Bitwise ISAs

February 7, 2023

last lecture topics

C data types, strings pointer stores beginning of array pointer arithmetic: $*($ array +5$)=\operatorname{array}[5]$

C evolution and standards, undefined behavior
bitwise - extracting nibble
right shift
logical (unsigned) shr: shift in 0's arithmetic (signed) sar: shift in sign bit equivalent to division by 2^{y}, use bias for rounding
left shift, equivalent to multiplication by 2^{y}

last lecture topics

bitwise operators and masks
bitwise and: keep (1) / clear (0) bitwise or: set (1) / leave unchanged (0) bitwise xor: flip (1) / leave unchanged (0) bitwise not: negate each bit efficient in hardware

right shift in math

$4 \gg 0==4$	0000	0100
$4 \gg 1==2$	0000	0010
$4 \gg 2==1$	00000001	
$10 \gg 0=10$	00001010	
$10 \gg 1==5$	00000101	
$10 \gg 2==2$	00000010	

$$
x \gg y=\left\lfloor x \times 2^{-y}\right\rfloor=\left\lfloor\frac{x}{2^{y}}\right\rfloor
$$

divide with proper rounding

C division: rounds towards zero (truncate) arithmetic shift: rounds towards negative infinity solution: "bias" adjustments - described in textbook
// int \%eax = int divideBy8(int \%edi)
divideBy8: // GCC generated code
leal 7(\%rdi), \%eax // \%eax <- \%edi + 7 (=8-1) testl \%edi, \%edi // set cond. codes based on \%edi // set SF to 1 if \%edi < 0
cmovns \%edi, \%eax // if (SF == 0) \%eax <- \%edi // conditional move offset value
sarl \$3, \%eax // arithmetic shift ret
example: $-38 / 8=-4.75=-4$ but will round up to -5 with ras correction: $(-38+7) / 8=-31 / 8=-3.875$ will round up to -4

example 1

Calculate 29 / $8=3$
$00000000000000000000000000011101=29$
$00000000000000000000000000000011101=29 \gg 3=3$

\mathbf{x}	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$
$\mathbf{x} / \mathbf{8}$	3	3.1	3.2	3.3	3.5	3.6	3.7	3.8	4	4.1	4.2	4.3
\mathbf{x} div 8	3	3	3	3	3	3	3	3	4	4	4	4
$\mathbf{x ~} \gg \mathbf{3}$	3	3	3	3	3	3	3	3	4	4	4	4

example 2

Calculate -29 / $8=-3$
with no bias adjustment:
$11111111111111111111111111100011=-29$
$11111111111111111111111111111100011=-29 \gg 3=-4$ with +7 bias adjustment:
$11111111111111111111111111101010=-29+7=-22$
$11111111111111111111111111111101010=-22 \gg 3=-3$

\mathbf{x}	$-\mathbf{2 4}$	$\mathbf{- 2 5}$	$\mathbf{- 2 6}$	$\mathbf{- 2 7}$	$\mathbf{- 2 8}$	$-\mathbf{2 9}$	$\mathbf{- 3 0}$	$\mathbf{- 3 1}$	$\mathbf{- 3 2}$	$-\mathbf{3 3}$	-3
$\mathbf{x} / \mathbf{8}$	-3	-3.1	-3.2	-3.3	-3.5	-3.6	-3.7	-3.8	-4	-4.1	-4
\mathbf{x} div 8	-3	-3	-3	-3	-3	-3	-3	-3	-4	-4	-4
$\mathbf{x ~} \gg \mathbf{3}$	-3	-4	-4	-4	-4	-4	-4	-4	-4	-5	-5
$(\mathbf{x}+\mathbf{7}) \gg \mathbf{3}$	-3	-3	-3	-3	-3	-3	-3	-3	-4	-4	-4

interlude: a truth table

AND	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0
$\mathbf{1}$	0	1

interlude: a truth table

AND	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0
$\mathbf{1}$	0	1

AND with 1: keep a bit the same

interlude: a truth table

AND	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0
$\mathbf{1}$	0	1

AND with 1: keep a bit the same
AND with 0: clear a bit

interlude: a truth table

AND	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0
$\mathbf{1}$	0	1

AND with 1: keep a bit the same
AND with 0: clear a bit
method: construct "mask" of what to keep/remove

