
Virtual	Memory
Samira	Khan
Apr	27,	2017

1



Virtual	Memory
• Idea:	Give	the	programmer	the	illusion	of	a	large	address	
space	while	having	a	small	physical	memory
• So	that	the	programmer	does	not	worry	about	managing	
physical	memory	

• Programmer	can	assume	he/she	has	“infinite” amount	
of	physical	memory	

• Hardware	and	software	cooperatively	and	automatically	
manage	the	physical	memory	space	to	provide	the	
illusion
• Illusion	is	maintained	for	each	independent	process

2



Basic	Mechanism
• Indirection	(in	addressing)

• Address	generated	by	each	instruction	in	a	program	is	a	“virtual	
address”
• i.e.,	it	is	not	the	physical	address	used	to	address	main	memory

• An	“address	translation” mechanism	maps	this	address	to	a	“physical	
address”
• Address	translation	mechanism	can	be	implemented	in	hardware	and	software	
together

“At	the	heart	[...]	is	the	notion	that	‘address’	is	a	concept	distinct from	
‘physical	location.’”	Peter	Denning

3



Overview	of	Paging

vi
rt
ua

l
vi
rt
ua

l

ph
ys
ica

l

Process	1

Process	2

4G
B

4G
B

16
M
B

Virtual	Page

Virtual	Page

Physical	Page	Frame

4



Review:	Virtual	Memory	&	Physical	
Memory

null

null

Memory	resident
page	table
(DRAM)

Physical	memory
(DRAM)

VP	7
VP	4

Virtual	memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical	page
number	or	
disk	address

PTE	0

PTE	7

PP	0
VP	2
VP	1

PP	3

VP	1

VP	2

VP	4

VP	6

VP	7

VP	3

Virtual	address

¢ A	page	table	contains	page	table	entries	(PTEs)	that	map	
virtual	pages	to	physical	pages.

5



Translation	
• Assume:	Virtual	Page	7	is	mapped	to	Physical	Page	32
• For	an	access	to	Virtual	Page	7	…

031

011001

1112

0000000111

OffsetVPN
Virtual	Address:

027

011001

1112

0000100000

OffsetPPN
Physical	Address:

Translated

6



Address	Translation	With	a	Page	Table

Virtual	page	number	(VPN) Virtual	page	offset	(VPO)

Physical	page	number	(PPN) Physical	page	offset	(PPO)

Virtual	address

Physical	address

Valid Physical	page	number	(PPN)

Page	table	
base	register	(PTBR)

(CR3	in	x86)

Page	table	

Physical	page	table	
address	for	the	current
process

Valid	bit	=	0:
Page	not	in	memory

(page	fault)

0p-1pn-1

0p-1pm-1

Valid	bit	=	1

7



Address	Translation:	Page	Hit

1)	Processor	sends	virtual	address	to	MMU	

2-3)	MMU	fetches	PTE	from	page	table	in	memory

4)	MMU	sends	physical	address	to	cache/memory

5)	Cache/memory	sends	data	word	to	processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip PTEA

PTE1

2

3

4

5

8



Address	Translation:	Page	Fault

1)	Processor	sends	virtual	address	to	MMU	
2-3)	MMU	fetches	PTE	from	page	table	in	memory
4)	Valid	bit	is	zero,	so	MMU	triggers	page	fault	exception
5)	Handler	identifies	victim	(and,	if	dirty,	pages	it	out	to	disk)
6)	Handler	pages	in	new	page	and	updates	PTE	in	memory
7)	Handler	returns	to	original	process,	restarting	faulting	instruction

MMU Cache/
Memory

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

Disk

Page	fault	handler

Victim	page

New	page

Exception

6

7

9



Integrating	VM	and	Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA	
hit

PA	
hit

Data

PTE

L1
cache

CPU	Chip

VA:	virtual	address,	PA:	physical	address,	PTE:	page	table	entry,	PTEA	=	PTE	address
10



Two	Problems

• Two	problems	with	page	tables

•Problem	#1:	Page	table	is	too	large

• Problem	#2:	Page	table	is	stored	in	memory
• Before	every	memory	access,	always	fetch	the	PTE	from	the	slow	memory?	è
Large	performance	penalty

11



Multi-Level	Page	Tables
• Suppose:

• 4KB	(212)	page	size,	48-bit	address	space,	8-byte	PTE	

• Problem:
• Would	need	a	512	GB	page	table!

