
Samira	Khan

MORE	C

Agenda
• Pointer	vs	array

• Using	man	page

• Structure	and	dynamic	allocation

• Undefined	behavior	

• Into	to	instruction	set	architecture	(ISA)

Understanding	Pointers	&	Arrays

A1

A2
Allocated		int

Unallocated	pointer
Allocated		pointer

Unallocated		int

Variable Decl

int A1[3]

int *A2

size

12

8

Understanding	Pointers	&	Arrays

A1

A2/A4

Allocated		int
Unallocated	pointer
Allocated		pointer

Unallocated		int

A3

Variable Decl

int A1[3]

int *A2[3]

int (*A3)[3]

int (*A4[3])

Size

12

24

8

24

Array	vs.	Pointer

int array[100];

int *pointer;

pointer = array;
• same	as	pointer	=	&(array[0]);

array = pointer;

Array	vs.	Pointer

int array[100];

int *pointer = array;

• sizeof(array)	==	400				(size	of	all	elements)
• sizeof(pointer)	==	8					(size	of	address)

• sizeof(&array[0])	==	???
• (&array[0]	same	as	&(array[0]))

Agenda
• Pointer	vs	array

• Using	man	page

• Structure	and	dynamic	allocation

• Undefined	behavior	

• Into	to	instruction	set	architecture	(ISA)

interlude:	command	line	tips

chmod

• chmod --recursive	og-r /home/USER

• ogà others	and	group	(student)
• user	(yourself)	/	group	/	others

• -à remove
• - remove	/	+	add

• rà read
• read	/	write	/	execute

tar

• Standard	Linux/Unix	file	archive	utility
• Table	of	contents:	tar	tf filename.tar
• eXtract:	tar	xvf filename.tar
• Create:	tar	cvf filename.tar directory
• (v:	verbose;	f:	file	— default	is	tape)

stdio

• C	does	not	have	<iostream>
• instead	<stdio.h>

printf

1 int custNo = 1000;

2 const char *name = "Jane Smith"
3 printf("Customer #%d: %s\n”, custNo, name);
4 // "Customer #1000: Jane Smith"
5 // same as:

6 //cout << "Customer #" << custNo

7 // << ": " << name << endl;

Format	string	must	match	types	of	argument

printf formats	quick	reference

Specifier Argument	Type Example

%s char	*	 Hello,	World!

%p any	pointer 0x4005d4

%d int/short/char 42

%u unsigned	int/short/char 42

%x unsigned	int/short/char 2a

%ld long 42

%f double/float 42.000000
0.000000

%e double/float 4.200000e+01
4.200000e-19

%g double/float 42,	4.2e-19

%% no	argument %man	3	printf

Agenda
• Pointer	vs	array

• Using	man	page

• Structure	and	dynamic	allocation

• Undefined	behavior	

• Into	to	instruction	set	architecture	(ISA)

Structure	

• Structure	represented	as	block	of	memory
• Big	enough	to	hold	all	of	the	fields

• Fields	ordered	according	to	declaration

a

r

next

0 16 24

struct rec {
int a[4];
struct rec *next;

};

struct
struct rational {
int numerator;
int denominator;
};
// ...
struct rational two_and_a_half;
two_and_a_half.numerator = 5;
two_and_a_half.denominator = 2;
struct rational *pointer = &two_and_a_half;
printf("%d/%d\n",
pointer->numerator,
pointer->denominator);

typedef struct
struct other_name_for_rational {
int numerator;
int denominator;
};
typedef struct other_name_for_rational rational;
// ...
rational two_and_a_half;
two_and_a_half.numerator = 5;
two_and_a_half.denominator = 2;
rational *pointer = &two_and_a_half;
printf("%d/%d\n",
pointer->numerator,
pointer->denominator);

typedef struct
struct other_name_for_rational {
int numerator;
int denominator;
};
typedef struct other_name_for_rational rational;
// same as:
typedef struct other_name_for_rational {
int numerator;
int denominator;
} rational;
// almost the same as:
typedef struct {
int numerator;
int denominator;
} rational;

structs aren’t	references
typedef struct {
long a; long b; long c;
} triple;
...
triple foo;
foo.a = foo.b = foo.c = 3;
triple bar = foo;
bar.a = 4;
// foo is 3, 3, 3
// bar is 4, 3, 3

Dynamic	allocation

typedef struct list_t {
int item;
struct list_t *next;
} list;
// ...
list* head = malloc(sizeof(list));
/* C++: new list; */
head->item = 42;
head->next = NULL;
// ...
free(head);
/* C++: delete list */

Dynamic	arrays
int *array = malloc(sizeof(int)*100);
// C++: new int[100]

for (i = 0; i < 100; ++i) {

array[i] = i;

}

// ...