bitwise AND — \&

Treat value as array of bits
$1 \& 1==1$
$1 \& 0==0$
0 \& $0==0$
$2 \& 4==0$
$10 \& 7==2$
$0 x A B C D \& 0 x \odot F \odot F==0 x \odot B 0 D$

bitwise AND — \&

Treat value as array of bits

$$
\begin{aligned}
& 1 \& 1==1 \\
& 1 \& 0==0 \\
& 0 \& 0==0 \\
& 2 \& 4==0 \\
& 10 \& 7==2 \\
& 0 x A B C D \& 0 x 0 F 0 F==0 x 0 B 0 D
\end{aligned}
$$

$$
\begin{array}{llllll}
& \ldots . & 0 & 0 & 1 & 0 \\
\& & \ldots . & 0 & 1 & 0 & 0 \\
\hline & \ldots & 0 & 0 & 0 & 0
\end{array}
$$

bitwise AND — \&

Treat value as array of bits

$$
1 \& 1==1
$$

$$
1 \& 0==0
$$

$$
0 \& 0==0
$$

$2 \& 4==0$
$10 \& 7==2$
$0 x A B C D \& 0 x \odot F \odot F==0 x 0 B 0 D$

	\ldots.	1	0	1	0
$\&$...	0	1	1	1
	\ldots.	0	0	1	0

bitwise AND - C/assembly

x86: and \%reg, \%reg
C: foo \& bar
bitwise hardware (10 \& $7==2$)

extract 0×3 from 0×1234

```
unsigned get_second_nibble1(unsigned value) {
    return (value >> 4) & 0xF; // 0xF: 00001111
    // like (value / 16) % 16
}
Bits:aaaabbbbccccdddd \(\rightarrow\) aaaabbbbcccc \(\rightarrow\) 00000000cccc
```

unsigned get_second_nibble2(unsigned value) \{ return (value \& 0xF0) >> 4; // 0xF0: 11110000
// "mask and shift"
// like (value \% 256) / 16;

extract 0×3 from 0×1234

```
get_second_nibblel_bitwise:
    movl %edi, %eax
    shrl $4, %eax
    andl $0xF,%eax
    ret
get_second_nibble2_bitwise:
    movl %edi, %eax
    andl $0xF0, %eax
    shrl $4,%eax
    ret
```


and/or/xor

\&
conditionally clear bit conditionally keep bit

mask: $0 \mathrm{~s}=$ clear; $1 \mathrm{~s}=$ keep
e.g. $101010101 \ldots=$
clear every other bit

OR	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	1
$\mathbf{1}$	1	1

|
conditionally set bit
mask: $1 \mathrm{~s}=$ set; 0s $=$ keep same e.g. 101010101... $=$ set every other bit

XOR	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	1
$\mathbf{1}$	1	0

bitwise OR - |

$$
\begin{aligned}
& 1 \text { | } 1 \text { == } 1 \\
& 1 \text { | } 0=1 \\
& 0 \text { | } 0==0 \\
& 2 \mid 4==6 \\
& 10 \mid 7==15 \\
& 0 \times A B C D \mid 0 \times 0 F 0 F==0 \times A F C F
\end{aligned}
$$

bitwise xor -

$1 \wedge 1==0$
$1 \wedge 0=1$
$0 \wedge 0==0$
$2 \wedge 4==6$
$10 \wedge 7==13$
$0 x A B C D \wedge 0 x 0 F 0 F==0 x A 4 C 2$

