Samira Khan




Agenda

* Pointer vs array

* Using man page

 Structure and dynamic allocation
* Undefined behavior

* Into to instruction set architecture (ISA)



Understanding Pointers & Arrays

Al

A2

Variable Decl

int A1[3]

int *A2

12
8

Allocated pointer
Unallocated pointer

Allocated int | |

Unallocated int

[ 1




Understanding Pointers & Arrays
. size

int A1[3] 12
int *A2[3] 24
int (*A3) [3] 8
int (*A4[3]) 24
Al
A2/A4 I I I
A3 [ >

Allocated pointer

Unallocated pointer

Allocated int | |
Unallocated int | |




Array vs. Pointer

int array[100];

int *polnter;

polnter = array;
e same as pointer = &(array[0]);

array = polinter;



Array vs. Pointer

int array[100];

int *pointer = array;

* sizeof(array) == 400 (size of all elements)
* sizeof(pointer) == (size of address)

* sizeof(&array[0]) == ?7?7?

 (&array[0] same as &(array[0]))



Agenda

* Pointer vs array

* Using man page

 Structure and dynamic allocation
* Undefined behavior

* Into to instruction set architecture (ISA)



interlude: command line tips

() @ 73 samiramanabi — -bash — 146x29
~ — -bash
MacBook-3:~ samiramanabi$ man man



) @ samiramanabi — less « man man — 148x37
~ — |less < man man

man(1) man(1)

NAME
man — format and display the on-1line manual pages

SYNOPSIS

man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config filel [-M pathlist] [-P pager] [-B browser] [-H htmlpager]
[-S section_list] [section] name ...

DESCRIPTION

man formats and displays the on-line manual pages. If you specify section, man only looks in that section of the manual.
name is normally the name of the manual page, which is typically the name of a command, function, or file. However, if name
contains a slash (/) then man interprets it as a file specification, so that you can do man ./foo.5 or even man
/cd/foo/bar.1l.gz.

See below for a description of where man looks for the manual page files.

OPTIONS
-C config_file
Specify the configuration file to use; the default is /private/etc/man.conf. (See man.conf(5).)

-M path
Specify the list of directories to search for man pages. Separate the directories with colons. An empty list is the
same as not specifying -M at all. See SEARCH PATH FOR MANUAL PAGES.

-P pager
Specify which pager to use. This option overrides the MANPAGER environment variable, which in turn overrides the
PAGER variable. By default, man uses /usr/bin/less -is.

-B Specify which browser to use on HTML files. This option overrides the BROWSER environment variable. By default, man
uses /usr/bin/less-is,

-H Specify a command that renders HTML files as text. This option overrides the HTMLPAGER environment variable. By
default, man uses /bin/cat,

-S section_list




O] @ samiramanabi — less « man chmod — 148x37

~ — |less « man chmod

CHMOD(1) BSD General Commands Manual CHMOD(1)

NAME
chmod — change file modes or Access Control Lists

SYNOPSIS
chmod [-fv] [-R [-H | -L | -P]]
chmod [-fv] [-R [-H | -L | -P]] +a |
chmod [-fhv] [-R [-H | -L | -P]] [-E] file ...
P]
P]

chmod [-fhv] [-R [-H | -L | -
chmod [-fhv] [-R [-H | -L | -

DESCRIPTION
The chmod utility modifies the file mode bits of the listed files as specified by the mode operand. It may also be used to mod-
ify the Access Control Lists (ACLs) associated with the listed files.

The generic options are as follows:
-f Do not display a diagnostic message if chmod could not modify the mode for file.

-H If the -R option is specified, symbolic links on the command line are followed. (Symbolic links encountered in the tree
traversal are not followed by default.)

-h If the file is a symbolic link, change the mode of the link itself rather than the file that the link points to.

-L If the -R option is specified, all symbolic links are followed.

-P If the -R option is specified, no symbolic links are followed. This is the default.

-R Change the modes of the file hierarchies rooted in the files instead of just the files themselves.

-v Cause chmod to be verbose, showing filenames as the mode is modified. If the -v flag is specified more than once, the

old and new modes of the file will also be printed, in both octal and symbolic notation.

