ISAs

last time

bitwise and/or /xor

divide-and-conquer and bit puzzles

post/pre quiz

miscellaneous bit manipulation

common bit manipulation instructions are not in C:

rotate (x86: ror, rol) — like shift, but wrap around
first/last bit set (x86: bsf, bsr)

population count (some x86: popcnt) — number of bits set

ISAs being manufactured today

x86 — dominant in desktops, servers

ARM — dominant in mobile devices

POWER — Wii U, IBM supercomputers and some servers
MIPS — common in consumer wifi access points

SPARC — some Oracle servers, Fujitsu supercomputers
z/Architecture — IBM mainframes

780 — TI calculators

SHARC — some digital signal processors

RISC V — some embedded

microarchitecture v. instruction set

microarchitecture — design of the hardware

“generations” of Intel’s x86 chips
different microarchitectures for very low-power versus laptop/desktop
changes in performance/efficiency

instruction set — interface visible by software

what matters for software compatibility
many ways to implement (but some might be easier)

ISA variation

instruction set | instr. # normal approx.
length registers # instrs.
x86-64 1-15 byte 16 1500
Y86-64 1-10 byte 15 18
ARMv7 4 byte* 16 400
POWERS 4 byte 32 1400
MIPS32 4 byte 31 200
ltanium 41 bits* 128 300
/80 1-4 byte 7 40
VAX 1-14 byte 8 150
z/Architecture | 2-6 byte 16 1000
RISC V 4 byte* 31 500%*

other choices: condition codes?

instead of:

cmpq %rll, 2%rl2
je somewhere

could do:

/* _B_ranch if _EQ_ual */
beq %rll, %rl2, somewhere

other choices: addressing modes

ways of specifying operands. examples:
x86-64: 10 (%rll,%rl12,4)
ARM: %r11 << 3 (shift register value by constant)

VAX: ((%r11)) (register value is pointer to pointer)

10

other choices: number of operands

add srcl, src2, dest
ARM, POWER, MIPS, SPARC, ..

add src2, srcl=dest
x86, AVR, Z80, ..

VAX: both

11

other choices: instruction complexity

instructions that write multiple values?
x86-64: push, pop, movsb, ..

more?

12

CISC and RISC

RISC — Reduced Instruction Set Computer

reduced from what?

13

CISC and RISC

RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer

13

some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needlelLen
Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at the
value x.

EDITPC sourcelLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by
patternPtr.

14

microcode

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

loop in hardware???
typically: lookup sequence of microinstructions (“microcode")

secret simpler instruction set

15

Why RISC?

complex instructions were usually not faster
complex instructions were harder to implement

compilers, not hand-written assembly

16

Why RISC?

complex instructions were usually not faster
complex instructions were harder to implement

compilers, not hand-written assembly

assumption: okay to require compiler modifications

16

typical RISC ISA properties

fewer, simpler instructions

seperate instructions to access memory
fixed-length instructions

more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes

17

ISAs: who does the work?

CISC-like (harder to make hardware, easier to use assembly)
choose instructions with particular assembly language in mind?
more options for hardware to optimize?

..but more resources spent on making hardware correct?
easier to specialize for particular applications
less work for compilers

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
less options for hardware to optimize?
simpler to build/test hardware
..S0 more resources spent on making hardware fast?
more work for compilers

18

ISAs: who does the work?

CISC-like (harder to make hardware, easier to use assembly)
choose instructions with particular assembly language in mind?
more options for hardware to optimize?

..but more resources spent on making hardware correct?
easier to specialize for particular applications
less work for compilers

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
less options for hardware to optimize?
simpler to build/test hardware
..S0 more resources spent on making hardware fast?
more work for compilers

18

ISAs: who does the work?

CISC-like
less work for assembly-writers
more work for hardware

choose assembly, design instructions?
harder to build/test CPU
design new instrs for target apps?

RISC-like
more work for assembly-writers
less work for hardware

design for particular kind of HW?

easier to build/test CPU
spend more time optimizing HW?