	\ldots.	1	0	1	0
\wedge	\ldots.	0	1	1	1
	..	1	1	0	1

negation / not - ~

$\sim($ 'complement') is bitwise version of !:

$$
\begin{aligned}
& \text { ! } 0=1 \\
& \text { ! notZero == } 0 \\
& 32 \text { bits } \\
& \sim 0=(\text { int }) 0 \times F F F F F F F F(\text { aka }-1) \quad \begin{array}{lllllll}
\sim \\
\sim & 0 & \ldots & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & \ldots & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

negation / not $-\sim$

$\sim($ 'complement') is bitwise version of !:

$$
\begin{aligned}
& \text { ! } 0=1 \\
& \text { ! notZero == } 0 \\
& \sim 0=(\text { int }) \quad 0 \times F F F F F F F F(\text { aka }-1) \xrightarrow{\sim} \begin{array}{lllllll}
0 & 0 & \ldots . & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & \ldots & 1 & 1 & 1 & 1
\end{array} \\
& \text { ~2 == (int) 0xFFFFFFFD (aka -3) }
\end{aligned}
$$

negation / not — ~

$\sim($ 'complement') is bitwise version of !:
! $0==1$
! notZero == 0
32 bits

$\sim 0=($ int $) 0 \times F F F F F F F F($ aka -1$) \quad \sim$| \sim | 0 | \ldots. | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | .. | 1 | 1 | 1 | 1 |

~2 == (int) 0xFFFFFFFD (aka -3)
$\sim(($ unsigned $) 2)==0 x F F F F F F F D$

bit-puzzles

lab and hw assignments: bit manipulation puzzles
solve some problem with bitwise ops
maybe that you could do with normal arithmetic, comparisons, etc.
why?
good for thinking about HW design good for understanding bitwise ops
unreasonably common interview question type

note: ternary operator

$$
\begin{aligned}
& \text { w = (x ? y : z) } \\
& \text { if (x) \{ w = y; \} else }\{w=z ;\}
\end{aligned}
$$

ternary as bitwise: simplifying

(x ? y : z) if (x) return y; else return z;
task: turn into non-if/else/etc. operators
assembly: no jumps probably
strategy today: build a solution from simpler subproblems
(1) with $x, y, z 1$ bit: (x ? y : 0) or (x ? 0 : z)
(2) with $x, y, z 1$ bit: (x ? y : z)
(3) with $x 1$ bit: (x ? y : z)
(4) (x ? y : z)

one-bit ternary

(x ? y : z) $=$ if (x) y else z
constraint: x, y, and z are 0 or 1
now: reimplement in C without if/else/ ||/etc.
(assembly: no jumps probably)

one-bit ternary

(x ? y : z) = if $(\mathrm{x}$) y else z
constraint: x, y, and z are 0 or 1
now: reimplement in C without if/else/ | | /etc.
(assembly: no jumps probably)
divide-and-conquer:
$\begin{array}{lllll}(x & \text { ? } & \text { : } & 0 \\ (x & \text { ? } & 0 & : & z)\end{array}$

one-bit ternary parts (1)

constraint: x, y, and z are 0 or 1
(x ? y : 0)

one-bit ternary parts (1)

constraint: x, y, and z are 0 or 1

$$
\begin{aligned}
& \text { (x ? y : 0) } \\
& \begin{array}{l|ll}
& \mathbf{y}=\mathbf{0} & \mathbf{y = 1} \\
\hline \mathbf{x}=\mathbf{0} & 0 & 0 \\
\mathbf{x}=\mathbf{1} & 0 & 1
\end{array} \\
& \rightarrow(x \& y)
\end{aligned}
$$

one-bit ternary parts (2)

$$
(x \quad ? y: 0)=(x \& y)
$$

one-bit ternary parts (2)

$$
(x \quad ? y \quad: 0)=(x \& y)
$$

(x ? 0 : z)
opposite $\mathrm{x}: \sim \mathrm{x}$
(($\sim x) \& z)$
one-bit ternary
constraint: x, y, and z are 0 or 1

$$
\begin{aligned}
& (x \quad ? y: z)=\text { if } x \text { then } y \text { else } z \\
& (x \quad y: 0) \mid(x \quad 0: z) \\
& (x \& y) \mid((\sim x) \& z)
\end{aligned}
$$

one-bit ternary: evaluating example (1)