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options override each other and the

m T




chmod

* chmod --recursive og-r /home/USER

* 0og = others and group (student)
 user (yourself) / group / others

° - =2 remove
* -remove / + add

* r - read

* read / write / execute



tar

 Standard Linux/Unix file archive utility
* Table of contents: tar tf filename.tar

e eXtract: tar xvf filename.tar

* Create: tar cvf filename.tar directory

* (v: verbose; f: file — default is tape)



stdio

 C does not have <iostream>
e instead <stdio.h>



() @ samiramanabi — less < man stdio — 125x32
‘ ~ — |less <« man stdio
[

STDIO(3) BSD Library Functions Manual STDIO(3)

 NAME
stdio —— standard input/output library functions

LIBRARY
Standard C Library (libc, -1lc)

SYNOPSIS
#include <stdio.h>

FILE xstdin;
FILE xstdout;
FILE xstderr;

Note: The current implementation does not allow these variables to be
evaluated at C compile/link time. That is, a runtime calculation must be
performed, such as:

#include <stdio.h>
static FILE xvar;
int main() {

var = stdout;
}

DESCRIPTION
The standard I/0 library provides a simple and efficient buffered stream
I/0 interface. Input and output is mapped into logical data streams and




fropen
fscanf
fseek
fsetpos
ftell
funopen
fwide
fwopen
fwprintf
fwrite

getc
getchar
getdelim
getline
gets
getw
getwc
getwchar

mkdtemp
mkstemp
mktemp

perror
printf
putc
putchar
puts
putw
putwc

samiramanabi — less « man stdio — 125x32

~ — |less « man stdio

open a stream

input format conversion

reposition a stream

reposition a stream

reposition a stream

open a stream

set/get orientation of stream

open a stream

formatted wide character output conversion
binary stream input/output

get next character or word from input stream
get next character or word from input stream
get a line from a stream

get a line from a stream

get a line from a stream

get next character or word from input stream
get next wide character from input stream
get next wide character from input stream

create unique temporary directory
create unique temporary file
create unique temporary file

system error messages
formatted output conversion
output a character or word to a stream

output a character or word to a stream
output a line to a stream

output a character or word to a stream
output a wide character to a stream

ml +



orintf

s w N

0

int custNo = 1000;

const char *name = "Jane Smith"

printf ("Customer #%d: %s\n”, custNo, name);
// "Customer #1000: Jane Smith"

// same as:

//cout << "Customer #" << custNo

// << ": " << name << endl;

Format string must match types of argument



orintf formats quick reference

%s char * Hello, World!

%p any pointer 0x4005d4

%d int/short/char 42

%u unsigned int/short/char 42

%X unsigned int/short/char 2a

%ld long 42

%f double/float 42.000000
0.000000

%e double/float 4.200000e+01
4.200000e-19

%g double/float 42,4.2e-19

%% oargygn 3 printf %



Agenda

* Pointer vs array

* Using man page

e Structure and dynamic allocation
* Undefined behavior

* Into to instruction set architecture (ISA)



Structure

* Structure represented as block of memory

* Big enough to hold all of the fields
* Fields ordered according to declaration

struct rec {
int al[4];

struct rec *next; a

next

16

24



Struct

struct rational {
int numerator;
int denominator;

};

//

struct rational two and a half;

two and a half.numerator = 5;

two and a half.denominator = 2;

struct rational *pointer = &two and a half;

printf ("%d/%d\n",
pointer->numerator,
pointer->denominator) ;



typedef struct

struct other name for rational ({

int numerator;

int denominator;

};

typedef struct other name for rational rational;
//

rational two and a half;

two and a half.numerator = 5;

two and a half.denomlnator = 2;
rational *pointer = &two and a half;
printf ("%d/%d\n",
polinter->numerator,
pointer->denominator) ;



typedef struct

struct other name for rational {

int numerator;

int denominator;

};

typedef struct other name for rational rational;
// same as:

typedef struct other name for rational {
int numerator;

int denominator;

} rational;

// almost the same as:

typedef struct {

int numerator;

int denominator;

} rational;



structs aren’t references

typedef struct {
long a; long b; long c;
} triple;

triple foo;

foo.a = foo.b = foo.c = 3;
triple bar = foo;
bar.a = 4;

// foo is 3, 3, 3
// bar is 4, 3, 3

return address

callee saved
registers

foo.

foo.

foo.

bar.

bar.

