
Bitwise
ISAs

February 7, 2023

1

last lecture topics
C data types, strings

pointer stores beginning of array
pointer arithmetic: *(array + 5) = array[5]

C evolution and standards, undefined behavior

bitwise - extracting nibble

right shift
logical (unsigned) shr: shift in 0’s
arithmetic (signed) sar: shift in sign bit
equivalent to division by 2y, use bias for rounding

left shift, equivalent to multiplication by 2y

2

last lecture topics
bitwise operators and masks

bitwise and: keep (1) / clear (0)
bitwise or: set (1) / leave unchanged (0)
bitwise xor: flip (1) / leave unchanged (0)
bitwise not: negate each bit
efficient in hardware

3

right shift in math
4 >> 0 == 4 0000 0100
4 >> 1 == 2 0000 0010
4 >> 2 == 1 0000 0001

10 >> 0 == 10 0000 1010
10 >> 1 == 5 0000 0101
10 >> 2 == 2 0000 0010

x >> y =
⌊
x × 2−y⌋

=
⌊ x

2y

⌋

4

divide with proper rounding
C division: rounds towards zero (truncate)
arithmetic shift: rounds towards negative infinity
solution: “bias” adjustments — described in textbook
// int %eax = int divideBy8(int %edi)
divideBy8: // GCC generated code

leal 7(%rdi), %eax // %eax <- %edi + 7 (=8-1)
testl %edi, %edi // set cond. codes based on %edi

// set SF to 1 if %edi < 0
cmovns %edi, %eax // if (SF == 0) %eax <- %edi

// conditional move offset value
sarl $3, %eax // arithmetic shift
ret

example: −38/8 = −4.75 = −4 but will round up to −5 with ras
correction: (−38 + 7)/8 = −31/8 = −3.875 will round up to −4 5

example 1
Calculate 29 / 8 = 3

0000 0000 0000 0000 0000 0000 0001 1101 = 29
0000 0000 0000 0000 0000 0000 0000 0011101 = 29 >> 3 = 3

x 24 25 26 27 28 29 30 31 32 33 34 35
x/8 3 3.1 3.2 3.3 3.5 3.6 3.7 3.8 4 4.1 4.2 4.3
x div 8 3 3 3 3 3 3 3 3 4 4 4 4
x >> 3 3 3 3 3 3 3 3 3 4 4 4 4

6

example 2
Calculate -29 / 8 = -3

with no bias adjustment:
1111 1111 1111 1111 1111 1111 1110 0011 = -29
1111 1111 1111 1111 1111 1111 1111 1100011 = -29 >> 3 = -4
with +7 bias adjustment:
1111 1111 1111 1111 1111 1111 1110 1010 = -29 + 7 = -22
1111 1111 1111 1111 1111 1111 1111 1101010 = -22 >> 3 = -3

x -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35
x/8 -3 -3.1 -3.2 -3.3 -3.5 -3.6 -3.7 -3.8 -4 -4.1 -4.2 -4.3
x div 8 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4
x >> 3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5
(x+7)>>3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4

7

interlude: a truth table
AND 0 1

0 0 0
1 0 1

AND with 1: keep a bit the same

AND with 0: clear a bit

method: construct “mask” of what to keep/remove

8

interlude: a truth table
AND 0 1

0 0 0
1 0 1

AND with 1: keep a bit the same

AND with 0: clear a bit

method: construct “mask” of what to keep/remove

8

interlude: a truth table
AND 0 1

0 0 0
1 0 1

AND with 1: keep a bit the same

AND with 0: clear a bit

method: construct “mask” of what to keep/remove

8

interlude: a truth table
AND 0 1

0 0 0
1 0 1

AND with 1: keep a bit the same

AND with 0: clear a bit

method: construct “mask” of what to keep/remove

8

bitwise AND — &
Treat value as array of bits

1 & 1 == 1

1 & 0 == 0

0 & 0 == 0

2 & 4 == 0

10 & 7 == 2

0xABCD & 0x0F0F == 0x0B0D

… 0 0 1 0
& … 0 1 0 0

… 0 0 0 0

… 1 0 1 0
& … 0 1 1 1

… 0 0 1 0

9

bitwise AND — &
Treat value as array of bits

1 & 1 == 1

1 & 0 == 0

0 & 0 == 0

2 & 4 == 0

10 & 7 == 2

0xABCD & 0x0F0F == 0x0B0D

… 0 0 1 0
& … 0 1 0 0

… 0 0 0 0

… 1 0 1 0
& … 0 1 1 1

… 0 0 1 0

9

bitwise AND — &
Treat value as array of bits

1 & 1 == 1

1 & 0 == 0

0 & 0 == 0

2 & 4 == 0

10 & 7 == 2

0xABCD & 0x0F0F == 0x0B0D

… 0 0 1 0
& … 0 1 0 0

… 0 0 0 0

… 1 0 1 0
& … 0 1 1 1

… 0 0 1 0

9

bitwise AND — C/assembly
x86: and %reg, %reg

C: foo & bar

10

bitwise hardware (10 & 7 == 2)
10 7

...