constraint: x, y, and z are 0 or 1

$$
\begin{aligned}
& (x \quad ? y: z)=\text { if } x \text { then } y \text { else } z \\
& (x \& y) \mid((\sim x) \& z) \\
& x=1, y=0, z=1 \\
& (1 \& 0) \mid((\sim 1) \& 1)= \\
& (1 \& 0) \mid(11 \ldots 1110 \& 00 \ldots 0001)=0
\end{aligned}
$$

one-bit ternary: not general yet

if $(x) y$ else z
constraint: x, y, and z are 0 or 1
DOES NOT WORK: $x=1, y=4, z=2$
$(1 \& 4) \mid((\sim 1) \& 2)=$
(..0001 \& ...0100) | (11...110 \& 00...0010) $=$
(0) $\mid(000 \ldots 0010)=2($ expected y, which is 4$)$

multibit ternary

constraint: x is 0 or 1
old solution ($(x \& y) \mid(\sim x) \& z)$ only gets least sig. bit (x ? y : z) (if (x) y else z)

multibit ternary

constraint: x is 0 or 1
old solution ($(x \& y) \mid(\sim x) \& z)$ only gets least sig. bit

$$
\begin{aligned}
& (x \quad \text { ? y : z) (if (x) y else z) } \\
& (\mathrm{x} \text { ? y : 0) | (x ? } 0 \text { : z) }
\end{aligned}
$$

constructing masks

constraint: x is 0 or 1
(x ? y : 0) (if (x y else 0)
turn into y \& MASK, where MASK = ???
"keep certain bits"

constructing masks

constraint: x is 0 or 1
(x ? y : 0) (if (x y else 0)
turn into y \& MASK, where MASK = ??? "keep certain bits"
if $x=1$: want 1111111111... 1 (keep y)
if $x=0:$ want $0000000000 \ldots 0($ want 0$)$

constructing masks

constraint: x is 0 or 1

```
(x ? y : 0) (if (x) y else 0)
turn into y & MASK, where MASK = ???
    "keep certain bits"
if }x=1\mathrm{ : want 1111111111...1 (keep y)
if }x=0:\mathrm{ want 0000000000...0 (want 0)
```

a trick: $-x$ (-1 is 1111 ... 1)

constructing other masks

constraint: x is 0 or 1

$$
\begin{aligned}
& (x \quad ? \quad 0: \text { z) (if }(x) 0 \text { else } z) \\
& \text { if } x=\mathbb{K} 0: \text { want } 1111111111 . . .1
\end{aligned}
$$

if $x=1$: want $0000000000 \ldots$
mask: - -

constructing other masks

constraint: x is 0 or 1

$$
\begin{aligned}
& (x \quad ? \quad 0: \text { z) (if }(x) 0 \text { else } z) \\
& \text { if } x=\mathbb{K} 0: \text { want } 1111111111 . . .1
\end{aligned}
$$

if $x=1$: want $0000000000 \ldots$
mask: $->-\left(x^{\wedge} 1\right)$
multibit ternary
constraint: x is 0 or 1
old solution ($(x \& y) \mid(\sim x) \& z)$ only gets least sig. bit

$$
\begin{aligned}
& (x \quad ? y: z)(\text { if }(x) y \text { else } z) \\
& (x \text { ? } y: 0) \mid(x ? 0: z) \\
& ((-x) \& y) \mid((-(x \wedge 1)) \& z)
\end{aligned}
$$

fully multibit

constraint. x is 0 or 1
(x ? y : z)

fully multibit

constraint. x is 0 or 1

$$
\begin{aligned}
& \left(x \quad \mathrm{x}^{\mathrm{y}}: \mathrm{z}\right) \\
& \text { easy } C \text { way: }!\mathrm{x}=1(\text { if } x=0) \text { or } 0,!(!\mathrm{x})=0 \text { or } 1
\end{aligned}
$$

x86 assembly: testq \%rax, \%rax then sete/setne (copy from ZF)

fully multibit

constraint. x is 0 or 1

$$
\begin{aligned}
& (\mathrm{x} \cdot \mathrm{y}: \mathrm{z}) \\
& \text { easy } C \text { way: }!\mathrm{x}=1(\text { if } x=0) \text { or } 0,!(!\mathrm{x})=0 \text { or } 1
\end{aligned}
$$

