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Memory	(Programmer’s	View)	
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Hmmm,	How	Does	This	Work?!
Process	1 Process	2 Process	n

Solution:	Virtual	Memory	(today	and	next	lecture) 3

Today

• Virtual	Memory:	Concepts	
• Benefits	of	VM

• VM	as	a	tool	for	caching
• VM	as	a	tool	for	memory	management
• VM	as	a	tool	for	memory	protection

• Address	translation
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A	System	Using	Physical	Addressing

• Used	in	“simple”	systems	like	embedded	microcontrollers	
in	devices	like	cars,	elevators,	and	digital	picture	frames
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The	Problem
• Physical	memory	is	of	limited	size	(cost)

• What	if	you	need	more?
• Should	the	programmer	be	concerned	about	the	size	of	code/data	blocks	
fitting	physical	memory?

• How	to	manage	data	movement	from	disk	to	physical	memory?
• How	to	ensure	two	processes	do	not	use	the	same	physical	memory?

• Also,	ISA	can	have	an	address	space	greater	than	the	physical	
memory	size

• E.g.,	a	64-bit	address	space	with	byte	addressability
• What	if	you	do	not	have	enough	physical	memory?
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Difficulties	of	Direct	Physical	Addressing
• Programmer	needs	to	manage	physical	memory	space

• Inconvenient	&	hard
• Harder	when	you	have	multiple	processes

• Difficult	to	support	code	and	data	relocation

• Difficult	to	support	multiple	processes
• Protection	and	isolation	between	multiple	processes
• Sharing	of	physical	memory	space

• Difficult	to	support	data/code	sharing	across	processes
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physical mem.

active process’s
region

another process’s
region

Virtual	Memory
• Idea:	Give	the	programmer	the	illusion	of	a	large	address	
space	while	having	a	small	physical	memory

• So	that	the	programmer	does	not	worry	about	managing	
physical	memory	

• Programmer	can	assume	he/she	has	“infinite” amount	
of	physical	memory	

• Hardware	and	software	cooperatively	and	automatically	
manage	the	physical	memory	space	to	provide	the	
illusion

• Illusion	is	maintained	for	each	independent	process
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Abstraction:	Virtual	vs.	Physical	Memory
• Programmer	sees	virtual	memory

• Can	assume	the	memory	is	“infinite”

• Reality: Physical	memory	size	is	much	smaller	than	what	the	programmer	
assumes

• The	system	(system	software	+	hardware,	cooperatively)	maps	virtual	
memory	addresses	are	to	physical	memory

• The	system	automatically	manages	the	physical	memory	space	transparently	to	the	
programmer

+	Programmer	does	not	need	to	know	the	physical	size	of	memory	nor	manage	it	à A	small	physical	
memory	can	appear	as	a	huge	one	to	the	programmer	à Life	is	easier	for	the	programmer

-- More	complex	system	software	and	architecture

A	classic	example	of	the	programmer/(micro)architect	tradeoff
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Basic	Mechanism
• Indirection	(in	addressing)

• Address	generated	by	each	instruction	in	a	program	is	a	“virtual	
address”

• i.e.,	it	is	not	the	physical	address	used	to	address	main	memory

• An	“address	translation” mechanism	maps	this	address	to	a	“physical	
address”

• Address	translation	mechanism	can	be	implemented	in	hardware	and	software	
together
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“At	the	heart	[...]	is	the	notion	that	‘address’	is	a	concept	distinct from	
‘physical	location.’”	Peter	Denning

A	System	Using	Virtual	Addressing

• Used	in	all	modern	servers,	laptops,	and	smart	phones
• One	of	the	great	ideas	in	computer	science
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Virtual	Pages,	Physical	Frames
• Virtual address	space	divided	into	pages
• Physical address	space	divided	into	frames

• A	virtual	page	is	mapped	to
• A	physical	frame,	if	the	page	is	in	physical	memory
• A	location	in	disk,	otherwise