LITI0O 1L TN

bar.




Dynamic allocation

typedef struct list t {
int item;

struct list t *next;

} list;

//

list* head = malloc(sizeof(list));

/* C++: new list; */
head->1tem = 42;
head->next = NULL;

// :

free (head) ;

/* C++: delete list */

head

on heap

item: 42

next: NULL




Dynamic arrays

int *array = malloc(sizeof (int)*100);
// C++: new int[100]

for (1 = 0; 1 < 100; ++1) {

array[1i] = 1;

}

//
free (array); // C++: delete[] array

array

somewhere on heap

J o] 1] 2134 ]5] 6| .[99
) 400 bytes "




unsigned and signed types

Tyee _mn____________ fmx

signed int = signed = int =231 231-1
unsigned int = unsigned 0 232-1
signed long = long -263 23 -1

unsigned long 0 264 -1



Agenda

* Pointer vs array

* Using man page

 Structure and dynamic allocation
* Undefined behavior

* Into to instruction set architecture (ISA)



unsigned/signed comparison trap

int x = -1;

unsigned int y = 0;
printf ("%d\n", x < vy);
* resultis O

* short solution: don’t compare signed to unsigned:
* (long) x< (long) y

* Compiler converts both to same type first
* intif all possible values fit
» otherwise: first operand (x, y) type from this list:
* unsigned long, long, unsigned int, int



C evolution and standards

e 1978: Kernighan and Ritchie publish The C Programming Language— “K&R
C”

 very different from modern C

e 1989: ANSI standardizes C — C89/C90/-ansi
e compiler option: -ansi, -std=c90
* looks mostly like modern C
e 1999: ISO (and ANSI) update C standard — C99
e compiler option: -std=c99
* adds: declare variables in middle of block
e adds: // comments

e 2011: Second ISO update — C11



Undefined behavior example (1)

#include <stdio.h>

#include <limits.h>

int test (int number) {

return (number + 1) > number;
}

int main (void) {

printf ("$d\n", test (INT MAX));
}

e without optimizations: O

* with optimizations: 1



Undefined behavior example (2)

int test (int number) {
return (number + 1) > number;

}

* Optimized:

test:

movl $1, %eax # eax 1

ret

* Less optimized:

test:

leal 1(%rdi), %eax # eax rdi + 1

cmpl %Seax, %edi

setl %al # al eax < edi

movzbl %al, %eax # eax al (pad with zeros)

ret



Undefined behavior

e compilers can do whatever they want
* what you expect
e crash your program

e common types:

* signed integer overflow/underflow
out-of-bounds pointers
integer divide-by-zero
writing read-only data
out-of-bounds shift (later)



Agenda

* Pointer vs array

* Using man page

 Structure and dynamic allocation
* Undefined behavior

* Into to instruction set architecture (ISA)



LEVELS OF TRANSFORMATION

* ISA

* Agreed upon interface between software and
hardware

* SW/compiler assumes, HW promises
 What the software writer needs to know to

write system/user programs
* Microarchitecture

» Specific implementation of an ISA
* Not visible to the software

* Microprocessor
* ISA, uarch, circuits
» “Architecture” = ISA + microarchitecture

Problem

Algorithm

Program/Language

Microarchitecture

Logic

Circuits

34



ISA VS. MICROARCHITECTURE

 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”
* Internals of the engine: implements “acceleration”
* Add instruction vs. Adder implementation

* Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

* Bit serial, ripple carry, carry lookahead adders
* x86 ISA has many implementations: 286, 386, 486, Pentium, Pentium Pro,

e Uarch usually changes faster than ISA

* Few ISAs (x86, SPARC, MIPS, Alpha) but many uarchs
« Why?