x86 assembly: testq \%rax, \%rax then sete/setne (copy from ZF)

$$
\begin{aligned}
& (x \quad y: 0) \mid(x \quad ? 0: z) \\
& ((-!!x) \& y) \mid((-!x) \& z)
\end{aligned}
$$

problem: any-bit

is any bit of x set?
goal: turn 0 into 0 , not zero into 1
easy C solution: ! (! (x))
another solution if you have - or + (bang in lab)
what if we don't have ! or - or + more like what real hardware components to work with are

problem: any-bit

is any bit of x set?
goal: turn 0 into 0 , not zero into 1
easy C solution: ! (! (x))
another solution if you have - or + (bang in lab)
what if we don't have ! or - or + more like what real hardware components to work with are
how do we solve is x is, say, four bits?

problem: any-bit

is any bit of x set?
goal: turn 0 into 0 , not zero into 1
easy C solution: ! (! (x))
another solution if you have - or + (bang in lab)
what if we don't have ! or - or + more like what real hardware components to work with are
how do we solve is x is, say, four bits?

$$
((x \& 1)|((x \gg 1) \& 1)|((x \gg 2) \& 1) \mid((x \gg 3) \& 1))
$$

wasted work (1)

$((x \& 1)|((x \gg 1) \& 1)|((x \gg 2) \& 1) \mid((x \gg 3) \& 1))$
in general: $(x \& 1) \mid(y \& 1)==(x \mid y) \& 1$
distributive property

wasted work (1)

$((x \& 1)|((x \gg 1) \& 1)|((x \gg 2) \& 1) \mid((x \gg 3) \& 1))$
in general: $(x \& 1) \mid(y \& 1)==(x \mid y) \& 1$
distributive property
$(x|(x \gg 1)|(x \gg 2) \mid(x \gg 3)) \& 1$

wasted work (2)

4-bit any set: $(x|(x \gg 1)|(x \gg 2) \mid(x \gg 3)) \& 1$ performing 3 bitwise ors
...each bitwise or does 4 OR operations

wasted work (2)

4-bit any set: $(x|(x \gg 1)|(x \gg 2) \mid(x \gg 3)) \& 1$ performing 3 bitwise ors
...each bitwise or does 4 OR operations
but only result of one of the 4 !

any-bit: looking at wasted work

$$
y=(x \mid x \gg 1)
$$

any-bit: looking at wasted work

$$
\left(0 \mid x_{3}\right) \quad\left(x_{3} \mid x_{2}\right) \quad\left(x_{2} \mid x_{1}\right) \quad\left(x_{1} \mid x_{0}\right) \quad \mathrm{y}=(\mathrm{x} \mid \mathrm{x} \gg 1)
$$

any-bit: looking at wasted work

$\left(0 \mid x_{3}\right) \quad\left(x_{3} \mid x_{2}\right) \quad\left(x_{2} \mid x_{1}\right) \quad\left(x_{1} \mid x_{0}\right) \quad \mathrm{y}=(\mathrm{x} \mid \mathrm{x} \gg 1)$
final value wanted: $x_{3}\left|x_{2}\right| x_{1} \mid x_{0}$ previously:

$$
\begin{aligned}
& \text { compute } \mathrm{x} \mid(\mathrm{x} \gg 1) \text { for } x_{1} \mid x_{0} \text {; } \\
& (\mathrm{x} \gg 2) \mid(\mathrm{x} \gg 3) \text { for } x_{3} \mid x_{2}
\end{aligned}
$$

observation: got both parts with just $x \mid(x \gg 1)$

any-bit: divide and conquer

any-bit: divide and conquer

four-bit input $x=x_{3} x_{2} x_{1} x_{0}$

$\mathbf{x} \mid(\mathbf{x} \gg 1)=\left(x_{3} \mid 0\right)\left(x_{2} \mid x_{3}\right)\left(x_{1} \mid x_{2}\right)\left(x_{0} \mid x_{1}\right)=y_{1} y_{2} y_{3} y_{4}$