• If	an	accessed	virtual	page	is	not	in	memory,	but	on	disk
• Virtual	memory	system	brings	the	page	into	a	physical	frame	
and	adjusts	the	mapping	à this	is	called	demand	paging

• Page	table	is	the	table	that	stores	the	mapping	of	virtual	
pages	to	physical	frames
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Overview	of	Paging
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Overview	of	Paging
• Map virtual	pages	to	physical	pages

• By	itself,	a virtual	page	is	merely	an	illusion
• Cannot	actually	store	anything
• Needs	to	be	backed-up	by	a	physical	page

• Before	a	virtual	page	can	be	accessed	…
• It	must	be	paired	with	a	physical	page
• I.e.,	it	must	be	mapped to	a	physical	page
• This	mapping	is	stored	in	a	page	table

• On	every	subsequent	access	to	the	virtual	page	…
• Its	mapping	is	looked	up
• Then,	the	access	is	directed	to	the	physical	page
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A	System	with	Virtual	Memory	(Page	based)

• Address	Translation:	The	hardware	converts	virtual	addresses	into	physical	
addresses	via	an	OS-managed	lookup	table	(page	table)
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Paging	in	Intel	80386

• Intel	80386	(Mid	80s)
• 32-bit	processor
• 4KB	virtual/physical	pages

• Q:	What	is	the	size	of	a	virtual	address	space?
• A:	2^32	=	4GB

• Q:	How	many	virtual	pages	per	virtual	address	space?
• A:	4GB/4KB	=	2^20	

• Let	us	assume	that	physical	addresses	are	28	bits
• Q:What	is	the	size	of	the	physical	address	space?

• A:	2^28		=	256MB
• Q: How	many	physical	pages	in	the	physical	address	space?

• A:	256MB/4KB	=	65536
16
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Virtual	Pages
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Virtual	Pages
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Virtual	Pages
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Virtual	Pages
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Intel	80386:	Virtual	Pages
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Translation	
• Assume:	Virtual	Page	7	is	mapped	to	Physical	Page	32
• For	an	access	to	Virtual	Page	7	…

031

011001

1112

0000000111

OffsetVPN
Virtual	Address:

027

011001

1112

0000100000

OffsetPPN
Physical	Address:

Translated
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VPN	→	PPN

• How	to	keep	track	of	VPN	→	PPN	mappings?
• VPN	65	→ PPN	981,
• VPN	3161	→	PPN	1629,
• VPN	9327	→	PPN	524,	…

• Page	Table:	A	“lookup	table”	for	the	mappings
• Can	be	thought	of	as	an	array
• Each	element	in	the	array	is	called	a	page	table	entry	(PTE)
uint32 PAGE_TABLE[1<<20];
PAGE_TABLE[65]=981;
PAGE_TABLE[3161]=1629;
PAGE_TABLE[9327]=524; ...

23

Today

• Virtual	Memory:	Concepts	
• Benefits	of	VM

• VM	as	a	tool	for	caching
• VM	as	a	tool	for	memory	management
• VM	as	a	tool	for	memory	protection

• Address	translation
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Why	Virtual	Memory	(VM)?
• Uses	main	memory	efficiently

• Use	DRAM	as	a	cache	for	parts	of	a	virtual	address	space

• Simplifies	memory	management
• Each	process	gets	the	same	uniform	linear	address	space

• Isolates	address	spaces
• One	process	can’t	interfere	with	another’s	memory
• User	program	cannot	access	privileged	kernel	information	and	
code
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VM	as	a	Tool	for	Caching
• Conceptually, virtual	memory is	an	array	of	N	contiguous	bytes	stored	
on	disk

• The	contents	of	the	array	on	disk	are	cached	in	physical	memory
(DRAM	cache)

• These	cache	blocks	are	called	pages	(size	is	P	=	2p bytes)
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Physical	memory
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Uncached

VP	0
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Virtual	memory

Unallocated
Cached
Uncached
Unallocated
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0
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0

Virtual	pages	(VPs)	
stored	on	disk

Physical	pages	(PPs)	
cached	in	DRAM
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Organization
• DRAM	cache	organization	driven	by	the	enormous	miss	penalty

