
Cache Performance

1

C and cache misses (1)

int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

2

C and cache misses (2)

int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtiave cache be better?

3

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

4

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

4

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]

block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]

block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]

block at 2032+2KB: array[1020] through array[1023]

4

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

4

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 1KB, 0 + 2KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 1KB, 16 + 2KB, …

address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 1KB, 2032 + 2KB …

address 1008: array[252] through array[255]

5

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 1KB, 0 + 2KB, …

block at 0: array[0] through array[3]

block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 1KB, 16 + 2KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 1KB, 2032 + 2KB …

address 1008: array[252] through array[255]
5

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 1KB, 0 + 2KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 1KB, 16 + 2KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 1KB, 2032 + 2KB …

address 1008: array[252] through array[255]
5

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 1KB, 0 + 2KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 1KB, 16 + 2KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 1KB, 2032 + 2KB …

address 1008: array[252] through array[255]
5

C and cache misses (3)

typedef struct {
int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? 6

C and cache misses (3, rewritten?)

item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)

a_sum += array[i];
for (int i = 1; i < 1024; i += 128)

b_sum += array[i];

7

C and cache misses (4)

typedef struct {
int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks? 8

a note on matrix storage

A — N × N matrix

represent as array

makes dynamic sizes easier:

float A_2d_array[N][N];
float *A_flat = malloc(N * N);

A_flat[i * N + j] === A_2d_array[i][j]

9

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i * N + j] += A[i * N + k] * A[k * N + j];

10

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
11

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
11

performance

0 100 200 300 400 500
N

0.0
0.2
0.4
0.6
0.8
1.0
1.2 billions of instructions

k inner
k outer

0 100 200 300 400 500
N

0.0

0.2

0.4

0.6

0.8

1.0 billions of cycles
k inner
k outer

12

alternate view 1: cycles/instruction

0 100 200 300 400 500
N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 cycles/instruction

13

alternate view 2: cycles/operation

0 100 200 300 400 500
N

1.0

1.5

2.0

2.5

3.0

3.5 cycles/multiply or add

14

loop orders and locality

loop body: Bij+ = AikAkj

kij order: Bij, Akj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Bij has temporal locality

15

loop orders and locality

loop body: Bij+ = AikAkj

kij order: Bij, Akj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Bij has temporal locality

15

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
16

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
16

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
16

L1 misses

0 100 200 300 400 500
N

0

20

40

60

80

100

120

140 read misses/1K instructions
k inner
k outer

17

L1 miss detail (1)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

read misses/1K instruction

18

L1 miss detail (2)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

N = 93; 93 * 11 210

N = 114; 114 * 9 210

N = 27

read misses/1K instruction

19

addresses
A[k*114+j] is at 10 0000 0000 0100
A[k*114+j+1] is at 10 0000 0000 1000
A[(k+1)*114+j] is at 10 0011 1001 0100
A[(k+2)*114+j] is at 10 0101 0101 1100
…
A[(k+9)*114+j] is at 11 0000 0000 1100

recall: 6 index bits, 6 block offset bits (L1)

20

addresses
A[k*114+j] is at 10 0000 0000 0100
A[k*114+j+1] is at 10 0000 0000 1000
A[(k+1)*114+j] is at 10 0011 1001 0100
A[(k+2)*114+j] is at 10 0101 0101 1100
…
A[(k+9)*114+j] is at 11 0000 0000 1100

recall: 6 index bits, 6 block offset bits (L1)

20

conflict misses

powers of two — lower order bits unchanged

A[k*93+j] and A[(k+11)*93+j]:
1023 elements apart (4092 bytes; 63.9 cache blocks)

64 sets in L1 cache: usually maps to same set

A[k*93+(j+1)] will not be cached (next i loop)

even if in same block as A[k*93+j]

21

reasoning about loop orders

changing loop order changed locality

how do we tell which loop order will be best?
besides running each one?