0101 1110

0100

11

extract 0x3 from 0x1234
unsigned get_second_nibble1(unsigned value) {

return (value >> 4) & 0xF; // 0xF: 00001111
// like (value / 16) % 16

}
Bits:aaaabbbbccccdddd → aaaabbbbcccc → 00000000cccc

unsigned get_second_nibble2(unsigned value) {
return (value & 0xF0) >> 4; // 0xF0: 11110000

// "mask and shift"
// like (value % 256) / 16;

}
Bits:aaaabbbbccccdddd → 000000000cccc0000 → 00000000cccc 12

extract 0x3 from 0x1234
get_second_nibble1_bitwise:

movl %edi, %eax
shrl $4, %eax
andl $0xF, %eax
ret

get_second_nibble2_bitwise:
movl %edi, %eax
andl $0xF0, %eax
shrl $4, %eax
ret

13

and/or/xor
AND 0 1

0 0 0
1 0 1

OR 0 1
0 0 1
1 1 1

XOR 0 1
0 0 1
1 1 0

&

conditionally clear bit
conditionally keep bit

mask: 0s = clear; 1s = keep
e.g. 101010101…=
clear every other bit

|

conditionally set bit

mask: 1s = set; 0s = keep same
e.g. 101010101…=
set every other bit

^

conditionally flip bit

mask: 1s = flip; 0s = keep same

14

bitwise OR — |
1 | 1 == 1

1 | 0 == 1

0 | 0 == 0

2 | 4 == 6

10 | 7 == 15

0xABCD | 0x0F0F == 0xAFCF

… 1 0 1 0
| … 0 1 1 1

… 1 1 1 1

15

bitwise xor — ̂
1 ^ 1 == 0

1 ^ 0 == 1

0 ^ 0 == 0

2 ^ 4 == 6

10 ^ 7 == 13

0xABCD ^ 0x0F0F == 0xA4C2

… 1 0 1 0
^ … 0 1 1 1

… 1 1 0 1

16

negation / not — ~
~ (‘complement’) is bitwise version of !:

!0 == 1

!notZero == 0

~0 == (int) 0xFFFFFFFF (aka −1)

~2 == (int) 0xFFFFFFFD (aka −3)

~((unsigned) 2) == 0xFFFFFFFD

~ 0 0 … 0 0 0 0
1 1 … 1 1 1 1

32 bits

17

negation / not — ~
~ (‘complement’) is bitwise version of !:

!0 == 1

!notZero == 0

~0 == (int) 0xFFFFFFFF (aka −1)

~2 == (int) 0xFFFFFFFD (aka −3)

~((unsigned) 2) == 0xFFFFFFFD

~ 0 0 … 0 0 0 0
1 1 … 1 1 1 1

32 bits

17

negation / not — ~
~ (‘complement’) is bitwise version of !:

!0 == 1

!notZero == 0

~0 == (int) 0xFFFFFFFF (aka −1)

~2 == (int) 0xFFFFFFFD (aka −3)

~((unsigned) 2) == 0xFFFFFFFD

~ 0 0 … 0 0 0 0
1 1 … 1 1 1 1

32 bits

17

bit-puzzles
lab and hw assignments: bit manipulation puzzles

solve some problem with bitwise ops
maybe that you could do with normal arithmetic, comparisons, etc.

why?
good for thinking about HW design
good for understanding bitwise ops
unreasonably common interview question type

18

note: ternary operator
w = (x ? y : z)

if (x) { w = y; } else { w = z; }

19

ternary as bitwise: simplifying
(x ? y : z) if (x) return y; else return z;

task: turn into non-if/else/etc. operators
assembly: no jumps probably

strategy today: build a solution from simpler subproblems
(1) with x, y, z 1 bit: (x ? y : 0) or (x ? 0 : z)
(2) with x, y, z 1 bit: (x ? y : z)
(3) with x 1 bit: (x ? y : z)
(4) (x ? y : z)

20

one-bit ternary
(x ? y : z) = if (x) y else z

constraint: x, y, and z are 0 or 1

now: reimplement in C without if/else/||/etc.
(assembly: no jumps probably)

divide-and-conquer:
(x ? y : 0)
(x ? 0 : z)

21

one-bit ternary
(x ? y : z) = if (x) y else z

constraint: x, y, and z are 0 or 1

now: reimplement in C without if/else/||/etc.
(assembly: no jumps probably)

divide-and-conquer:
(x ? y : 0)
(x ? 0 : z)

