## Cache Performance

## C and cache misses (1)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {
even_sum += array[i + 0];
odd_sum += array[i + 1];
}
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?

## $C$ and cache misses (2)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)
    even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)
odd_sum += array[i + 1];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks? Would a set-associtiave cache be better?

## thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
set 1 : address 16 to 31 , ( 16 to 31 ) $+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

## thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
set 1 : address 16 to 31 , ( 16 to 31 ) $+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

## thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511]

## thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3] block at $0+2 \mathrm{~KB}$ : array [512] through array[515]
set 1: address 16 to 31 , (16 to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7] block at $16+2 \mathrm{~KB}$ : array[516] through array[519]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511] block at $2032+2 \mathrm{~KB}$ : array[1020] through array[1023]

## thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses set 0 : address $0,0+1 K B, 0+2 K B, \ldots$
set 1 : address $16,16+1 \mathrm{~KB}, 16+2 \mathrm{~KB}, \ldots$
set 63: address $1008,2032+1 \mathrm{~KB}, 2032+2 \mathrm{~KB} . .$.

## thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+1 \mathrm{~KB}, 0+2 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
set 1: address $16,16+1 \mathrm{~KB}, 16+2 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+1 \mathrm{~KB}, 2032+2 \mathrm{~KB} .$.
address 1008: array[252] through array[255]

## thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+1 \mathrm{~KB}, 0+2 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3] block at $0+1 \mathrm{~KB}$ : array[256] through array[259] block at $0+2 \mathrm{~KB}$ : array[512] through array[515]
set 1 : address $16,16+1 \mathrm{~KB}, 16+2 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+1 \mathrm{~KB}, 2032+2 \mathrm{~KB} . .$.
address 1008: array[252] through array[255]

## thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+1 \mathrm{~KB}, 0+2 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3] block at $0+1 \mathrm{~KB}$ : array[256] through array[259] block at $0+2 \mathrm{~KB}$ : array[512] through array [515]
set 1: address $16,16+1 \mathrm{~KB}, 16+2 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+1 \mathrm{~KB}, 2032+2 \mathrm{~KB} . .$.
address 1008: array[252] through array[255]

## C and cache misses (3)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?

## C and cache misses (3, rewritten?)

```
item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)
    a_sum += array[i];
for (int i = 1; i < 1024; i += 128)
    b_sum += array[i];
```


## C and cache misses (4)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 4 -way set associative 2 KB direct-mapped cache with 16B cache blocks?

## a note on matrix storage

$A-N \times N$ matrix
represent as array
makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat $=$ malloc $(N * N)$;
A_flat $[i \star N+j]===A_{-} 2 d \_a r r a y[i][j]$

## matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j$ */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

## matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
            B[i*N+j] += A[i * N + k] * A[k * N + j];
```

    /* version 2: outer loop is \(k\), middle is \(i\) */
    for (int $k=0 ; k<N$; ++k)
for (int i = 0 ; i $<\mathrm{N}$; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

## matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is $k$, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is $k$, middle is $i$ */
for (int $k=0 ; k<N$; ++k)
for (int i = 0 ; i $<\mathrm{N}$; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

## performance




## alternate view 1: cycles/instruction



## alternate view 2: cycles/operation



## loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
kij order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

## loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
kij order: $B_{i j}, A_{k j}$ have spatial locality
$k i j$ order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

## matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
            B[i*N+j] += A[i * N + k] * A[k * N + j];
```

    /* version 2: outer loop is \(k\), middle is \(i\) */
    for (int $k=0 ; k<N$; ++k)
for (int i = 0 ; i $<\mathrm{N}$; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

## matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
            B[i*N+j] += A[i * N + k] * A[k * N + j];
```

    /* version 2: outer loop is \(k\), middle is \(i\) */
    for (int $k=0 ; k<N$; ++k)
for (int i = 0 ; i $<\mathrm{N}$; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

## matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is $k$, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is $k$, middle is $i$ */
for (int $k=0 ; k<N$; ++k)
for (int i = 0 ; i $<\mathrm{N}$; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

## L1 misses



## L1 miss detail (1)



## L1 miss detail (2)

read misses/ 1 K instruction


## addresses

$$
\begin{array}{lllllll}
A[k \star 114+j] & \text { is at } & 10 & 0000 & 0000 & 0100 \\
A[k \star 114+j+1] & \text { is at } & 10 & 0000 & 0000 & 1000 \\
A[(k+1) \star 114+j] & \text { is at } & 10 & 0011 & 1001 & 0100 \\
A[(k+2) \star 114+j] & \text { is at } & 10 & 0101 & 0101 & 1100 \\
\ldots & & & & & & \\
A[(k+9) \star 114+j] & \text { is at } & 11 & 0000 & 0000 & 1100
\end{array}
$$

## addresses

$$
\begin{array}{llllll}
A[k \star 114+j] & \text { is at } & 10 & 0000 & 0000 & 0100 \\
A[k \star 114+j+1] & \text { is at } & 10 & 0000 & 0000 & 1000 \\
A[(k+1) \star 114+j] & \text { is at } & 10 & 0011 & 1001 & 0100 \\
A[(k+2) \star 114+j] & \text { is at } & 10 & 0101 & 0101 & 1100 \\
\cdots & & & & & \\
A[(k+9) \star 114+j] & \text { is at } & 11 & 0000 & 0000 & 1100
\end{array}
$$

recall: 6 index bits, 6 block offset bits (L1)

## conflict misses

powers of two - lower order bits unchanged
$A[k * 93+j]$ and $A[(k+11) \star 93+j]:$
1023 elements apart ( 4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set
A $[k * 93+(j+1)]$ will not be cached (next $i$ loop)
even if in same block as $A[k * 93+j]$

## reasoning about loop orders

changing loop order changed locality
how do we tell which loop order will be best? besides running each one?

## systematic approach (1)

$$
\begin{aligned}
& \text { for (int } k=0 ; k<N ;++k) \\
& \text { for (int } i=0 ; i<N ;++i) \\
& \quad \text { for (int } j=0 ; j<N ;++j) \\
& \quad B[i \star N+j]+=A[i \star N+k] * A[k * N+j] ;
\end{aligned}
$$

goal: get most out of each cache miss
if $N$ is larger than the cache:
miss for $B_{i j}-1$ comptuation
miss for $A_{i k}-N$ computations
miss for $A_{k j}-1$ computation
effectively caching just 1 element

## keeping values in cache

can't explicitly ensure values are kept in cache
...but reusing values effectively does this
cache will try to keep recently used values
cache optimization ideas: choose what's in the cache for thinking about it: load values explicitly for implementing it: access only values we want loaded

## a transformation

for (int kk = 0; kk < N; kk += 2)
for (int $k=k k ; k<k k+2 ;++k)$
for (int i $=0 ; i<N ; i+=2)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k]$ * $A[k * N+j] ;$
split the loop over $k$ - should be exactly the same (assuming even $N$ )

## a transformation

for (int kk = 0; kk < N; kk += 2)
for (int $k=k k ; k<k k+2$; ++k)
for (int $i=0 ; i<N ; i+=2)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
$B[i * N+j]+=A[i * N+k]$ * $A[k * N+j] ;$
split the loop over $k$ - should be exactly the same (assuming even $N$ )

## simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int $k=k k ; k<k k+2 ;++k$ ) */
for (int i = 0; i < N; i += 2)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
/* load Aik, Aik+1 into cache and process: */
for (int $k=k k ; k<k k+2$; ++k)
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
now reorder split loop — same calculations

## simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int $k=k k ; k<k k+2 ;++k$ ) */
for (int $i=0 ; i<N ; i+=2)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
/* load Aik, Aik+1 into cache and process: */
for (int $k=k k ; k<k k+2 ;++k$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for $k$
(previously: $B_{i, j+1}$ for $k$ right after $B_{i j}$ for $k$ )

## simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int $k=k k ; k<k k+2 ;++k$ ) */
for (int $i=0 ; i<N ; i+=2)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$ )
/* load Aik, Aik+1 into cache and process: */
for (int $k=k k ; k<k k+2 ;++k$ )
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for $k$
(previously: $B_{i, j+1}$ for $k$ right after $B_{i j}$ for $k$ )

## simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
    }
}
```


## simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
    }
}
```

Temporal locality in $B_{i j} \mathrm{~s}$

## simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
    }
}
```

More spatial locality in $A_{i k}$

## simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
    }
}
```

Still have good spatial locality in $A_{k j}, B_{i j}$

## improvement in read misses



## simple blocking (2)

same thing for $i$ in addition to $k$ ?

```
for (int kk = 0; kk < N; kk += 2) {
    for (int ii = 0; ii < N; ii += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            for (int k = kk; k < kk + 2; ++k)
            for (int i = 0; i < ii + 2; ++i)
                        B[i*N+j] += A[i*N+k] * A[k*N+j];
        }
    }
}
```


## simple blocking - expanded

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            Bi+0,j}+=\mp@subsup{A}{i+0,k+0}{* * A Ak+0,j
            B
            Bi+1,j}+=\mp@subsup{A}{i+1,k+0}{*}\mp@subsup{A}{k+0,j}{
            Bi+1,j}+=\mp@subsup{A}{i+1,k+1}{*}\mp@subsup{A}{k+1,j}{
        }
    }
}
```