22

systematic approach (1)

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i*N+k] * A[k*N+j];

goal: get most out of each cache miss
if N is larger than the cache:
miss for Bij — 1 comptuation
miss for Aik — N computations
miss for Akj — 1 computation
effectively caching just 1 element

23

keeping values in cache

can’t explicitly ensure values are kept in cache

…but reusing values effectively does this
cache will try to keep recently used values

cache optimization ideas: choose what’s in the cache
for thinking about it: load values explicitly
for implementing it: access only values we want loaded

24

a transformation
for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i*N+k] * A[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

25

a transformation
for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i*N+k] * A[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

25

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

B[i*N+j] += A[i*N+k] * A[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

26

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

B[i*N+j] += A[i*N+k] * A[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

26

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

B[i*N+j] += A[i*N+k] * A[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

26

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

27

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

Temporal locality in Bijs

27

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

More spatial locality in Aik

27

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

Still have good spatial locality in Akj, Bij

27

improvement in read misses

0 100 200 300 400 500 600
N

0

5

10

15

20read misses/1K instructions of unblocked

blocked (kk+=2)
unblocked

28

simple blocking (2)

same thing for i in addition to k?

for (int kk = 0; kk < N; kk += 2) {
for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block": */
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < ii + 2; ++i)
B[i*N+j] += A[i*N+k] * A[k*N+j];

}
}

}

29

simple blocking — expanded

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {

/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Bi+0,j += Ai+0,k+0 * Ak+0,j

Bi+0,j += Ai+0,k+1 * Ak+1,j

Bi+1,j += Ai+1,k+0 * Ak+0,j

Bi+1,j += Ai+1,k+1 * Ak+1,j
}

}
}

Now Akj reused in inner loop — more calculations per load!

30

simple blocking — expanded

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {

/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Bi+0,j += Ai+0,k+0 * Ak+0,j

Bi+0,j += Ai+0,k+1 * Ak+1,j

Bi+1,j += Ai+1,k+0 * Ak+0,j

Bi+1,j += Ai+1,k+1 * Ak+1,j
}

}
}

Now Akj reused in inner loop — more calculations per load!
30

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

31

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

31

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

31

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

31

view 2: divide and conquer

partial_square(float *A, float *B,
int startI, int endI, ...) {

for (int i = startI; i < endI; ++i) {
for (int j = startJ; j < endJ; ++j) {

...
}
square(float *A, float *B, int N) {
for (int ii = 0; ii < N; ii += BLOCK)
...

/* segment of A, B in use fits in cache! */
partial_square(

A, B,
ii, ii + BLOCK,
jj, jj + BLOCK, ...);

}
32

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fitsBij reused in next outer loop

probably not still in cache next time
(but, at least some spatial locality)

33

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fitsBij reused in next outer loop

probably not still in cache next time
(but, at least some spatial locality)

33

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fitsBij reused in next outer loop

probably not still in cache next time
(but, at least some spatial locality)

33

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fits

Bij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

33

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fits

Bij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

33

inefficiencies

if a row doesn’t fit in cache —
cache effectively holds one element

everything else — too much other stuff between accesses

if a row does fit in cache —
cache effectively holds one row + one element

everything else — too much other stuff between accesses

34

array usage (better)

Aik to Ai+1,k+1

Ak0
to

Ak+1,N

Bi0 to Bi+1,N

more temporal locality:
N calculations for each Aik

2 calculations for each Bij (for k, k + 1)
2 calculations for each Akj (for k, k + 1)

more spatial locality:
calculate on each Ai,k and Ai,k+1 together
both in same cache block — same amount of cache loads

35

array usage (better)

Aik to Ai+1,k+1

Ak0
to

Ak+1,N

Bi0 to Bi+1,N

more temporal locality:
N calculations for each Aik

2 calculations for each Bij (for k, k + 1)
2 calculations for each Akj (for k, k + 1)

more spatial locality:
calculate on each Ai,k and Ai,k+1 together
both in same cache block — same amount of cache loads

35

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cache

Bij calculation uses strips from A
K calculations for one load (cache miss)
Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

36

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cache

Bij calculation uses strips from A
K calculations for one load (cache miss)

Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

36

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cacheBij calculation uses strips from A
K calculations for one load (cache miss)

Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

36

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cacheBij calculation uses strips from A
K calculations for one load (cache miss)
Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

36

cache blocking efficiency

load I × K elements of Aik:
do > J multiplies with each

load K × J elements of Akj:
do I multiplies with each

load I × J elements of Bij:
do K adds with each

bigger blocks — more work per load!

catch: IK + KJ + IJ elements must fit in cache

37

cache blocking rule of thumb

fill the most of the cache with useful data

and do as much work as possible from that

example: my desktop 32KB L1 cache

I = J = K = 48 uses 482 × 3 elements, or 27KB.

assumption: conflict misses aren’t important

38