free(array); // C++: delete[] array

unsigned	and	signed	types

Type min max

signed	int =	signed	=	int −231 231 - 1

unsigned	int =	unsigned 0 232 - 1

signed	long	=	long −263 263 - 1

unsigned	long 0 264 - 1

Agenda
• Pointer	vs	array

• Using	man	page

• Structure	and	dynamic	allocation

• Undefined	behavior	

• Into	to	instruction	set	architecture	(ISA)

unsigned/signed	comparison	trap

int x = -1;
unsigned int y = 0;
printf("%d\n", x < y);
• result	is	0
• short	solution:	don’t	compare	signed	to	unsigned:
• (long)	x	<	(long)	y

• Compiler	converts	both	to	same	type	first
• int if	all	possible	values	fit
• otherwise:	first	operand	(x,	y)	type	from	this	list:
• unsigned	long,	long,	unsigned	int,	int

C	evolution	and	standards

• 1978:	Kernighan	and	Ritchie	publish	The	C	Programming	Language— “K&R	
C”
• very	different	from	modern	C

• 1989:	ANSI	standardizes	C	— C89/C90/-ansi
• compiler	option:	-ansi,	-std=c90
• looks	mostly	like	modern	C

• 1999:	ISO	(and	ANSI)	update	C	standard	— C99
• compiler	option:	-std=c99
• adds:	declare	variables	in	middle	of	block
• adds:	//	comments

• 2011:	Second	ISO	update	— C11

Undefined	behavior	example	(1)

#include <stdio.h>
#include <limits.h>
int test(int number) {
return (number + 1) > number;
}
int main(void) {
printf("%d\n", test(INT_MAX));
}
• without	optimizations:	0
• with	optimizations:	1

Undefined	behavior	example	(2)
int test(int number) {
return (number + 1) > number;
}
• Optimized:
test:
movl $1, %eax # eax 1
ret
• Less	optimized:
test:
leal 1(%rdi), %eax # eax rdi + 1
cmpl %eax, %edi
setl %al # al eax < edi
movzbl %al, %eax # eax al (pad with zeros)
ret

Undefined	behavior

• compilers	can	do	whatever	they	want
• what	you	expect
• crash	your	program
• …

• common	types:
• signed	integer	overflow/underflow
• out-of-bounds	pointers
• integer	divide-by-zero
• writing	read-only	data
• out-of-bounds	shift	(later)

Agenda
• Pointer	vs	array

• Using	man	page

• Structure	and	dynamic	allocation

• Undefined	behavior	

• Into	to	instruction	set	architecture	(ISA)

LEVELS	OF	TRANSFORMATION
• ISA
• Agreed	upon	interface	between	software	and	
hardware
• SW/compiler	assumes,	HW	promises

• What	the	software	writer	needs	to	know	to	
write	system/user	programs	

• Microarchitecture
• Specific	implementation	of	an	ISA
• Not	visible	to	the	software

• Microprocessor
• ISA,	uarch,	circuits
• “Architecture” =	ISA	+	microarchitecture

Microarchitecture
ISA
Program/Language

Algorithm
Problem

Logic

Circuits

34

ISA	VS.	MICROARCHITECTURE
• What	is	part	of	ISA	vs.	Uarch?

• Gas	pedal:	interface	for	“acceleration”
• Internals	of	the	engine:	implements	“acceleration”
• Add	instruction	vs.	Adder	implementation

• Implementation	(uarch)	can	be	various	as	long	as	it	
satisfies	the	specification	(ISA)
• Bit	serial,	ripple	carry,	carry	lookahead adders
• x86	ISA	has	many	implementations:	286,	386,	486,	Pentium,	Pentium	Pro,	
…

• Uarch usually	changes	faster	than	ISA
• Few	ISAs	(x86,	SPARC,	MIPS,	Alpha)	but	many	uarchs
• Why?

35

ISA • Instructions
• Opcodes,	Addressing	Modes,	Data	Types
• Instruction	Types	and	Formats
• Registers,	Condition	Codes

• Memory
• Address	space,	Addressability,	Alignment
• Virtual	memory	management

• Call,	Interrupt/Exception	Handling
• Access	Control,	Priority/Privilege	
• I/O
• Task	Management
• Power	and	Thermal	Management
• Multi-threading	support,	Multiprocessor	support

36

ISAs	being	manufactured	today

• x86	— dominant	in	desktops,	servers
• ARM	— dominant	in	mobile	devices
• POWER	—Wii	U,	IBM	supercomputers	and	some	servers
• MIPS	— common	in	consumer	wifi access	points
• SPARC	— some	Oracle	servers,	Fujitsu	supercomputers
• z/Architecture	— IBM	mainframes
• Z80	— TI	calculators
• SHARC	— some	digital	signal	processors
• Itanium	— some	HP	servers	(being	retired)
• RISC	V	— some	embedded
• …

Microarchitecture
• Implementation	of	the	ISA	under	specific design	constraints	and	goals
• Anything	done	in	hardware	without	exposure	to	software
• Pipelining
• In-order	versus	out-of-order	instruction	execution
• Memory	access	scheduling	policy
• Speculative	execution
• Superscalar	processing	(multiple	instruction	issue?)
• Clock	gating
• Caching?	Levels,	size,	associativity,	replacement	policy
• Prefetching?
• Voltage/frequency	scaling?
• Error	correction?