## simple blocking - expanded

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
                /* process a "block": */
            Bi+0,j}+=\mp@subsup{A}{i+0,k+0}{* * A Ak+0,j
            Bi+0,j}+=\mp@subsup{A}{i+0,k+1}{*}*\mp@subsup{A}{k+1,j}{
            Bi+1,j += A A i+1,k+0 * A A k+0,j
            Bi+1,j}+=\mp@subsup{A}{i+1,k+1}{*}\mp@subsup{A}{k+1,j}{
        }
    }
}
```

Now $A_{k j}$ reused in inner loop - more calculations per load!

## generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
    with I by K block of A hopefully cached:
    for (int jj = 0; jj < N; jj += J) {
        with K by J block of A, I by J block of B cached:
        for i in ii to ii+I:
            for j in jj to jj+J:
            for k in kk to kk+k:
                    B[i * N + j] += A[i * N + k]
                        * A[k * N + j];
```

$B_{i j}$ used $K$ times for one miss - $N^{2} / K$ misses
$A_{i k}$ used $J$ times for one miss - $N^{2} / J$ misses
$A_{k j}$ used $I$ times for one miss - $N^{2} / I$ misses
catch: $I K+K J+I J$ elements must fit in cache

## generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
    with I by K block of A hopefully cached:
    for (int jj = 0; jj < N; jj += J) {
        with K by J block of A, I by J block of B cached:
        for i in ii to ii+I:
            for j in jj to jj+J:
            for k in kk to kk+k:
                    B[i * N + j] += A[i * N + k] 
```

$B_{i j}$ used $K$ times for one miss $-N^{2} / K$ misses
$A_{i k}$ used $J$ times for one miss $-N^{2} / J$ misses
$A_{k j}$ used $I$ times for one miss - $N^{2} / I$ misses
catch: $I K+K J+I J$ elements must fit in cache

## generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
    with I by K block of A hopefully cached:
    for (int jj = 0; jj < N; jj += J) {
        with K by J block of A, I by J block of B cached:
        for i in ij to ii+I:
            for j in jj to jj+J:
            for k in kk to kk+k:
                    B[i * N + j] += A[i * N + k], 
```

$B_{i j}$ used $K$ times for one miss - $N^{2} / K$ misses
$A_{i k}$ used $J$ times for one miss - $N^{2} / J$ misses
$A_{k j}$ used $I$ times for one miss - $N^{2} / I$ misses
catch: $I K+K J+I J$ elements must fit in cache

## generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
    with I by K block of A hopefully cached:
    for (int jj = 0; jj < N; jj += J) {
        with K by J block of A, I by J block of B cached:
        for i in ij to ii+I:
            for j in jj to jj+J:
            for k in kk to kk+k:
                    B[i * N + j] += A[i * N + k]
                        * A[k * N + j];
```

$B_{i j}$ used $K$ times for one miss - $N^{2} / K$ misses
$A_{i k}$ used $J$ times for one miss - $N^{2} / J$ misses
$A_{k j}$ used $I$ times for one miss - $N^{2} / I$ misses
catch: $I K+K J+I J$ elements must fit in cache

## view 2: divide and conquer

```
partial_square(float *A, float *B,
                        int startI, int endI, ...) {
    for (int i = startI; i < endI; ++i) {
        for (int j = startJ; j < endJ; ++j) {
}
square(float *A, float *B, int N) {
    for (int ii = 0; ii < N; ii += BLOCK)
```

/* segment of $A, B$ in use fits in cache! */
partial_square(
A, B,
ii, ii + BLOCK,
jj, jj + BLOCK, ...);
\}

## array usage: kij order



## inefficiencies

if a row doesn't fit in cache -
cache effectively holds one element
everything else - too much other stuff between accesses
if a row does fit in cache -
cache effectively holds one row + one element
everything else - too much other stuff between accesses

## array usage (better)


more temporal locality:
$N$ calculations for each $A_{i k}$
2 calculations for each $B_{i j}$ (for $k, k+1$ )
2 calculations for each $A_{k j}$ (for $k, k+1$ )

## array usage (better)


more spatial locality:
calculate on each $A_{i, k}$ and $A_{i, k+1}$ together both in same cache block - same amount of cache loads

## array usage: block


inner loop keeps "blocks" from $A, B$ in cache

## array usage: block


$B_{i j}$ calculation uses strips from $A$ $K$ calculations for one load (cache miss)

## array usage: block


$A_{i k}$ calculation uses strips from $A, B$
$J$ calculations for one load (cache miss)

## array usage: block


(approx.) $K I J$ fully cached calculations for $K I+I J+K J$ loads
(assuming everything stays in cache)

## cache blocking efficiency

load $I \times K$ elements of $A_{i k}$ : do $>J$ multiplies with each
load $K \times J$ elements of $A_{k j}$ : do $I$ multiplies with each
load $I \times J$ elements of $B_{i j}$ : do $K$ adds with each
bigger blocks - more work per load!
catch: $I K+K J+I J$ elements must fit in cache

## cache blocking rule of thumb

fill the most of the cache with useful data
and do as much work as possible from that
example: my desktop 32KB L1 cache
$I=J=K=48$ uses $48^{2} \times 3$ elements, or 27 KB .
assumption: conflict misses aren't important