19

is CISC the winner?

well, can't get rid of x86 features
backwards compatibility matters

more application-specific instructions

but..compilers tend to use more RISC-like subset of instructions

modern x86: often convert to RISC-like “microinstructions”
sounds really expensive, but ..

lots of instruction preprocessing used in ‘fast’ CPU designs
(even for RISC ISAs)

20

Y86-64 instruction set

based on x86

omits most of the 1000+ instructions

leaves

addq
subq
andq
Xorq
nop

jmp pushq

jcc popq

cmovCC movq (renamed)
call hlt (renamed)
ret

much, much simpler encoding

22

Y86-64 instruction set

based on x86

omits most of the 1000+ instructions

leaves

addq
subq
andq
Xorq
nop

jmp pushq

jcc popq

cmovCC movqg (renamed)
call hlt (renamed)
ret

much, much simpler encoding

23

Y86-64: movq

destination i — immediate

r — register
m — memory

source

\\SEmovq

24

Y86-64: movq

destination . .

source i — |mr.ned|ate
I — register
\ m — memory

SDmovq

irmovq immevq 1imevq
rrmovg rmmovq rimevq
mrmovq mmmovq mimevq

24

Y86-64: movq

destination . .

source 1——|mqmmam
r — register
\ m — memory

SDmovq

irmovq
rrmovq rmmovq

mrmovq

24

Y86-64 instruction set

based on x86

omits most of the 1000+ instructions

leaves

addq
subq
andq
Xorq
nop

jmp pushq

jcc popq

cmovCC movq (renamed)
call hlt (renamed)
ret

much, much simpler encoding

25

cmovCC

conditional move

exist on x86-64 (but you probably didn't see them)
Y86-64: register-to-register only
instead of:

jle skip_move
rrmovq %rax, %rbx
skip_move:

// ...

can do:

cmovg %rax, %rbx

26

halt

(x86-64 instruction called h'lt)
Y86-64 instruction halt

stops the processor
otherwise — something’s in memory “after” program!

real processors: reserved for OS

27

Y86-64: specifying addresses

Valid: rmmovqg %rl1l, 10(%r12)

28

Y86-64: specifying addresses

Valid: rmmovqg %rl1l, 10(%r12)

Invalid: rmmovq %r %rl2,%r13)

Invalid: rmmovq %r

Invalid: rmmovq %rl1 ri2,%r13,4)

28

Y86-64: accessing memory (1)

r12 <— memory[10 + r11] 4 r12

Invalid: W

29

Y86-64: accessing memory (1)

r12 <— memory[10 + r11] 4 r12

Invalid: W

Instead:

mrmovq 10(%rll), %rill
/* overwrites %rll */

addq %rll, %rl2

29

Y86-64: accessing memory (2)

r12 <— memory[10 + 8 * r11] 4 r12

Invalid:addq 10 , %ril2

30

Y86-64: accessing memory (2)

r12 <— memory[10 + 8 * r11] 4 r12

Invalid:addq 10 , %rl2

Instead:

/* replace %rll with 8*%rll */
addq %rll, %rll
addgq %rll, %rill
addg %rll, %rll

mrmovq 10(%r1l), %rll
addq %rll, %rl2

30

Y86-64 constants (1)

irmovg $100, %rll

only instruction with non-address constant operand

31

Y86-64 constants (2)

r12 < r12 + 1

Invalid: a %rl2

32

Y86-64 constants (2)

r12 < r12 + 1
Invalid: a %rl2

Instead, need an extra register:

irmovg $1, %rll
addq %rll, %rl2

32

Y86-64: operand uniqueness

only one kind of value for each operand
instruction name tells you the kind

(why movq was ‘split’ into four names)

33

Y86-64: condition codes

ZF — value was zero?
SF — sign bit was set? i.e. value was negative?

this course: no OF, CF (to simplify assignments)

set by addq, subq, andq, xorq

not set by anything else

34

Y86-64: using condition codes

subq SECOND, FIRST (value = FIRST - SECOND)

j___ or | condition code bit test | value test
cmov___

le SF=1lorZF =1 value < 0
1 SF=1 value < 0
e ZF =1 value =0
ne ZF =0 value # 0
ge SF=0 value > 0
g SF=0and ZF =0 value > 0

missing OF (overflow flag); CF (carry flag)

35

Y86-64: conditionals (1)

€mp, test

36

Y86-64: conditionals (1)

€mp, test

instead: use side effect of normal arithmetic

36

Y86-64: conditionals (1)

€mp, test
instead: use side effect of normal arithmetic

instead of
cmpq %rll, %rl2
jle somewhere
maybe:
subqg %rll, %rl2
jle
(but changes %r12)