any-bit: divide and conquer

four-bit input $x=x_{3} x_{2} x_{1} x_{0}$

$\mathrm{x} \mid(\mathrm{x} \gg 1)=\left(x_{3} \mid 0\right)\left(x_{2} \mid x_{3}\right)\left(x_{1} \mid x_{2}\right)\left(x_{0} \mid x_{1}\right)=y_{1} y_{2} y_{3} y_{4}$
$\mathrm{y} \mid(\mathrm{y} \gg 2)=\left(y_{1} \mid 0\right)\left(y_{2} \mid 0\right)\left(y_{3} \mid y_{1}\right)\left(y_{4} \mid y_{2}\right)=z_{1} z_{2} z_{3} z_{4}$
$z_{4}=\left(y_{4} \mid y_{2}\right)=\left(\left(x_{2} \mid x_{3}\right) \mid\left(x_{0} \mid x_{1}\right)\right)=x_{0}\left|x_{1}\right| x_{2} \mid x_{3}$ "is any bit set?"

any-bit: divide and conquer

four-bit input $x=x_{3} x_{2} x_{1} x_{0}$

$\mathbf{x} \mid(\mathrm{x} \gg 1)=\left(x_{3} \mid 0\right)\left(x_{2} \mid x_{3}\right)\left(x_{1} \mid x_{2}\right)\left(x_{0} \mid x_{1}\right)=y_{1} y_{2} y_{3} y_{4}$
$\mathrm{y} \mid(\mathrm{y} \gg 2)=\left(y_{1} \mid 0\right)\left(y_{2} \mid 0\right)\left(y_{3} \mid y_{1}\right)\left(y_{4} \mid y_{2}\right)=z_{1} z_{2} z_{3} z_{4}$
$z_{4}=\left(y_{4} \mid y_{2}\right)=\left(\left(x_{2} \mid x_{3}\right) \mid\left(x_{0} \mid x_{1}\right)\right)=x_{0}\left|x_{1}\right| x_{2} \mid x_{3}$ "is any bit set?"
unsigned int any_of_four (unsigned int x) \{ int part_bits $=(x \gg 1) \mid x ;$ return ((part_bits >> 2) | part_bits) \& 1; \}

any-bit: divide and conquer

any-bit-set: 32 bits

unsigned int any(unsigned int x) \{
$x=(x \gg 1) \mid x$;
$x=(x \gg 2) \mid x ;$
$x=(x \gg 4) \mid x ;$
$x=(x \gg 8) \mid x ;$
$x=(x \gg 16) \mid x ;$
return x \& 1;
\}

bitwise strategies

use paper, find subproblems, etc.
mask and shift

$$
(x \& 0 x F 0) \gg 4
$$

factor/distribute

$$
(x \& 1) \mid(y \& 1)==(x \mid y) \& 1
$$

divide and conquer
common subexpression elimination

$$
\begin{aligned}
& \text { return }((-!!x) \& y) \mid((-!x) \& z) \\
& \text { becomes } \\
& d=!x ; \operatorname{return}((-!d) \& y) \mid((-d) \& z)
\end{aligned}
$$

ISAs being manufactured today

(ISA = instruction set architecture)
x86 - dominant in desktops, servers
ARM - dominant in mobile devices
POWER - Wii U, IBM supercomputers and some servers
MIPS - common in consumer wifi access points
SPARC - some Oracle servers, Fujitsu supercomputers
z/Architecture - IBM mainframes
Z80 - TI calculators
SHARC — some digital signal processors
RISC V — some embedded

microarchitecture v. instruction set

microarchitecture - design of the hardware
"generations" of Intel's x86 chips different microarchitectures for very low-power versus laptop/desktop changes in performance/efficiency
instruction set - interface visible by software what matters for software compatibility many ways to implement (but some might be easier)

ISA "extensions"

I've been saying x86-64, ARM is an ISA
but there have been new instructions
(that weren't supported by original $\times 86-64$ or ARM processors)
really a bunch of variants of x86-64 (or ARM or ...), each of which is a different ISA
primary purpose of new processor designs usually to make non-ISA changes

ISA extensions won't improve performance of existing compiled code

exercise

which of the following changes to a processor are instruction set changes?
A. increasing the number of registers available in assembly
B. decreasing the runtime of the add instruction
C. making the machine code for add instructions shorter
D. removing a multiply instruction
E. allowing the add instruction to have two memory operands (instead of two register operands))

instruction set architecture goals

exercise: what are some goals to have when designing an instruction set?