• DRAM	is	about	10x slower	than	SRAM
• Disk	is	about	10,000x slower	than	DRAM

• Consequences
• Large	page	(block)	size:	typically	4	KB,	sometimes	4	MB
• Fully	associative	

• Any	VP	can	be	placed	in	any	PP
• Requires	a	“large”	mapping	function	– different	from	cache	memories

• Highly	sophisticated,	expensive	replacement	algorithms
• Too	complicated	and	open-ended	to	be	implemented	in	hardware

• Write-back	rather	than	write-through
27

Enabling	Data	Structure:	Page	Table
• A	page	table	is	an	array	of	page	table	entries	(PTEs)	
that	maps	virtual	pages	to	physical	pages.	

• Per-process	kernel	data	structure	in	DRAM
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Page	Hit
• Page	hit:	reference	to	VM	word	that	is	in	physical	memory	(hit)
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Page	Fault
• Page	fault:	reference	to	VM	word	that	is	not	in	physical	
memory	(miss)
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Handling	Page	Fault
• Page	miss	causes	page	fault	(an	exception)
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Handling	Page	Fault
• Page	miss	causes	page	fault	(an	exception)
• Page	fault	handler	selects	a	victim	to	be	evicted	(here	VP	4)
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Handling	Page	Fault
• Page	miss	causes	page	fault	(an	exception)
• Page	fault	handler	selects	a	victim	to	be	evicted	(here	VP	4)
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Handling	Page	Fault
• Page	miss	causes	page	fault	(an	exception)
• Page	fault	handler	selects	a	victim	to	be	evicted	(here	VP	4)
• Offending	instruction	is	restarted:	page	hit!
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Key	point:	Waiting	until	the	miss	to	copy	the	page	to	DRAM	
is	known	as	demand	paging
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Allocating	Pages
• Allocating	a	new	page	(VP	5)	of	virtual	memory.
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Locality	to	the	Rescue	Again!
• Virtual	memory	seems	terribly	inefficient,	but	it	works	
because	of	locality.	

• At	any	point	in	time,	programs	tend	to	access	a	set	of	
active	virtual	pages	called	the	working	set

• Programs	with	better	temporal	locality	will	have	smaller	
working	sets

• If	(working	set	size	<	main	memory	size)	
• Good	performance	for	one	process	after	compulsory	misses

• If	(	SUM(working	set	sizes)	>	main	memory	size	)	
• Thrashing: Performance	meltdown where	pages	are	
swapped	(copied)	in	and	out	continuously
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Today

• Virtual	Memory:	Concepts	
• Benefits	of	VM

• VM	as	a	tool	for	caching
• VM	as	a	tool	for	memory	management
• VM	as	a	tool	for	memory	protection

• Address	translation
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VM	as	a	Tool	for	Memory	Management
• Key	idea:	each	process	has	its	own	virtual	address	space

• It	can	view	memory	as	a	simple	linear	array
• Mapping	function	scatters	addresses	through	physical	memory

• Well-chosen	mappings	can	improve	locality
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VM	as	a	Tool	for	Memory	Management
• Simplifying memory	allocation

• Each	virtual	page	can	be	mapped	to	any	physical	page
• A	virtual	page	can	be	stored	in	different	physical	pages	at	different	
times

• Sharing	code	and	data	among	processes
• Map	virtual	pages	to	the	same	physical	page	(here:	PP	6)
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Today

• Virtual	Memory:	Concepts	
• Benefits	of	VM

• VM	as	a	tool	for	caching
• VM	as	a	tool	for	memory	management
• VM	as	a	tool	for	memory	protection

• Address	translation
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Page-Level	Access	Control	(Protection)
• Not	every	process	is	allowed	to	access	every	page

• E.g.,	may	need	supervisor	level	privilege	to	access	system	pages

• Idea:	Store	access	control	information	on	a	page	basis	in	the	
process’s	page	table