21

one-bit ternary parts (1)
constraint: x, y, and z are 0 or 1

(x ? y : 0)

y=0 y=1
x=0 0 0
x=1 0 1

→ (x & y)

22

one-bit ternary parts (1)
constraint: x, y, and z are 0 or 1

(x ? y : 0)

y=0 y=1
x=0 0 0
x=1 0 1

→ (x & y)

22

one-bit ternary parts (2)
(x ? y : 0) = (x & y)

(x ? 0 : z)

opposite x: ~x

((~x) & z)

23

one-bit ternary parts (2)
(x ? y : 0) = (x & y)

(x ? 0 : z)

opposite x: ~x

((~x) & z)

23

one-bit ternary
constraint: x, y, and z are 0 or 1

(x ? y : z) = if x then y else z

(x ? y : 0) | (x ? 0 : z)

(x & y) | ((~x) & z)

24

one-bit ternary: evaluating example (1)
constraint: x, y, and z are 0 or 1

(x ? y : z) = if x then y else z

(x & y) | ((~x) & z)

x = 1, y = 0, z = 1

(1 & 0) | ((~1) & 1) =

(1 & 0) | (11...1110 & 00...0001) = 0

25

one-bit ternary: not general yet
if (x) y else z

constraint: x, y, and z are 0 or 1

DOES NOT WORK: x = 1, y = 4, z = 2

(1 & 4) | ((~1) & 2) =

(..0001 & ...0100) | (11...110 & 00...0010) =

(0) | (000...0010) = 2 (expected y, which is 4)

26

multibit ternary
constraint: x is 0 or 1

old solution ((x & y) | (~x) & z) only gets least sig. bit

(x ? y : z) (if (x) y else z)

(x ? y : 0) | (x ? 0 : z)

((−x) & y) | ((−(x ^ 1)) & z)

27

multibit ternary
constraint: x is 0 or 1

old solution ((x & y) | (~x) & z) only gets least sig. bit

(x ? y : z) (if (x) y else z)

(x ? y : 0) | (x ? 0 : z)

((−x) & y) | ((−(x ^ 1)) & z)

27

constructing masks
constraint: x is 0 or 1

(x ? y : 0) (if (x) y else 0)

turn into y & MASK, where MASK = ???
“keep certain bits”

if x = 1: want 1111111111…1 (keep y)

if x = 0: want 0000000000…0 (want 0)

a trick: −x (-1 is 1111…1)

((-x) & y)

28

constructing masks
constraint: x is 0 or 1

(x ? y : 0) (if (x) y else 0)

turn into y & MASK, where MASK = ???
“keep certain bits”

if x = 1: want 1111111111…1 (keep y)

if x = 0: want 0000000000…0 (want 0)

a trick: −x (-1 is 1111…1)

((-x) & y)

28

constructing masks
constraint: x is 0 or 1

(x ? y : 0) (if (x) y else 0)

turn into y & MASK, where MASK = ???
“keep certain bits”

if x = 1: want 1111111111…1 (keep y)

if x = 0: want 0000000000…0 (want 0)

a trick: −x (-1 is 1111…1)

((-x) & y)

29

constructing other masks
constraint: x is 0 or 1

(x ? 0 : z) (if (x) 0 else z)

if x = ��SS1 0: want 1111111111…1

if x = ��AA0 1: want 0000000000…0

mask: ��HH-x

−(x^1)

30

constructing other masks
constraint: x is 0 or 1

(x ? 0 : z) (if (x) 0 else z)

if x = ��SS1 0: want 1111111111…1

if x = ��AA0 1: want 0000000000…0

mask: ��HH-x −(x^1)

30

multibit ternary
constraint: x is 0 or 1

old solution ((x & y) | (~x) & z) only gets least sig. bit

(x ? y : z) (if (x) y else z)

(x ? y : 0) | (x ? 0 : z)

((−x) & y) | ((−(x ^ 1)) & z)

31

fully multibit
((((((((((((((hhhhhhhhhhhhhh
constraint: x is 0 or 1

(x ? y : z)

easy C way: !x = 1 (if x = 0) or 0, !(!x) = 0 or 1
x86 assembly: testq %rax, %rax then sete/setne
(copy from ZF)

(x ? y : 0) | (x ? 0 : z)

((−!!x) & y) | ((−!x) & z)

32

fully multibit
((((((((((((((hhhhhhhhhhhhhh
constraint: x is 0 or 1

(x ? y : z)

easy C way: !x = 1 (if x = 0) or 0, !(!x) = 0 or 1
x86 assembly: testq %rax, %rax then sete/setne
(copy from ZF)

(x ? y : 0) | (x ? 0 : z)

((−!!x) & y) | ((−!x) & z)