38

ISA-LEVEL	TRADEOFFS:	SEMANTIC	GAP

• Where	to	place	the	ISA?	Semantic	gap
• Closer	to	high-level	language	(HLL)	or	closer	to	hardware	control	signals?	à
Complex	vs.	simple	instructions
• RISC	vs.	CISC	vs.	HLL	machines

• FFT,	QUICKSORT,	POLY,	FP	instructions?
• VAX	INDEX	instruction	(array	access	with	bounds	checking)

• e.g.,	A[i][j][k]	one	instruction	with	bound	check

39

SEMANTIC	GAP

40

High-Level	Language

Control	Signals

ISA

Semantic	Gap

Softw
are

Hardw
are

SEMANTIC	GAP

41

High-Level	Language

Control	Signals

ISA
Semantic	Gap

Softw
are

Hardw
are

CISC

RISC

ISA-LEVEL	TRADEOFFS:	
SEMANTIC	GAP
• Where	to	place	the	ISA?	Semantic	gap
• Closer	to	high-level	language	(HLL)	or	closer	to	hardware	
control	signals?	à Complex	vs.	simple	instructions
• RISC	vs.	CISC	vs.	HLL	machines

• FFT,	QUICKSORT,	POLY,	FP	instructions?
• VAX	INDEX	instruction	(array	access	with	bounds	checking)

• Tradeoffs:
• Simple	compiler,	complex	hardware	vs.	complex	compiler,	simple	
hardware
• Caveat:	Translation	(indirection)	can	change	the	tradeoff!

• Burden	of	backward	compatibility
• Performance?

• Optimization	opportunity:	Example	of	VAX	INDEX	instruction:	who	
(compiler	vs.	hardware)	puts	more	effort	into	optimization?

• Instruction	size,	code	size
42

SMALL	SEMANTIC	GAP	EXAMPLES	IN	VAX	
• FIND	FIRST

• Find	the	first	set	bit	in	a	bit	field
• Helps	OS	resource	allocation	operations

• SAVE	CONTEXT,	LOAD	CONTEXT
• Special	context	switching	instructions

• INSQUEUE,	REMQUEUE
• Operations	on	doubly	linked	list

• INDEX
• Array	access	with	bounds	checking

• STRING	Operations
• Compare	strings,	find	substrings,	…

• Cyclic	Redundancy	Check	Instruction
• EDITPC

• Implements	editing	functions	to	display	fixed	format	output

• Digital	Equipment	Corp.,	“VAX11	780	Architecture	Handbook,” 1977-78.

43

CISC	vs.	RISC

44

REPMOVS
X:
MOV
ADD
COMP
MOV
ADD
JMP	X

Which	one	is	easy	to	optimize?

x86: REP MOVS DEST SRC

SMALL	VERSUS	LARGE	SEMANTIC	GAP
• CISC	vs.	RISC
• Complex	instruction	set	computer	à complex	instructions

• Initially	motivated	by	“not	good	enough” code	generation
• Reduced	instruction	set	computer	à simple	instructions

• John	Cocke,	mid	1970s,	IBM	801
• Goal:	enable	better	compiler	control	and	optimization

• RISC	motivated	by	
• Memory	stalls	(no	work	done	in	a	complex	instruction	when	
there	is	a	memory	stall?)
• When	is	this	correct?

• Simplifying	the	hardware	à lower	cost,	higher	frequency
• Enabling	the	compiler	to	optimize	the	code	better

• Find	fine-grained	parallelism	to	reduce	stalls

45

SMALL	VERSUS	LARGE	SEMANTIC	GAP
• John	Cockeʼs	RISC	(large	semantic	gap)	concept:

• Compiler	generates	control	signals:	open	microcode

• Advantages	of	Small	Semantic	Gap	(Complex	instructions)
+	Denser	encoding	à smaller	code	size	à saves	off-chip	bandwidth,	better	
cache	hit	rate	(better	packing	of	instructions)

+	Simpler	compiler

• Disadvantages
- Larger	chunks	of	work	à compiler	has	less	opportunity	to	optimize
- More	complex	hardware	à translation	to	control	signals	and	optimization	
needs	to	be	done	by	hardware

• Read	Colwell	et	al.,	“Instruction	Sets	and	Beyond:	Computers,	Complexity,	and	
Controversy,” IEEE	Computer	1985.

46