36

pUSh/pop

pushq %rbx
%rsp < %rsp — 8
memory[%rsp| < %rbx
popq %rbx

%rbx < memory[%rsp]
%rsp < %rsp + 8

stack
growth

memory[%rsp + 16]

memory[%rsp + 8]

value to pop —

where to push —»

memory[%rsp]

memory[%rsp - 8]

memory[%rsp - 16]

37

call /ret

call LABEL

push PC (next instruction address) on stack
jmp to LABEL address

ret

pop address from stack
jmp to that address

stack
growth

address ret jumps to —

memory[%rsp + 16]

memory[%rsp + 8]

where call stores return address —

memory[%rsp]

memory[%rsp - 8]

memory[%rsp - 16]

38

Y86-64 state

%r XX — 15 registers
%15 missing
smaller parts of registers missing

ZF (zero), SF (sign), 6F{everflow)
book has OF, we'll not use it
€F (carry) missing

Stat — processor status — halted?
PC — program counter (AKA instruction pointer)

main memory

39

typical RISC ISA properties

fewer, simpler instructions

seperate instructions to access memory
more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes

40

Y86-64 instruction formats

byte: 0 1 2 3 4 5
halt
nop BE

rrmovq/cmovCC rA, rB

irmovq V, rB [3]o]F[B] %
rmmovq rA, D(rB) [4]o][A]B] D
mrmovq D(rB), rA I 5 | 0 IrAIrBI D
0P 4. 15 (e [A[A]]

j CC Dest I 7 Iccl Dest
call Dest I 8 | 0 | Dest
ret

pusha 74 DELE

pop DEDE

41

Secondary opcodes: cmovcec/jcc

byte: (0] 1 2 3 4 5 6 7 8 9
halt
nop always (jmp/rrmovq)
rrmovq/cmovCC rA, rB| |rB
irmovq V, rB 3 () F|rB .Le :|
rmmovq rA, D(rB) 1 :|
mrmovq D(rB), rA n rB e :|
OPq rA, rB 6 Al rB
j CC Dest | ne
call Dest 8 9

5 e
et &

pushq rA (Al o]
[Blo]

popq rA

[A[F|] [E8

Secondary opcodes: OPq

byte:
halt

nop

rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushq rA

popq rA

0 1

[1]0]

w

3|0|F|rB

o[A
5 n rA|rB

{m@jz

EEEE

add
sub
and

Xor

43

Registers: rA, rB

byte: 0

halt
nop 1(0

rrmovq/cmovCC rA, rB ¥

irmovq V, rB [3]4]F[=8]
rmmovq rA, D(rB) | 4 | g IrAIrB|
mrmovq D(rB), rA [5]d[A]B|
OPq rA, B EE
j CC Dest 7 |cc

call Dest
ret 910

pushq rA q
popq rA

B E E E EEEE

%rax
%rcx
%rdx
%rbx
%rsp
%rbp
%rsi

%rdi

%r8

%r9

%rlo
%rill
%rl2
%rl3
%rl4

CEEE EEEE

none

44

Immediates: V, D, Dest

byte: 0 1 2 3 4

halt

nop 2]o]

rrmovq/cmovCC rA, rB W

irmovq V, rB |3|O|F|rl'?| %
rmmovq rA, D(rB) [4]o]A]B D
mrmovq D(rB), rA | 5 | 0 |rA|r1f| D
OPq rA, rB 6 |fn|rA|rB

j CC Dest | 7 |cc| Dest
call Dest | 8 | 0 | Dest
ret

pushq rA [Alo|A]F]

popa 74 (Bl []

45

Immediates: V, D, Dest

byte:
halt

nop

_o

rrmovq/cmovCC rA, rB

irmovq V, rB
rmmovq rA, D(rB)
mrmovq D(rB), rA
OPq rA, rB

j CC Dest

call Dest

ret

pushq rA

popq rA

I o [58]

|4|O |rA|rB|

g

|5 | 0 |rA|rB|

6 |fn|rA|rB

ﬂ

| E

Dest

K

Dest

910
O L

45

	ISAS made today
	microarchitectures versus ISAs
	ISA choices
	CISC v RISC
	really complex instructions: VAX
	why RISC
	typical RISC properties
	philosophical gap: who does the work?
	Is CISC the winner?

	Y86-64 assembly
	mov
	cmov
	halt
	addressing memory
	constants
	operand uniqueness
	condition codes and comparing values
	push/pop
	call/ret
	state
	…and RISC

	Y86-64 machine code
	instruction encoding summary

