Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

}

• Simple	shell	with	a	subtle	synchronization	error	
because	it	assumes	parent	runs	before	child.

procmask1.c 45

Synchronizing	Flows	to	Avoid	Races

void handler(int sig)
{

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
errno = olderrno;

}

• SIGCHLD	handler	for	a	simple	shell
• Blocks	all	signals	while	running	critical	code

procmask1.c

46

Corrected	Shell	Program	without	Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;
int n = N; /* N = 5 */
Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);

}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}
exit(0);

}

procmask2.c 47

Summary
• Signals	provide	process-level	exception	handling

• Can	generate	from	user	programs

• Can	define	effect	by	declaring	signal	handler

• Be	very	careful	when	writing	signal	handlers

48

Exceptions	and	Processes
Samira	Khan
April	20,	2017

Additional	slides

50

Portable	Signal	Handling
• Ugh!	Different	versions	of	Unix	can	have	different	signal	
handling	semantics
• Some	older	systems	restore	action	to	default	after	catching	signal
• Some	interrupted	system	calls	can	return	with	errno ==	EINTR
• Some	systems	don’t	block	signals	of	the	type	being	handled	

• Solution:	sigaction

handler_t *Signal(int signum, handler_t *handler)
{

struct sigaction action, old_action;

action.sa_handler = handler;
sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

if (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");

return (old_action.sa_handler);
} csapp.c 51

Nonlocal	Jumps:	setjmp/longjmp
• Powerful	(but	dangerous)	user-level	mechanism	for	
transferring	control	to	an	arbitrary	location
• Controlled	to	way	to	break	the	procedure	call	/	return	discipline
• Useful	for	error	recovery	and	signal	handling

• int setjmp(jmp_buf j)
• Must	be	called	before	longjmp
• Identifies	a	return	site	for	a	subsequent	longjmp
• Called	once,	returns	one	or	more	times

• Implementation:
• Remember	where	you	are	by	storing		the	current	register	
context,	stack	pointer,		and PC	value	in	jmp_buf

• Return	0

52

setjmp/longjmp (cont)
• void longjmp(jmp_buf j, int i)
• Meaning:

• return	from	the	setjmp remembered	by	jump	buffer	j again	...	
• …	this	time	returning i instead	of	0

• Called	after	setjmp
• Called	once,	but	never returns

• longjmp Implementation:
• Restore	register	context	(stack	pointer,	base	pointer,	PC	value)	
from	jump	buffer	j
• Set	%eax (the	return	value)	to	i
• Jump	to	the	location	indicated	by	the	PC	stored	in	jump	buf j

53

setjmp/longjmp Example
• Goal:	return	directly	to	original	caller	from	a	deeply-
nested	function

/* Deeply nested function foo */
void foo(void)
{

if (error1)
longjmp(buf, 1);

bar();
}

void bar(void)
{

if (error2)
longjmp(buf, 2);

}

54

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{

switch(setjmp(buf)) {
case 0:

foo();
break;

case 1:
printf("Detected an error1 condition in foo\n");
break;

case 2:
printf("Detected an error2 condition in foo\n");
break;

default:
printf("Unknown error condition in foo\n");

}
exit(0);

}

setjmp/longjm
p Example	(cont)

55

Limitations	of	Nonlocal	Jumps
• Works	within	stack	discipline
• Can	only	long	jump	to	environment	of	function	that	has	
been	called	but	not	yet	completed
jmp_buf env;

P1()
{

if (setjmp(env)) {
/* Long Jump to here */

} else {
P2();

}
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{

longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before	longjmp After	longjmp

56

Limitations	of	Long	Jumps	(cont.)
• Works	within	stack	discipline
• Can	only	long	jump	to	environment	of	function	that	has	
been	called	but	not	yet	completed

jmp_buf env;

P1()
{

P2(); P3();
}

P2()
{

if (setjmp(env)) {
/* Long Jump to here */

}
}

P3()
{

longjmp(env, 1);
}

env

P1

P2

At	setjmp

P1

P3
env

At	longjmp

X

P1

P2

P2	returns

env
X

57

Putting	It	All	Together:	A	Program	
That	Restarts	Itself	When	ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{

siglongjmp(buf, 1);
}

int main()
{

if (!sigsetjmp(buf, 1)) {
Signal(SIGINT, handler);
Sio_puts("starting\n");

}
else

Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart
starting
processing...
processing...
processing...
restarting
processing...
processing...
restarting
processing...
processing...
processing...

Ctrl-c

Ctrl-c

58

Guidelines	for	Writing	Safe	Handlers

• G0:	Keep	your	handlers	as	simple	as	possible
• e.g.,	Set	a	global	flag	and	return

• G1:	Call	only	async-signal-safe	functions	in	your	handlers
• printf, sprintf,		malloc,	and	exit are	not	safe!

• G2:	Save	and	restore	errno on	entry	and	exit
• So	that	other	handlers	don’t	overwrite	your	value	of	errno

• G3:	Protect	accesses	to	shared	data	structures	by	
temporarily	blocking	all	signals.	
• To	prevent	possible	corruption

• G4:	Declare	global	variables	as	volatile
• To	prevent	compiler	from	storing	them	in	a	register

• G5:	Declare	global	flags	as	volatile sig_atomic_t
• flag:	variable	that	is	only	read	or	written	(e.g.	flag	=	1,	not	flag++)
• Flag	declared	this	way	does	not	need	to	be	protected		like	other	
globals

59