• 248 *	2-12		*	23 =	239 bytes

• Common	solution:	Multi-level	page	table
• Example:	2-level	page	table

• Level	1	table:	each	PTE	points	to	a	page	table	(always	
memory	resident)

• Level	2	table:	each	PTE	points	to	a	page	
(paged	in	and	out	like	any	other	data)

Level	1
Table

...

Level	2
Tables

...

12



A	Two-Level	Page	Table	Hierarchy
Level	1

page	table

...

Level	2
page	tables

VP	0

...

VP	1023

VP	1024

...

VP	2047

Gap

0

PTE	0

...

PTE	1023

PTE	0

...

PTE	1023

1023	null
PTEs

PTE	1023 1023	
unallocated

pages
VP	9215

Virtual
memory

(1K	- 9)
null	PTEs	

PTE	0

PTE	1

PTE	2	(null)

PTE	3	(null)

PTE	4	(null)

PTE	5	(null)

PTE	6	(null)

PTE	7	(null)

PTE	8

2K	allocated	VM	pages
for	code	and	data

6K	unallocated	VM	pages

1023	unallocated		pages

1	allocated	VM	page
for	the	stack

32	bit	addresses,	4KB	pages,	4-byte	PTEs 13



Translating	with	a	k-level	Page	Table

Page	table	
base	register

(PTBR)

VPN	1
0p-1n-1

VPOVPN	2 ... VPN	k

PPN

0p-1m-1
PPOPPN

VIRTUAL	ADDRESS

PHYSICAL	ADDRESS

... ...

the	Level	1
page	table

a	Level	2
page	table

a	Level	k
page	table

14



Translation:	“Flat”	Page	Table
pte_t PAGE_TABLE[1<<20];// 32-bit VA, 28-bit PA, 4KB page

PAGE_TABLE[7]=2;

31
XXX000000111

OffsetVPN

Virtual	Address
01112

NULL PTE0
NULL PTE1

NULL PTE7

NULL PTE1<<20-1

···
···

15 0
PAGE_TABLE

27
XXX000000010

OffsetPPN

Physical	Address
01112

000000010 PTE7

15



NULLPDE0

Translation:	Two-Level	Page	Table
pte_t *PAGE_DIRECTORY[1<<10];

PAGE_DIRECTORY[0]=malloc((1<<10)*sizeof(pte_t));

PAGE_DIRECTORY[0][7]=2;

&PT0PDE0
NULLPDE1

NULLPDE1023
31 0
PAGE_DIR

NULL PTE0

PTE7

NULL PTE1023
15 0

NULL

PAGE_TABLE0

PTE7000000010

VPN[31:12]=0000000000_0000000111
Directory	index Table	index

16



Two-Level	Page	Table	(x86)

• CR3:	Control	Register	3	(or	Page	Directory	Base	Register)
• Stores	the	physical address	of	the	page	directory
• Q:	Why	not	the	virtual	address?

17



Multi-Level	Page	Table	(x86-64)

18



Per-Process	Virtual	Address	Space
• Each	process	has	its	own	virtual	address	space
• Process	X:	text	editor
• Process	Y:	video	player
• X writing	to	its	virtual	address	0	does	not affect	the	data	stored	in	Y’s	virtual	
address	0	(or	any	other	address)
• This	was	the	entire	purpose	of	virtual	memory

• Each	process	has	its	own	page	directory	and	page	tables
• On	a	context	switch,	the	CR3’s	value	must	be	updated

X’s	PAGE_DIR Y’s	PAGE_DIR

CR3
19



Two	Problems

• Two	problems	with	page	tables
• Problem	#1:	Page	table	is	too	large
• Page	table	has	1M	entries
• Each	entry	is	4B	(because	4B	≈	20-bit	PPN)
• Page	table	=	4MB	(!!)
• very	expensive	in	the	80s

• Solution: Hierarchical	page	table

•Problem	#2:	Page	table	is	in	memory
• Before	every	memory	access,	always	fetch	the	PTE	from	the	slow	memory?	è
Large	performance	penalty

