
1

last time

SIMD (single instruction multiple data)

hardware idea: wider ALUs and registers

Intel’s interface _mm…

sharing the CPU: context switching

context = visible CPU state (registers, condition codes, PC, …)

exceptions = OS gets run by the processor

2

logistics: the final

final exam location: Wilson 402

10 May, 7PM

fill out the conflict form very soon if you can’t make it

3

logistics: lab this week

using SIMD stuff

preview for smooth HW

some optional parts — some students get stuck on earlier parts
but I expect many of you to have time
maybe better explanation in lecture??

please try — get comfortable for smooth

4

a note on smooth

it takes most students conisderably more time than rotate

start early

…especially if you have trouble with the lab

5

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

6

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

6

OS and time multiplexing

starts running instead of normal program
mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

7

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

8

context switch pseudocode

context_switch(last, next):
copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

9

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

10

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

11

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

12

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

12

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

13

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

14

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

15

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

16

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

17

address space mechanisms

next topic

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

18

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

19

The Process

process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

20

synchronous versus asynchronous

synchronous — triggered by a particular instruction
traps and faults

asynchronous — comes from outside the program
interrupts and aborts
timer event
keypress, other input event

21

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

22

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

23

timer interrupt

(conceptually) external timer device
(usually on same chip as processor)

OS configures before starting program

sends signal to CPU after a fixed interval

24

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

25

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

26

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

27

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

28

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

29

exception implementation

detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

30

exception implementation: notes

I/textbook describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

31

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

32

running the exception handler

hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

33

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

34

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

34

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

34

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

34

why return from exception?

reasons related to protection (later)

not just ret — can’t modify process’s stack
would break the illusion of dedicated CPU/memory
program could use stack in weird way
movq $100, −8(%rsp)
...
movq −8(%rsp), %rax

(even though this wouldn’t be following calling conventions)

need to restart program undetectably!

35

exception handler structure

1. save process’s state somewhere

2. do work to handle exception

3. restore a process’s state (maybe a different one)

4. jump back to program
handle_timer_interrupt:
mov_from_saved_pc save_pc_loc
movq %rax, save_rax_loc
... // choose new process to run here
movq new_rax_loc, %rax
mov_to_saved_pc new_pc
return_from_exception

36

exceptions and time slicing

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

37

defeating time slices?

my_exception_table:
...

my_handle_timer_interrupt:
// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

38

defeating time slices?

wrote a program that tries to set the exception table:

my_exception_table:
...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

39

privileged instructions

can’t let any program run some instructions

allows machines to be shared between users (e.g. lab servers)

examples:
set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception instead

40

kernel mode

extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

41

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

42

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

43

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

44

protection fault

when program tries to access memory it doesn’t own

e.g. trying to write to bad address

when program tries to do other things that are not allowed

e.g. accessing I/O devices directly

e.g. changing exception table base register

OS gets control — can crash the program
or more interesting things

45

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

46

kernel services

allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

47

Linux x86-64 system calls

special instruction: syscall

triggers trap (deliberate exception)

48

Linux syscall calling convention

before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
49

Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello,␣World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

50

approx. system call handler

sys_call_table:
.quad handle_read_syscall
.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

51

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

52

system calls and protection

exceptions are only way to access kernel mode

operating system controls what proceses can do

… by writing exception handlers very carefully

53

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

54

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

54

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

55

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

55

a note on terminology (1)

real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

56

a note on terminology (2)

we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

57

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

58

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

58

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

58

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

58

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

59

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

59

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

59

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

59

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

59

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

60

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

60

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

60

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

60

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

60

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

61

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

61

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

61

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

61

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

61

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

61

backup sldies

62

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

solution: disallow this!

63

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

solution: disallow this!

63

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

solution: disallow this!

63

interrupt disabling

CPU supports disabling (most) interrupts
interrupts will wait until it is reenabled
CPU has extra state:

interrupts enabled?

keyboard interrupt pending?

timer interrupt pending?

...

exception logic

64

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
save_old_pc save_pc
movq %r15, save_r15
/* key press here */
movq %r14, save_r14
...
call move_saved_state
enable_interrupts

/* interrupt happens here! */
...

handle_keyboard_interrupt:
save_old_pc save_pc
...
call move_saved_state

65

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
save_old_pc save_pc
movq %r15, save_r15
/* key press here */
movq %r14, save_r14
...
call move_saved_state
enable_interrupts

/* interrupt happens here! */
...

handle_keyboard_interrupt:
save_old_pc save_pc
...
call move_saved_state

65

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
save_old_pc save_pc
movq %r15, save_r15
/* key press here */
movq %r14, save_r14
...
call move_saved_state
enable_interrupts

/* interrupt happens here! */
...

handle_keyboard_interrupt:
save_old_pc save_pc
...
call move_saved_state

65

disabling interrupts

automatically disabled when exception handler starts

also done with privileged instruction:

change_keyboard_parameters:
disable_interrupts
...
/* change things used by

handle_keyboard_interrupt here */
...
enable_interrupts

66

67

on virtual machines

process can be called a ‘virtual machine’

programmed like a complete computer…

but weird interface for I/O, memory — system calls

can we make that closer to the real machine?

