Pipelining 4 / Caches 1

after forwarding/prediction
where do we still need to stall?

memory output needed in fetch
ret followed by anything

memory output needed in exceute

mrmovqg or popq —+ use
(in immediatelly following instruction)

overall CPU

5 stage pipeline
1 instruction completes every cycle — except hazards
most data hazards: solved by forwarding

load /use hazard: 1 cycle of stalling

jXX control hazard: branch prediction + squashing
2 cycle penalty for misprediction
(correct misprediction after jXX finishes execute)

ret control hazard: 3 cycles of stalling
(fetch next instruction after ret finishes memory)

ret paths

decode

fetch |

jmp target
(from other stage)

L Instr.
| Mem.
pred.
PC instr.
.ﬁlength

%rsp

’-snext R[

execute
OxF—
memory
%P8
register file ‘
srcA RIsreAlf
R[srcB]H
B srcB
—_—
dstM ALU :
aluA Data in
dstE valE Data outf
- |las [F—~{Addr in
write?
—next R[§istM]
stE]

writeback

ret paths

fetch

jmp target

(from other stage)

decode
execute
OxF—
memory
%P8
| register file ‘
| R[srcAJH
rA srcA
*rB‘%AW-’D—’SFCB RlsreB];
] ALU
Instr. alu. ata In
dstE valE Data outf
Mem. O*E_Nlus [F—~{Addr in
write?
next R[flstM]
next R[§istE]
instr. [‘
length

ret paths

decode
. execute
% memor
— %PEp=l y
fetch | register file ‘ o
(f jmp Earget)] N A R[srcA]L T L
rom other stage . .
] very long critical path| ,
Instr. (AI . _h=/ P-{aluA Data in
Mem. ehie ﬁ_» #Ig%tj.‘o*_
0> rin
next R[fistM] -
pred. next R[fIstE]
PC ' |instr. [‘
— llength
l L
writeback

unsolved problem

cycle #
mrmovq 0 (%rax) , %rbx

subq %rbx, %rcx

m

= =

unsolved problem

cycle #
mrmovq 0 (%rax) , %rbx

subq %rbx, %rcx

solveable problem

cycle #1012 |/3/4|5/6|7|8
mrmovq O (%rax), %rbx |r|p|g|mlw

rmmovq %rbx, 0 (%rcx) FID El YRR

common for real processors to do this
but our textbook only forwards to the end of decode

fetch /fetch logic — advance or not

from incremented PC ——

MUX

N
predicted PC

should we stall?

fetch/decode logic — bubble or not

no-op value — OXF ——
MUX ——

R

should we send
no-op value (“bubble™)?

HCLRS signals

register aB {

}

HCLRS: every register bank has these MUXes built-in

stall_B: keep old value for all registers
register input — register output

bubble_B: use default value for all registers
register input — default value

exercise

register aB {

value : 8 OxFF;
} stall: keep old value
bubble: store default value
time a_value B_value stall_B bubble_B
0 Ox01 OXFF 0 0
1 0x02 72272 1 0
2 0Ox03 2272 0 0
3 Ox04 2272 0] 1
4 0x05 ?727? 0 0
5 OX06 ?227? 0] 0
6 0Ox07 2272 1 0
7 Ox08 2272 1 0
8 2272

10

exercise result

register aB {
value : 8 = OxFF;
}

a_value B_value

tall_B bubble_B

3
®
[%)]

0x01 OxFF

Ox02 Ox01

Ox03 Ox01

Ox04 Ox03

0x05 OxFF

Ox06 Ox05

Ox07 Ox06

[l dlol{ollol{o)l (o]

[o]lol[o){o]l Jlo)lo][o]

0x08 0x06

N EIEGE RN EREE

Ox06

exercise: squash + stall (1)

[time[fetch decode |execute [memory |writeback |

TE b B R
?v ~‘~~‘~;? ~‘~~"‘L? ~‘~~‘~;? ~‘~~"‘L?

2 [[nop c [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

exercise: what are the ?s
write down your answers,
then compare with your neighbors

12

exercise: squash + stall (1)

[time[fetch decode |execute [memory |writeback |
1 [E D C B A |
2 [E [nop C [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

12

exercise: squash + stall (2)

timelfetch |decode |execute [memory |writeback |

T E b Bk
F AU SRR SIRAL T BN

2 | 2 Ic [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

13

exercise: squash + stall (2)

[time[fetch decode |execute [memory |writeback |

TE b B R
?v ~‘~~‘~;? ~‘~~"‘L? ~‘~~‘~;? ~‘~~"‘L?