ISA variation

instruction set	instr. length	$\#$ normal registers	approx. $\#$ instrs.
x86-64	$1-15$ byte	16	1500
Y86-64	$1-10$ byte	15	18
ARMv7	4 byte*	16	400
POWER8	4 byte	32	1400
MIPS32	4 byte	31	200
Itanium	41 bits*	128	300
Z80	$1-4$ byte	7	40
VAX	$1-14$ byte	8	150
z/Architecture	$2-6$ byte	16	1000
RISC V	4 byte*	31	500^{*}

other choices: condition codes?

instead of:
cmpq \%r11, \%r12
je somewhere
could do:
/* _B_ranch if _EQ_ual */
beq \%r11, \%r12, somewhere

other choices: addressing modes

ways of specifying operands. examples:
x86-64: $10(\% r 11, \% r 12,4)$
ARM: \%r11 << 3 (shift register value by constant)
VAX: ((\%r11)) (register value is pointer to pointer)

other choices: number of operands

add src1, src2, dest ARM, POWER, MIPS, SPARC, ...
add src2, src1=dest x86, AVR, Z80, ...

VAX: both

CISC and RISC

RISC - Reduced Instruction Set Computer reduced from what?

CISC and RISC

RISC - Reduced Instruction Set Computer reduced from what?

CISC - Complex Instruction Set Computer

some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needleLen Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at the value x.

EDITPC sourceLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by patternPtr.

microcode

MATCHC haystackPtr, haystackLen, needlePtr, needleLen Find the position of the string in needle within haystack.
loop in hardware???
typically: lookup sequence of microinstructions ("microcode")
secret simpler instruction set

Why RISC?

complex instructions were usually not faster
(even though programs with simple instructions were bigger)
complex instructions were harder to implement
compilers were replacing hand-written assembly
correct assumption: almost no one will write assembly anymore incorrect assumption: okay to recompile frequently

typical RISC ISA properties

fewer, simpler instructions
seperate instructions to access memory
fixed-length instructions
more registers
no "loops" within single instructions
no instructions with two memory operands
few addressing modes

is CISC the winner?

well, can't get rid of $x 86$ features backwards compatibility matters
more application-specific instructions
but...compilers tend to use more RISC-like subset of instructions
modern x86: often convert to RISC-like "microinstructions"
sounds really expensive, but ...
lots of instruction preprocessing used in 'fast' CPU designs (even for RISC ISAs)

ISAs: who does the work?

CISC-like (harder to make hardware, easier to use assembly) choose instructions with particular assembly language in mind? hardware designer provides operations assembly-writers wants let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly) choose instructions with particular HW implementation in mind? hardware designer exposes things it can do efficiently to assembly-writers
building blocks for compiler to make efficient programs?
note: general differences - no firm RISC v. CISC line

ISAs: who does the work?

CISC-like (harder to make hardware, easier to use assembly) choose instructions with particular assembly language in mind? hardware designer provides operations assembly-writers wants let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly) choose instructions with particular HW implementation in mind? hardware designer exposes things it can do efficiently to assembly-writers
building blocks for compiler to make efficient programs?
note: general differences - no firm RISC v. CISC line

ISAs: who does the work?

CISC-like (harder to make hardware, easier to use assembly) choose instructions with particular assembly language in mind? hardware designer provides operations assembly-writers wants let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly) choose instructions with particular HW implementation in mind? hardware designer exposes things it can do efficiently to assembly-writers
building blocks for compiler to make efficient programs?
note: general differences - no firm RISC v. CISC line