20



Speeding	up	Translation	with	a	TLB

• Page	table	entries	(PTEs)	are	cached	in	L1	like	any	other	
memory	word
• PTEs	may	be	evicted	by	other	data	references
• PTE	hit	still	requires	a	small	L1	delay

• Solution:	Translation	Lookaside Buffer (TLB)
• Small	set-associative	hardware	cache	in	MMU
• Maps	virtual	page	numbers	to		physical	page	numbers
• Contains	complete	page	table	entries	for	small	number	of	pages

21



Accessing	the	TLB
• MMU	uses	the	VPN	portion	of	the	virtual	address	
to	access	the	TLB:

TLB	tag	(TLBT) TLB	index	(TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet	0

PTEtagv PTEtagvSet	1

PTEtagv PTEtagvSet	T-1

T	=	2t sets

TLBI	selects	the	set

TLBT	matches	tag	of	
line	within	set

22



TLB	Hit

MMU Cache/
Memory

CPU

CPU	Chip

VA
1

PA

4

Data
5

A	TLB	hit	eliminates	a	memory	access

TLB

2

VPN

PTE

3

23



TLB	Miss

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A	TLB	miss	incurs	an	additional	memory	access	(the	PTE)
Fortunately,	TLB	misses	are	rare.	Why?

24



Simple	Memory	System	Example
• Addressing
• 14-bit	virtual	addresses
• 12-bit	physical	address
• Page	size	=	64	bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual	Page	Number Virtual	Page	Offset

Physical	Page	Number Physical	Page	Offset
25



0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple	Memory	System	TLB
• 16	entries
• 4-way	associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Translation	Lookaside	Buffer	(TLB)

VPN	=	0b1101
PPN	=	?

26



Simple	Memory	System	Page	Table
Only	showing	the	first	16	entries	(out	of	256)

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

0x0D	→ 0x2D

27

VPN	=	0b1101
PPN	=	?



Context	Switches

• Assume	that	Process	X is	running
• Process	X’s	VPN	5	is	mapped	to	PPN	100
• The	TLB	caches	this	mapping
• VPN	5	à PPN	100

• Now	assume	a	context	switch	to	Process	Y
• Process	Y’s	VPN	5	is	mapped	to	PPN	200
• When	Process	Y	tries	to	access	VPN	5,	it	searches	the	TLB
• Process	Y finds	an	entry	whose	tag	is	5
• Hurray!	It’s	a	TLB	hit!	
• The	PPN	must	be	100!
• …	Are	you	sure? 28



Context	Switches	(cont’d)

• Approach	#1.	Flush	the	TLB
• Whenever	there	is	a	context	switch,	flush	the	TLB

• All	TLB	entries	are	invalidated
• Example:	80836

• Updating	the	value	of	CR3	signals	a	context	switch
• This	automatically	triggers	a	TLB	flush

• Approach	#2.	Associate	TLB	entries	with	processes
• All	TLB	entries	have	an	extra	field	in	the	tag	...

• That	identifies	the	process	to	which	it	belongs
• Invalidate	only	the	entries	belonging	to	the	old	process
• Example:	Modern	x86,	MIPS

29



Handling	TLB	Misses

• The	TLB	is	small;	it	cannot	hold	all PTEs
• Some	translations	will	inevitably	miss	in	the	TLB
• Must	access	memory	to	find	the	appropriate	PTE
• Called	walking the	page	directory/table
• Large	performance	penalty

• Who	handles	TLB	misses?
1. Hardware-Managed	TLB
2. Software-Managed	TLB

30



Handling	TLB	Misses	(cont’d)

• Approach	#1.	Hardware-Managed (e.g.,	x86)
• The	hardware	does	the	page	walk
• The	hardware	fetches	the	PTE	and	inserts	it	into	the	TLB
• If	the	TLB	is	full,	the	entry	replaces another	entry

• All	of	this	is	done	transparently

• Approach	#2.	Software-Managed (e.g.,	MIPS)
• The	hardware	raises	an	exception
• The	operating	system	does	the	page	walk
• The	operating	system	fetches	the	PTE
• The	operating	system	inserts/evicts	entries	in	the	TLB

31



Handling	TLB	Misses	(cont’d)

• Hardware-Managed	TLB
• Pro:	No	exceptions.	Instruction	just	stalls
• Pro:	Independent	instructions	may	continue
• Pro:	Small	footprint	(no	extra	instructions/data)
• Con:	Page	directory/table	organization	is	etched	in	stone

• Software-Managed	TLB
• Pro:	The	OS	can	design	the	page	directory/table
• Pro:	More	advanced	TLB	replacement	policy
• Con:	Flushes	pipeline
• Con:	Performance	overhead

32



Address	Translation	and	Caching
• When	do	we	do	the	address	translation?
• Before	or	after	accessing	the	L1	cache?