G E c [nop B |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

exercise: what are the ?s
write down your answers,
then compare with your neighbors

13

exercise: squash + stall (2)

[time[fetch decode |execute [memory |writeback |
1 [E D C B A |
2 F E C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

13

ret stall

time fetch ldecode [execute [memory |writeback |
0 call |

1 Jret [call |

2 |wait for ret [ret [call |

3 |wait for ret [nothing [ret |call (store) |

4 |wait for ret |nothing |nothing [ret (load) [call |
5 Jaddg Inothing |nothing [nothing et |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

14

ret stall

[time[fetch [decode execute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing [ret (load) |call |
5 Jaddg Inothing |nothing Inothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

14

ret stall

[time[fetch [decode execute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing [ret (load) |call |
5 Jaddg Inothing |nothing Inothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

ret stall

[time[fetch [decode execute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing ret (load) |call |
5 Jaddg Inothing |nothing Inothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

ret stall

[time[fetch [decode execute [memory |writeback |
0 call |

1 Jret |call |

2 |wait for ret [ret |call |

3 |wait for ret |nothing [ret |call (store) |

4 |wait for ret |nothing |nothing ret (load) |call |
5 Jaddg Inothing |nothing [nothing |ret |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

HCLRS bubble example

register fD {
icode : 4 = NOP;
rA : 4 = REG_NONE;
rB : 4 REG_NONE;

35

wire need_ret_bubble : 1;

need_ret_bubble = (D_icode == RET ||
E_icode == RET ||
M_icode == RET);

bubble_D = (need_ret_bubble ||
/* other cases %/);

15

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 Jsubg |
N
2 ne lsubq |
3 |addq [7] line lsubq (set ZF) |

4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |

5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 Jsubg |
N
2 ne lsubq |
N\LN
3 |addq [7] line lsubq (set ZF) |

4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |

5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 |subg |
N
]2 [jne |subq \
N N
3 |addq [7] line lsubq (set ZF) |

N [I—
4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |

5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 |subg |
N
2 ne lsubq |
N N
3 |addq [7] line lsubq (set ZF) |
N N N
4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |
5 [xorq Inothing |nothing line (done) |subg |

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

16

squashing with stall/bubble

[time[fetch [decode lexecute [memory |writeback |
1 Jsubg |
N
2 ne lsubq |
N N
3 |addq [7] line lsubq (set ZF) |

4 |rmmovq [?] laddq [?] [ine (use ZF) |subg |
B — L Bl — N N

5 [~ I 1] L L. yan NI b
L can compute bubble signal based on execute phase L‘
stal won't even start CC write for addq ew value

bubble TB] = use default (no-opJ;

16

squashing HCLRS

just_detected_mispredict =

e_icode == JXX && !branchTaken;
bubble_D = just_detected_mispredict
bubble_E = just_detected_mispredict

17

missing pieces

multi-cycle memories

beyond pipelining: out-of-order, multiple issue

18

missing pieces

multi-cycle memories

beyond pipelining: out-of-order, multiple issue

19

multi-cycle memories

ideal case for memories: single-cycle

achieved with caches (next topic)
fast access to small number of things

typical performance:
90+% of the time: single-cycle

sometimes many cycles (3-400+)

20

variable speed memories

cycle# 0 1 2 3 4 5

memory is fast: (cache “hit”; recently accessed?)

mrmovq 0 (%rbx) , %r8
mrmovq 0 (%rcx) , %r9
addq %r8, %r9

memory is slow: (cache “miss”)

mrmovq 0 (%rbx) , %r8
mrmovq 0 (%rcx) , %r9
addq %r8, %r9

FDEMW
F D E M
F D D

F DEMM
F D E E
F D D

|

w
E

o m

m

m

=

21

missing pieces

multi-cycle memories

beyond pipelining: out-of-order, multiple issue

22

beyond pipelining: multiple issue

start more than one instruction/cycle
multiple parallel pipelines; many-input/output register file

hazard handling much more complex

cycle# © 1 2 3 4 5 6 7 8
addq %r8, %r9 F D E/M W
Squ %r10, %rll F D EdM W
xorq %r9, %rll F D"E M W
Squ %rlo, %rbx F DYE M W

23

beyond pipelining: out-of-order

find later instructions to do instead of stalling

lists of available instructions in pipeline registers
take any instruction with available values

provide illusion that work is still done in order
much more complicated hazard handling logic

cycle# 0 1 2 3 4 5 6 7 8
mrmovq@(6rbx), %r8 F p E M M M W

Squ/ 8, %r9 F D E W
addq %ri10, %rll
xorq %rl2, %rl3

24

better branch prediction

forward (target > PC) not taken; backward taken
intuition: loops:
LOOP:
je LOOP
LOOP:
jne SKIP_LOOP
jmp LOOP
SKIP_LOOP:

25

predicting ret: extra copy of stack

predicting ret — stack in processor registers

different than real stack/out of room? just slower

baz saved registers

baz return address

bar saved registers

bar return address

foo local variables

foo saved registers

foo return address

foo saved registers

stack in memory

baz return address

bar return address

foo return address

(partial?) stack
in CPU registers

26

prediction before fetch

real processors can take multiple cycles to read instruction memory

predict branches before reading their opcodes

how — more extra data structures
tables of recent branches (often many kilobytes)

27

2004 CPU

ingPaint Unit

s Eraceo s
Cache

Clock Generator

approx regis

Registers
L1 cache
L2 cache

. Branch Prediction
(approximate)