68

on virtual machines

process can be called a ‘virtual machine’

programmed like a complete computer…

but weird interface for I/O, memory — system calls

can we make that closer to the real machine?

68

trap-and-emulate

privileged instructions trigger a protection fault

we assume operating system crashes

what if OS pretends the privileged instruction works?

69

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
70

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
70

was_write_to_screen()

how does OS know what caused protection fault?

option 1: hardware “type” register

option 2: check instruction:
int opcode = (*process−>registers−>pc & 0xF0) >> 4;
if (opcode == WRITE_TO_SCREEN_OPCODE)

...

71

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
72

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
72

system virtual machines

turn faults into system calls

emulate machine that looks more like ‘real’ machine

what software like VirtualBox, VMWare, etc. does

more complicated than this:
on x86, some privileged instructions don’t cause faults
dealing with address spaces is a lot of extra work

73

process VM versus system VM
Linux process feature real machine feature
files, sockets I/O devices
threads CPU cores
mmap/brk (used by malloc) ???
signals exceptions

74

75

setjmp/longjmp

jmp_buf env;

main() {
if (setjmp(env) == 0) { // like try {
...
read_file()
...

} else { // like catch
printf("some␣error␣happened\n");

}
}

read_file() {
...
if (open failed) {

longjmp(env, 1) // like throw
}
...

}

76

implementing setjmp/longjmp

setjmp:
copy all registers to jmp_buf
… including stack pointer

longjmp
copy registers from jmp_buf
… but change %rax (return value)

77

setjmp psuedocode

setjmp: looks like first half of context switch

setjmp:
movq %rcx, env−>rcx
movq %rdx, env−>rdx
movq %rsp + 8, env−>rsp // +8: skip return value
...
save_condition_codes env−>ccs
movq 0(%rsp), env−>pc
movq $0, %rax // always return 0
ret

78

longjmp psuedocode

longjmp: looks like second half of context switch

longjmp:
movq %rdi, %rax // return a different value
movq env−>rcx, %rcx
movq env−>rdx, %rdx
...
restore_condition_codes env−>ccs
movq env−>rsp, %rsp
jmp env−>pc

79

setjmp weirdness — local variables

Undefined behavior:
int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

80

setjmp weirdness — fix

Defined behavior:
volatile int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

81

on implementing try/catch

could do something like setjmp()/longjmp()

but setjmp is slow

82

on implementing try/catch

could do something like setjmp()/longjmp()

but setjmp is slow

83

low-overhead try/catch (1)

main() {
printf("about␣to␣read␣file\n");
try {
read_file();

} catch(...) {
printf("some␣error␣happened\n");

}
}
read_file() {
...
if (open failed) {

throw IOException();
}
...

}
84

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

85

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

85

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

85

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

85

lookup table tradeoffs

no overhead if throw not used

handles local variables on registers/stack, but…

larger executables (probably)

extra complexity for compiler

86

87

protection and sudo

programs always run in user mode

extra permissions from OS do not change this
sudo, superuser, root, SYSTEM, …

operating system may remember extra privileges

88

89

careful exception handlers

movq $important_os_address, %rsp

can’t trust user’s stack pointer!

need to have own stack in kernel-mode-only memory

need to check all inputs really carefully

90

91

exercise: 64-bit system

my desktop: 39-bit physical addresses; 48-bit virtual addresses

4096 byte pages

exercise: how many page table entries?

exercise: how large are physical page numbers?

page table entries are 8 bytes (room for expansion, metadata)

would take up 239 bytes?? (512GB??)

top 16 bits of address not used for translation

92

exercise: 64-bit system

my desktop: 39-bit physical addresses; 48-bit virtual addresses

4096 byte pages

exercise: how many page table entries?

exercise: how large are physical page numbers?

page table entries are 8 bytes (room for expansion, metadata)

would take up 239 bytes?? (512GB??)

top 16 bits of address not used for translation

92

exercise: 64-bit system

my desktop: 39-bit physical addresses; 48-bit virtual addresses

4096 byte pages

exercise: how many page table entries?

exercise: how large are physical page numbers?

page table entries are 8 bytes (room for expansion, metadata)

would take up 239 bytes?? (512GB??)

top 16 bits of address not used for translation

92

exercise: 64-bit system

my desktop: 39-bit physical addresses; 48-bit virtual addresses

4096 byte pages

exercise: how many page table entries? 248/212 = 236 entries

exercise: how large are physical page numbers? 39 − 12 = 27 bits

page table entries are 8 bytes (room for expansion, metadata)

would take up 239 bytes?? (512GB??)

top 16 bits of address not used for translation

92

exercise: 64-bit system

my desktop: 39-bit physical addresses; 48-bit virtual addresses

4096 byte pages

exercise: how many page table entries? 248/212 = 236 entries

exercise: how large are physical page numbers? 39 − 12 = 27 bits

page table entries are 8 bytes (room for expansion, metadata)

would take up 239 bytes?? (512GB??)

top 16 bits of address not used for translation

92

	context switches
	memory protection
	the process
	exception kinds
	sync v async
	our books' categories

	implementing exceptions
	hardware
	software

	privileged instructions
	system calls
	a terminology note
	virtual memory
	address translation overview
	simple paging with four pages

	backup slides