ISA * [nstructions

* Opcodes, Addressing Modes, Data Types
* Instruction Types and Formats
e Registers, Condition Codes

* Memory

* Address space, Addressability, Alignment
* Virtual memory management

* Call, Interrupt/Exception Handling
* Access Control, Priority/Privilege
*|/O

e Task Management

 Power and Thermal Management

* Multi-threading support, Multiproc

Intel’ 64 and IA-32 Architectures
Software Developer's Manual

Volume 1:
Basic Architecture

36



ISAs being manufactured today

x86 — dominant in desktops, servers

ARM — dominant in mobile devices

POWER — Wii U, IBM supercomputers and some servers
MIPS — common in consumer wifi access points

SPARC — some Oracle servers, Fujitsu supercomputers
z/Architecture — IBM mainframes

/80 — Tl calculators

SHARC — some digital signal processors

ltanium — some HP servers (being retired)

RISCV — some embedded



Microarchitecture

* Implementation of the ISA under specific design constraints and goals

* Anything done in hardware without exposure to software
* Pipelining
* In-order versus out-of-order instruction execution
* Memory access scheduling policy
* Speculative execution
» Superscalar processing (multiple instruction issue?)
* Clock gating
* Caching? Levels, size, associativity, replacement policy
* Prefetching?
 Voltage/frequency scaling?
* Error correction?



ISA-LEVEL TRADEOFFS: SEMANTIC GAP

* Where to place the ISA? Semantic gap

* Closer to high-level language (HLL) or closer to hardware control signals? -
Complex vs. simple instructions
e RISC vs. CISC vs. HLL machines
 FFT, QUICKSORT, POLY, FP instructions?

* VAX INDEX instruction (array access with bounds checking)
e e.g., Ali][jl[k] one instruction with bound check



SEMANTIC GAP

High-Level Language

Semantic Gap

3
n
o
=
<
)
S
®

ISA

4
T
Q
S
aQ
<
)
-
®

Control Signals



SEMANTIC GAP

High-Level Language

A

wn

=4

= Semantic Gap

= ISA

ke CISC
L RISC

T

Q

o

s

Q

®

Control Signals

41



ISA-LEVEL TRADEOFFS:
SEMANTIC GAP

* Where to place the ISA? Semantic gap

* Closer to high-level language (HLL) or closer to hardware
control signals? = Complex vs. simple instructions

* RISC vs. CISC vs. HLL machines
* FFT, QUICKSORT, POLY, FP instructions?
* VAX INDEX instruction (array access with bounds checking)

* Tradeoffs:

* Simple compiler, complex hardware vs. complex compiler, simple
hardware
* Caveat: Translation (indirection) can change the tradeoff!
* Burden of backward compatibility
e Performance?

e Optimization opportunity: Example of VAX INDEX instruction: who
(compiler vs. hardware) puts more effort into optimization?

* Instruction size, code size



SMALL SEMANTIC GAP EXAMPLES IN VAX

* FIND FIRST
* Find the first set bit in a bit field
* Helps OS resource allocation operations

* SAVE CONTEXT, LOAD CONTEXT
* Special context switching instructions

* INSQUEUE, REMQUEUE
* Operations on doubly linked list

* INDEX
* Array access with bounds checking

* STRING Operations
* Compare strings, find substrings, ...

e Cyclic Redundancy Check Instruction

 EDITPC
* Implements editing functions to display fixed format output

* Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.



CISC vs. RISC

REPMOVS MOV
ADD

x86: REP MOVS DEST SRC COMP

MOV
ADD
JMP X

Which one is easy to optimize?



SMALL VERSUS LARGE SEMANTIC GAP

* CISC vs. RISC

e Complex instruction set computer = complex instructions
* Initially motivated by “not good enough” code generation

* Reduced instruction set computer = simple instructions

* John Cocke, mid 1970s, IBM 801
* Goal: enable better compiler control and optimization

e RISC motivated by

 Memory stalls (no work done in a complex instruction when
there is a memory stall?)

* When is this correct?
 Simplifying the hardware = lower cost, higher frequency

* Enabling the compiler to optimize the code better
* Find fine-grained parallelism to reduce stalls



SMALL VERSUS LARGE SEMANTIC GAP

John Cocke’s RISC (large semantic gap) concept:
* Compiler generates control signals: open microcode

Advantages of Small Semantic Gap (Complex instructions)

+ Denser encoding = smaller code size = saves off-chip bandwidth, better
cache hit rate (better packing of instructions)

+ Simpler compiler

Disadvantages
- Larger chunks of work = compiler has less opportunity to optimize

- More complex hardware = translation to control signals and optimization
needs to be done by hardware

Read Colwell et al., “Instruction Sets and Beyond: Computers, Complexity, and
Controversy,” IEEE Computer 1985.