(M D press image of Opteron die;

200

h prediction location via chip-architect.org (Hans de Vries)

28

stalling/misprediction and latency

hazard handling where pipeline latency matters
longer pipeline — larger penalty

part of Intel’s Pentium 4 problem (c. 2000)

on release: 50% higher clock rate, 2-3x pipeline stages of competitors
out-of-order, multiple issue processor

first-generation review quote:

For today's buyer, the Pentium 4 simply doesn't
make sense. It's slower than the competition in

just about every area, it's more expensive, it's

Review quote: Anand Lai Shimpi, “Intel Pentium 4 1.4 & 1.5 GHz", AnandTech, 20 November 2000 29

2004 CPU

@
&8
=
£
F
o
E
3
=
-3
[=]
a

Clock Generator

g2 approx 2004 AMD press image of Opteron die;
Approx register location via chip-architect.org (Hans de Vries) 30

2004 CPU
/\Registers

—
ing Point Unit

@
8
£
£
F
o
E
3
=
-3
[=]
a

Clock Generator

ge: approx 2004 AMD press image of Opteron die;

Opterail brox register location via chip-architect.org (Hans de Vries)

2004 CPU

Registers
L1 cache

—
ing Point Unit

‘DDRMermory Interface

Clock Generator

Bage: approx 2004 AMD press image of Opteron die;
brox register location via chip-architect.org (Hans de Vries) 30

2004 CPU

Registers
i — o | L1 cache
{ing Point Unit .. 1l I. L | L2 cache

e —arovistivd] adA

Clock Generator AMD
é Bage: approx 2004 AMD press image of Opteron die;
30

Opte;dn brox register location via chip-architect.org (Hans de Vries)

2004 CPU

Registers
i — o | L1 cache
{ing Point Unit .. 1l I. L | L2 cache

e —arovistivd] adA

Clock Generator AMD
é Bage: approx 2004 AMD press image of Opteron die;
30

Opte;dn brox register location via chip-architect.org (Hans de Vries)

2004 CPU

Registers
L1 cache
L2 cache
L3 cache

ingPaint Unit

Clock Generator AMD

Bage: approx 2004 AMD press image of Opteron die;
Optero}\ brox register location via chip-architect.org (Hans de Vries) 30

2004 CPU

Registers

= L1 cache
prloat iR Uit CCEEHEE L L2 cache
L3 cache

=DDR Mermoryin

I
| 5E|
'8
-
3
? i
£ =
T ::

Clock Generator AMD

é Bage: approx 2004 AMD press image of Opteron die;

OpteFdi\ brox register location via chip-architect.org (Hans de Vries) 30

cache: real memory

address —

input (if writing) —
write enable —

Data Memory
AKA
L1 Data Cache

— value

— ready?

31

cache: real memory

address —

input (if writing) —
write enable —

Data Memory
AKA
L1 Data Cache

— value

— ready?

-

L2 Cache

31

the place of cache

read OxXABCD?

read ©x12347

Y

CPU

<
<

OxABCD is 1000

Cache

read OxXABCD?

Y

0x1234 is 4000

<
<

OxABCD is 1000

RAM
or
another
cache

memory hierarchy goals

performance of the fastest (smallest) memory
hide 100x latency difference? 99+ % hit (= value found in cache) rate

capacity of the largest (slowest) memory

33

memory hierarchy assumptions

temporal locality
“if a value is accessed now, it will be accessed again soon”
caches should keep recently accessed values

spatial locality
“if a value is accessed now, adjacent values will be accessed soon”
caches should store adjacent values at the same time

natural properties of programs — think about loops

34

locality examples

double computeMean(int length, double *values) {
double total = 0.0;
for (int i = 0; i < length; ++i) {
total += values[i];

}
return total / length;
}
temporal locality: machine code of the loop
spatial locality: machine code of most consecutive instructions

temporal locality: total, 1, length accessed repeatedly

spatial locality: values[1i+1] accessed after values|[i]

35

backup slides

36

HCLRS pipelining debugging: intro

debugging pipelines is consistently one of the biggest sources of
difficulty in this class

37

HCL2D pipeline debugging (1)

draw a picture of the state of the instructions

get —d output
redirect to a file
./hclrs file.hcl -d 1input.yo >output.txt

check each stage of the broken instruction

expect forwarding/hazard-handling problems

38

HCL2D pipeline debugging (2)

write assembly — not just supplied test cases

write file.ys — make file.yo to assemble
remove anything not involved in the error

find a minimal test case

don’t spend time looking at irrelevant instructions

draw the pipeline stages

what instructions are in fetch/decode/etc. when?
what values should be in pipelien registers when?
what forwarding should happen?

39

	overall conclusion?
	why is ret not shorter?
	the load/use hazard
	a nit about missing forwarding

	implementing stalling
	generic logic
	HCLRS support
	bubble/stall exercise (2)
	signals for ret/stall
	signals for jXX squash

	missing pieces

