
CS 3330 Fall 2018 Exam 2 Variant J page 1 of 11 Email ID: KEY

CS 3330 Exam 2 Fall 2018

Name: EXAM KEY Computing ID: KEY

Letters go in the boxes unless otherwise specified (e.g., for C 8 write “C” not “8”).
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:
• little-endian 64-bit architecture
• %rsp points to the most recently pushed value, not to the next unused stack address.
• questions are single-selection unless identified as select-all

Variable Weight: point values per question are marked in square brackets.
Mark clarifications: If you need to clarify an answer, do so, and also add a * to the top right corner of
your answer box.
. .

CS 3330 Fall 2018 Exam 2 Variant J page 2 of 11 Email ID: KEY

Question 1 [3.0 pt]: Suppose one increases the associativity of a cache while keeping its total size
(number of data bytes stored) and block size the same. This change will most likely also increase: Place
a Xin each box corresponding to a correct answer and leave other boxes blank.

A
X

the hit time of the cache

B the number of sets of the cache decreased

C
X

the amount of metadata (bookkeeping information like tag and valid bits) stored by the cache

more tag bits

D the number of compulsory misses a typical program using the cache experiences probably

unchanged

E the number of conflict misses a typical program using the cache experiences probably decreased

F the number of offset bits the cache uses unchanged

Question 2 [2 pt]: Consider the following implementation of the Caesar Cipher algorithm which is
used to encrypt messages using a single key. (Note this is not a secure encryption algorithm)

const char* message = "h rdd sgd lzo"
int key = 1
for(i = 0; i < strlen(message) ; ++i){

ch = message[i];

if(ch >= 'a' && ch <= 'z'){
ch = ch + key;
message[i] = ch;

}
}

How could the run time of the function be improved?
A Move the if (ch>'z') check outside of the loop meant to what’s in the if
statement above
B Move the string length function outside of the loop
C No optimizations can be made
D Do loop unrolling by computing ch = message[i]; ch=message[i+1]

Answer: B

Question 3 [2 pt]: Which is of the following is true about function inlining? Place a Xin each box
corresponding to a correct answer and leave other boxes blank.

A Optimizing compilers will usually perform function inlining across files.

B Function inlining can increase the number accesses to the stack

C
X

Function inlining can increase the size of the code stored in the instruction memory

D
X

Optimizing compilers will perform function inlining for small functions.

CS 3330 Fall 2018 Exam 2 Variant J page 3 of 11 Email ID: KEY

Information for questions 4–5
Consider the processor below that only implements mov instructions:

PC

Instr.
Mem.

register file

srcA

srcB

R[srcA]

R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Data in

Addr in
Data outsplit

MUX

convert
opcode

immediateimmediate

+

+2

+10

0xF

write enable
from convert opcode

Suppose the components shown above have the following timing:

component time
register (e.g. PC) 10ps
MUX (each) 10ps
register file read 30ps
register file write 30ps
instruction memory (read) 50ps
data memory (read or write) 50ps
split 0ps
opcode convert 0ps
add (each) 15ps

Assume all components not listed above require negligible time.

Question 4 [2 pt]: (see above) How long should we make clock cycle for the processor
above? (Write your answer as a base-10 number of picoseconds.)

Answer: 195
(PC + imem
+ regread +
add + dmem
+ mux + reg-
write) on vari-
ant L, also ac-
cept same as
prev Q b/c of
question order;
half-credit for
205

Question 5 [2 pt]: (see above) Suppose we add pipeline registers which have a 10 pi-
cosecond reigster delay to divide this processor into a pipelined processor with a fetch,
decode, execute, memory, and writeback stages similar to processor we implemented
in HCL. How long should the cycle time of this pipelined processor be? Assume that
the MUXes for “dstE” and “next R[dstE]” are part of decode and writeback stages
respectively and ignore the costs of any control logic that must be added to handle
hazards. (Write your answer as a base-10 number of picoseconds.)

Answer: 70
(PC + instruc-
tion memory
+ MUX);
half-credit for
60 (instruction
memory +
pipeline reg or
PC)

CS 3330 Fall 2018 Exam 2 Variant J page 4 of 11 Email ID: KEY

Information for questions 6–7
Suppose:

• A benchmark program has a data cache miss rate of 1% on a particular processor;
• 20% of the instructions in this benchmark program use the data cache;
• The data cache’s miss penalty (the extra time it requires on a miss) is 200 cycles;
• The data cache’s hit time is 1 cycle;
• The processor is: pipelined, normally starts one instruction per cycle, executes instructions in order,

and must stall during a data cache miss;
• The pipelined processor only stalls because of data cache misses

Question 6 [2 pt]: (see above) What is the average memory access time of the
data cache when running this benchmark? (The average memory access time is the
average time required for each data cache access.) Write your answer as a base-10
number of cycles. If necessary, you may leave your answer as an unsimplified arithmetic
expression. 1 cycle hit time + 1% miss rate times 200 cycle miss penalty