• In	other	words,	is	the	cache	virtually	addressed	or	
physically	addressed?
• Virtual	versus	physical	cache

• What	are	the	issues	with	a	virtually	addressed	cache?

• Synonym	problem:
• Two	different	virtual	addresses	can	map	to	the	same	physical	
address	à same	physical	address	can	be	present	in	multiple	
locations	in	the	cache	à can	lead	to	inconsistency	in	data

33



Homonyms	and	Synonyms
• Homonym:	Same	VA	can	map	to	two	different	PAs
• Why?	

• VA	is	in	different	processes

• Synonym:	Different	VAs	can	map	to	the	same	PA
• Why?	

• Different	pages	can	share	the	same	physical	frame	within	or	across	
processes

• Reasons:	shared	libraries,	shared	data,	copy-on-write	pages	within	the	
same	process,	…

• Do	homonyms	and	synonyms	create	problems	when	we	
have	a	cache?
• Is	the	cache	virtually	or	physically	addressed?

34



Cache-VM	Interaction

CPU

TLB

cache

lower
hier.

physical	cache

CPU

cache

tlb

lower
hier.

virtual	(L1)	cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical	cache

VA

PA

VA

PA

35



Virtually-Indexed	Physically-Tagged
• If	C≤(page_size ´ associativity),	the	cache	index	bits	
come	only	from	page	offset	(same	in	VA	and	PA)
• If	both	cache	and	TLB	are	on	chip
• index	both	arrays	concurrently	using	VA	bits
• check	cache	tag	(physical)	against	TLB	output	at	the	end

VPN Page	Offset

TLB

PPN

CIndex CO

physical
cache

tag data=

cache	hit?TLB	hit? 36



Virtually-Indexed	Physically-Tagged
• If	C>(page_size ´ associativity),	the	cache	index	bits	
include	VPN	Þ Synonyms	can	cause	problems
• The	same	physical	address	can	exist	in	two	locations

• Solutions?
VPN Page	Offset

TLB

PPN

Cache	Index CO

physical
cache

tag data=

cache	hit?TLB	hit?

a

37



Sanity	Check
• Core	2	Duo:	32	KB,	8-way	set	associative,	page	size	≥	4K
• Cache	size	≤(page_size ´ associativity)?
• 2P = 4K	P =	12	

• Needs	12	bits	for	page	offset
• 2C	=	32KB,	C	=	15

• Needs	15	bits	to	address	a	byte	in	the	cache
• 2A =	8-way,		A	=	3

• Increasing	the	associativity	of	the	cache	reduces	the	number	of	address	bits	needed	to	
index	into	the	cache	

• Needs		12	bits	for	cache	index	and	offset,	as	tags	are	matched	for	blocks	in	the	same	set
• C	≤	P	+	A	?
15	≤	12+3?	True	

38



Some	Solutions	to	the	Synonym	Problem
• Limit	cache	size	to	(page	size	times	associativity)
• get	index	from	page	offset	

• On	a	write	to	a	block,	search	all	possible	indices	that	can	
contain	the	same	physical	block,	and	update/invalidate
• Used	in	Alpha	21264,	MIPS	R10K

• Restrict	page	placement	in	OS
• make	sure	index(VA)	=	index(PA)
• Called	page	coloring
• Used	in	many	SPARC	processors

39



Today

• Case	study:	Core	i7/Linux	memory	system

40



Intel	Core	i7	Memory	System

L1	d-cache
32	KB,	8-way

L2	unified	cache
256	KB,	8-way

L3	unified	cache
8	MB,	16-way	

(shared	by	all	cores)