• Enforce	access	control	at	the	same	time	as	translation

à Virtual	memory	system	serves	two	functions	today
Address	translation	(for	illusion	of	large	physical	memory)
Access	control	(protection)
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VM	as	a	Tool	for	Memory	Protection
• Extend	PTEs	with	permission	bits
• MMU	checks	these	bits	on	each	access
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Today

• Virtual	Memory:	Concepts	
• Benefits	of	VM

• VM	as	a	tool	for	caching
• VM	as	a	tool	for	memory	management
• VM	as	a	tool	for	memory	protection

• Address	translation
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Address	Translation	With	a	Page	Table

Virtual	page	number	(VPN) Virtual	page	offset	(VPO)

Physical	page	number	(PPN) Physical	page	offset	(PPO)

Virtual	address

Physical	address

Valid Physical	page	number	(PPN)

Page	table	
base	register	(PTBR)

(CR3	in	x86)

Page	table	

Physical	page	table	
address	for	the	current
process

Valid	bit	=	0:
Page	not	in	memory

(page	fault)

0p-1pn-1

0p-1pm-1

Valid	bit	=	1
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Address	Translation:	Page	Hit

1)	Processor	sends	virtual	address	to	MMU	

2-3)	MMU	fetches	PTE	from	page	table	in	memory

4)	MMU	sends	physical	address	to	cache/memory

5)	Cache/memory	sends	data	word	to	processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU	Chip PTEA

PTE
1

2

3

4

5
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Address	Translation:	Page	Fault

1)	Processor	sends	virtual	address	to	MMU	
2-3)	MMU	fetches	PTE	from	page	table	in	memory
4)	Valid	bit	is	zero,	so	MMU	triggers	page	fault	exception
5)	Handler	identifies	victim	(and,	if	dirty,	pages	it	out	to	disk)
6)	Handler	pages	in	new	page	and	updates	PTE	in	memory
7)	Handler	returns	to	original	process,	restarting	faulting	instruction

MMU Cache/
Memory

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

Disk

Page	fault	handler

Victim	page

New	page

Exception

6

7
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Integrating	VM	and	Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA	
hit

PA	
hit

Data

PTE

L1
cache

CPU	Chip

VA:	virtual	address,	PA:	physical	address,	PTE:	page	table	entry,	PTEA	=	PTE	address
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Two	Problems

• Two	problems	with	page	tables

• Problem	#1:	Page	table	is	too	large

• Problem	#2:	Page	table	is	stored	in	memory
• Before	every	memory	access,	always	fetch	the	PTE	from	the	slow	memory?	è
Large	performance	penalty
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Multi-Level	Page	Tables
• Suppose:

• 4KB	(212)	page	size,	48-bit	address	space,	8-byte	PTE	

• Problem:
• Would	need	a	512	GB	page	table!

• 248 *	2-12		*	23 =	239 bytes

• Common	solution:	Multi-level	page	table
• Example:	2-level	page	table

• Level	1	table:	each	PTE	points	to	a	page	table	(always	
memory	resident)

• Level	2	table:	each	PTE	points	to	a	page	
(paged	in	and	out	like	any	other	data)

Level	1
Table

...

Level	2
Tables

...
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A	Two-Level	Page	Table	Hierarchy
Level	1

page	table

...

Level	2
page	tables

VP	0

...

VP	1023

VP	1024

...

VP	2047

Gap

0

PTE	0

...

PTE	1023

PTE	0

...

PTE	1023

1023	null
PTEs

PTE	1023 1023	
unallocated

pages
VP	9215

Virtual
memory

(1K	- 9)
null	PTEs	

PTE	0

PTE	1

PTE	2	(null)

PTE	3	(null)

PTE	4	(null)

PTE	5	(null)

PTE	6	(null)

PTE	7	(null)

PTE	8

2K	allocated	VM	pages
for	code	and	data

6K	unallocated	VM	pages

1023	unallocated		pages

1	allocated	VM	page
for	the	stack

32	bit	addresses,	4KB	pages,	4-byte	PTEs 50