Answer: 3
cycles (half-
credit for 2.99)

Question 7 [2 pt]: (see above) What is the average number of cycles between when instructions
complete when running this benchmark? 3 cycles * 20% + 1 cycle * 80% = 1.4 or 1 cycle + 200 cycles *
20% * 1% = 1.4
A 1 cycle or less
B more than 1.15 cycles and less than or equal to 1.25 cycles
C more than 1.75 cycles and less than or equal to 2 cycles
D more than 2 cycles
E more than 1.25 cycles and less than or equal to 1.45 cycles
F more than 1.45 cycles and less than or equal to 1.75 cycles
G more than 1 cycle and less than or equal to 1.15 cycles

Answer: E

Information for questions 8–9
Consider an 8KB, 2-way set associative cache with 16 byte blocks with a write-back, write-allocate policy
and a random replacement policy on a machine with 32-bit addresses.

Question 8 [2 pt]: (see above) When splitting up an address into tag, index, and
offset bits for this cache, how many tag bits will there be?

Answer: 20

Question 9 [2 pt]: (see above) The byte at the address 0x12345 will map to the same set as which
of the following addresses? Place a Xin each box corresponding to a correct answer and leave
other boxes blank.

A
X

0x0034F

B 0x1234

C 0x12456

D
X

0x12346

CS 3330 Fall 2018 Exam 2 Variant J page 5 of 11 Email ID: KEY

Question 10 [2 pt]: Consider the following memory access pattern, given as a list of byte addresses:
0x0 0x8 0x2 0x1 0x4 0x3
Given that you have a byte addressable 2-way associative cache with 2 sets and a block size of 2 bytes

with an LRU replacement policy and a write-through, write-no-allocate policy, what bytes from which
addresses are stored within index 0 in the cache? also accept 0x0, 0x1, 0x4, 0x5, 0x8, 0x9 for interpreting
as which addreses are ever stored within index 0, not just at the end
A 0x0, 0x1, 0x2
B 0x2, 0x5, 0x0, 0x1
C 0x0, 0x1, 0x8
D 0x2, 0x3, 0x4
E 0x0, 0x1, 0x8, 0x9
F 0x0, 0x1, 0x4, 0x5
G 0x0, 0x1, 0x4
H 0x4, 0x5, 0x2, 0x3

Answer: F

CS 3330 Fall 2018 Exam 2 Variant J page 6 of 11 Email ID: KEY

Information for questions 11–12
Consider the following assembly snippet:

addq %rcx, %rax F D E M1 M2 W
popq %rbx F D E M1 M1 W
xorq %rbx, %rax x x F D E M1 M2 W
subq %rbx, %rax F D E M1 M2 W
pushq %rax F D E M1 M2 W

Suppose this assembly snippet is executed on a six-stage pipelined processor with the following stages:
• Fetch
• Decode
• Execute
• Memory part 1
• Memory part 2
• Writeback

Assume this processor implements forwarding, using forwarding whenever it would improve performance
without substantially increasing the cycle time (an example of what would substantial increase the cycle
time is performing the work normally performed by two different stages sequentially within one clock cycle).
For this two part memory stage, the address to read or write must be computed by the beginning of the

Memory part 1 stage and any value read will only be available near the end of the Memory part 2 stage.

Question 11 [2 pt]: (see above) On the six-stage processor described above, which of the following
forwarding operations will be performed? Place a Xin each box corresponding to a correct answer
and leave other boxes blank.

A of %rsp from popq to pushq

B of %rax from xorq to pushq

C
X

of %rbx from popq to subq

D
X

of %rax from addq to xorq

Question 12 [2 pt]: (see above) On the six-stage processor described above, when the addq instruction
is in its writeback stage, which instruction is being fetched?
A xorq %rbx, %rax
B subq %rbx, %rax was %rcx on printed exams
C popq %rax
D pushq %rax
E none of the above accept b/c of typo for %rcx

Answer: B E

CS 3330 Fall 2018 Exam 2 Variant J page 7 of 11 Email ID: KEY

Question 13 [2 pt]: Consider the following C function:

void scaleArray(char *array, int size, char *ptr) {
for(int i = 0; i < size; ++i) {

array[i] *= *ptr;
}

}

Under what conditions can an optimizing compiler’s generated code load *ptr exactly once into a register
rather than loading it again on each iteration of the loop? Place a Xin each box corresponding to a
correct answer and leave other boxes blank.