Main	memory

Registers

L1	d-TLB
64	entries,	4-way

L1	i-TLB
128	entries,	4-way

L2		unified	TLB
512	entries,	4-way

L1	i-cache
32	KB,	8-way

MMU	
(addr translation)

Instruction
fetch

Core	x4

DDR3	Memory	controller
3	x 64	bit	@	10.66	GB/s

32	GB/s total	(shared	by	all	cores)

Processor	package

QuickPath interconnect
4	links	@	25.6	GB/s each

To	other	
cores
To	I/O
bridge

41



End-to-end	Core	i7	Address	Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1	TLB	(16	sets,	4	entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page	tables

TLB
miss

TLB
hit

Physical
address	
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2,	L3,	and	
main	memory

L1	d-cache	
(64	sets,	8	lines/set)

L1
hit

L1
miss

Virtual	address	(VA)

VPN3 VPN4
99

PTE PTE PTE

42



Speeding	Up	L1	Access

• Observation
• Bits	that	determine	CI	identical	in	virtual	and	physical	address
• Can	index	into	cache	while	address	translation	taking	place
• Generally	we	hit	in	TLB,	so	PPN	bits	(CT	bits)	available	next
• “Virtually	indexed,	physically	tagged”
• Cache	carefully	sized	to	make	this	possible

Physical	
address	

(PA)

CT CO
40 6

CI
6

Virtual
address	

(VA) VPN VPO

36 12

PPOPPN

Address
Translation

No
Change

CI
L1	Cache

CT Tag	Check



Core	i7	Level	1-3	Page	Table	Entries

Page	table	physical	base	address Unused G PS A CD WT U/S R/W P=1

Each	entry	references	a	4K	child	page	table.	Significant	fields:
P:	Child	page	table	present	in	physical	memory	(1)	or	not	(0).

R/W:	Read-only	or	read-write	access	access	permission	for	all	reachable	pages.

U/S:	user	or	supervisor	(kernel)	mode	access	permission	for	all	reachable	pages.

WT:	Write-through	or	write-back	cache	policy	for	the	child	page	table.	

A:		Reference	bit	(set	by	MMU	on	reads	and	writes,	cleared	by	software).

PS:		Page	size	either	4	KB	or	4	MB	(defined	for	Level	1	PTEs only).

Page	table	physical	base	address:	40	most	significant	bits	of	physical	page	table	
address	(forces	page	tables	to	be	4KB	aligned)

XD:	Disable	or	enable	instruction	fetches	from	all	pages	reachable	from	this	PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available	for	OS	(page	table	location	on	disk) P=0

526263

44



Core	i7	Level	4	Page	Table	Entries

Page	physical	base	address Unused G D A CD WT U/S R/W P=1

Each	entry	references	a	4K	child	page.	Significant	fields:
P:	Child	page	is	present	in	memory	(1)	or	not	(0)

R/W:	Read-only	or	read-write	access	permission	for	child	page

U/S:	User	or	supervisor	mode	access

WT:	Write-through	or	write-back	cache	policy	for	this	page

A:	Reference	bit	(set	by	MMU	on	reads	and	writes,	cleared	by	software)	

D:	Dirty	bit	(set	by	MMU	on	writes,	cleared	by	software)

Page	physical	base	address:	40	most	significant	bits	of	physical	page	address	
(forces	pages	to	be	4KB	aligned)

XD:	Disable	or	enable	instruction	fetches	from	this	page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available	for	OS	(page	location	on	disk) P=0

526263

45



Core	i7	Page	Table	Translation

CR3

Physical		
address
of	page

Physical	
address
of	L1	PT

9
VPO

9 12 Virtual	
address

L4	PT
Page	
table

L4	PTE

PPN PPO
40 12 Physical	

address

Offset	into	
physical	and	
virtual	page

VPN	3 VPN	4VPN	2VPN	1

L3	PT
Page	middle
directory

L3	PTE

L2	PT
Page	upper
directory

L2	PTE

L1	PT
Page	global
directory

L1	PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512	GB	
region	

per	entry

1	GB	
region	

per	entry

2	MB	
region	

per	entry

4	KB
region	

per	entry

46



Virtual	Memory
Samira	Khan
Apr	27,	2017

47