A if array != ptr

B
X

if array > ptr or ptr >= array + size

C if array[i] != ptr[i] for all i

D if array > ptr and ptr >= array + size never true

CS 3330 Fall 2018 Exam 2 Variant J page 8 of 11 Email ID: KEY

Information for questions 14–15
Consider the following two C snippets where array is an array of unsigned chars.
Version A:

for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 256; ++j) {

array[i * 256] += array[i * 256 + j];
}

}

Version B:

for (int j = 0; j < 256; ++j) {
for (int i = 0; i < 4; ++i) {

array[i * 256] += array[i * 256 + j];
}

}

For the below questions assume:
• we run these snippets on a system with a 512 byte, direct-mapped data cache with 16-byte cache

blocks
• before each snippet runs, the data cache is completely empty
• the snippets are compiled so only accesses to the array use the data cache
• the address of array[0] is a multiple of 1024

Question 14 [2 pt]: (see above) How many data cache misses will version A expe-
rience given the scenario described above? Write your answer as a base-10 number.
one compulsory miss per block — 1024/16 = 64

Answer: 64

Question 15 [2 pt]: (see above) How many data cache misses will version B expe-
rience given the scenario described above? Write your answer as a base-10 number.
since values 512 entries apart in the array conflict, no reuse between iterations of the
loop over j, but when j ≤ 15, array[i*256] and array[i*256+j] are in the same
cache block. So 16 · 4 iterations times 1 misses for 0 ≤ j ≤ 15, and (256 − 16) · 4itera-
tions times 2 misses for 16 ≤ j < 256.
this question was miskeyed when originally graded; the correction was made outside

of TPEGS

Answer: 1984
= 2048 - 64
(half credit for
2048)

CS 3330 Fall 2018 Exam 2 Variant J page 9 of 11 Email ID: KEY

Information for questions 16–18
Consider the following Y86-64 assembly code:

subq %rdx, %rcx F D E M W
jl forward F D E M W
addq %rcx, %rdx _ _ F D E M W
xorq %rcx, %rdx F D E M W
andq %rcx, %rdx F D E M W

forward:
irmovq $100, %rdx F D E M W
pushq %rcx F D E M W
popq %rax F D E M W

Assume that when this code is executed the value of registers and condition codes are set such that the jl
instruction does not jump to forward. For all the questions below consider the code executing on the
five-stage pipelined processor with forwarding and branch prediction we discussed in lecture. Recall that
this processor predicts all branches as taken and corrects a misprediction by fetching the correct instruction
during the conditional jump’s memory stage.

Question 16 [2 pt]: (see above) When the subq instruction is in its writeback stage, what instruction
will be in its fetch stage assuming the branch was not predicted correctly?
A jle forward
B xorq %rcx, %rdx was %rbx, %rdx when printed
C irmovq $100, %rdx
D addq %rcx, %rdx
E andq %rcx, %rdx was %rax, %rdx when printed
F none of the above or there is not enough information to answer

Answer: D

Question 17 [2 pt]: (see above) The value of %rdx computed by addq will be forwarded to which of
the following instructions? Place a Xin each box corresponding to a correct answer and leave
other boxes blank.

A irmovq $100, %rdx

B andq %rcx, %rdx

C
X

xorq %rcx, %rdx

D subq %rdx, %rcx

Question 18 [2 pt]: (see above) The value of %rcx computed by subq will be forwarded to which of
the following instructions? Place a Xin each box corresponding to a correct answer and leave
other boxes blank.

A andq %rcx, %rdx

B addq %rcx, %rdx

C pushq %rcx

D xorq %rcx, %rdx

CS 3330 Fall 2018 Exam 2 Variant J page 10 of 11 Email ID: KEY

Question 19 [2 pt]: Consider that the code below is running on a system with
an 8B fully-associative data cache with 2-byte blocks and an LRU replacement policy,
and message and key are char arrays whose first byte is in the first byte of a cache
block. Assume only accesses to message and key use the data cache, and the data
cache is initially empty. How many cache misses does this code generate?
int n = 8;
for (i = 0; i < n; i += 2){

for(j = 0; j < n; j += 2){
for(iB = i; iB <= i+1; iB++){

for(jB = j; jB <= j+1; jB++){
message[jB*n + iB] ^= key[iB*n + jB];

}
}

}
}

for i, j (which there are 16 of), we load four bytes from message and four bytes from
key. These bytes are distributed across 4 cache blocks, so they fit in the cache, so
we have no conflict misses and only the four compulsory misses. Since we do this 16
times, we have 4 times 16 misses in total.

Answer: 64
misses (half
credit for 128
misses)

Question 20 [2 pt]: Which of the following improves the performance of a program with high temporal
locality? this question dropped outside of TPEGS because the assumptions of what high temporal locality
meant versus the cache was insufficiently specified. If we meant that a very small number of values were
accessed, then answers that decreased the cache size should have been accepted (better hit time). If we
meant having high temporal locality meant that there weren’t large groups of values, then answers that
decrease block sizes (allowing the cache to store more of those values which are accessed repeatedly) were
plausible.
A Decreasing the total size of cache by decreasing the block size
B Increasing the block size of cache but keeping the total cache size the same.
C Decreasing the total size of cache by decreasing the number of sets
D Increase the number of sets in the cache but keeping the total cache size the same

Answer:

. .
Pledge:
On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

CS 3330 Fall 2018 Exam 2 Variant J page 11 of 11 Email ID: KEY

This page intentionally left blank.