32

fully multibit
((((((((((((((hhhhhhhhhhhhhh
constraint: x is 0 or 1

(x ? y : z)

easy C way: !x = 1 (if x = 0) or 0, !(!x) = 0 or 1
x86 assembly: testq %rax, %rax then sete/setne
(copy from ZF)

(x ? y : 0) | (x ? 0 : z)

((−!!x) & y) | ((−!x) & z)

32

problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +
more like what real hardware components to work with are

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

33

problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +
more like what real hardware components to work with are

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

33

problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +
more like what real hardware components to work with are

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

33

wasted work (1)

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

in general: (x & 1) | (y & 1) == (x | y) & 1
distributive property

(x | (x >> 1) | (x >> 2) | (x >> 3)) & 1

34

wasted work (1)

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

in general: (x & 1) | (y & 1) == (x | y) & 1
distributive property

(x | (x >> 1) | (x >> 2) | (x >> 3)) & 1

34

wasted work (2)
4-bit any set: (x | (x >> 1)| (x >> 2) | (x >> 3)) & 1

performing 3 bitwise ors

…each bitwise or does 4 OR operations

but only result of one of the 4!

(x)
(x >> 1)

35

wasted work (2)
4-bit any set: (x | (x >> 1)| (x >> 2) | (x >> 3)) & 1

performing 3 bitwise ors

…each bitwise or does 4 OR operations

but only result of one of the 4!
(x)

(x >> 1)

35

any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)

final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)

36

any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)

final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)

36

any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)
final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)

36

any-bit: divide and conquer
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

0 0 (0|x3) (x3|x2)

x3 (x3|x2) (x3|x2|x1) (x3|x2|x1|x0)

x

x>>1

y=(x>>1)|x

y>>2

y|(y>>2)

37

any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)

38

any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)

38

any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)

38

any-bit: divide and conquer
x7 x6 x5 x4 x3 x2 x1 x0

0 x7 x6 x5 x4 x3 x2 x1

(0|x7) (x7|x6) (x6|x5) (x5|x4) (x4|x3) (x3|x2) (x2|x1) (x1|x0)

0 0 (0|x7) (x7|x6) (x6|x5) (x5|x4) (x4|x3) (x3|x2)

(0|0|0|x7) (0|x7|x6|x5) (x6|x5|x4|x3) (x4|x3|x2|x1)
(0|0|x7|x6) (x7|x6|x5|x4) (x5|x4|x3|x2) (x3|x2|x1|x0)

x

x>>1

y=(x>>1)|x

y>>2

z=y|(y>>2)

39

any-bit-set: 32 bits
unsigned int any(unsigned int x) {

x = (x >> 1) | x;
x = (x >> 2) | x;
x = (x >> 4) | x;
x = (x >> 8) | x;
x = (x >> 16) | x;
return x & 1;

}

40

bitwise strategies
use paper, find subproblems, etc.

mask and shift
(x & 0xF0) >> 4

factor/distribute
(x & 1) | (y & 1) == (x | y) & 1

divide and conquer

common subexpression elimination
return ((−!!x) & y) | ((−!x) & z)
becomes
d = !x; return ((−!d) & y) | ((−d) & z)

41

ISAs being manufactured today
(ISA = instruction set architecture)

x86 — dominant in desktops, servers

ARM — dominant in mobile devices

POWER — Wii U, IBM supercomputers and some servers

MIPS — common in consumer wifi access points

SPARC — some Oracle servers, Fujitsu supercomputers

z/Architecture — IBM mainframes

Z80 — TI calculators

SHARC — some digital signal processors

RISC V — some embedded

…
42

microarchitecture v. instruction set
microarchitecture — design of the hardware

“generations” of Intel’s x86 chips
different microarchitectures for very low-power versus laptop/desktop
changes in performance/efficiency

instruction set — interface visible by software
what matters for software compatibility
many ways to implement (but some might be easier)

43

ISA “extensions”
I’ve been saying x86-64, ARM is an ISA

but there have been new instructions
(that weren’t supported by original x86-64 or ARM processors)

really a bunch of variants of x86-64 (or ARM or …), each of which
is a different ISA

primary purpose of new processor designs usually to make non-ISA
changes

ISA extensions won’t improve performance of existing compiled code

44

exercise
which of the following changes to a processor are instruction set
changes?

A. increasing the number of registers available in assembly

B. decreasing the runtime of the add instruction

C. making the machine code for add instructions shorter

D. removing a multiply instruction

E. allowing the add instruction to have two memory operands
(instead of two register operands))

45

instruction set architecture goals
exercise: what are some goals to have when designing an
instruction set?

46

ISA variation
instruction set instr.

length
normal
registers

approx.
instrs.

x86-64 1–15 byte 16 1500
Y86-64 1–10 byte 15 18
ARMv7 4 byte* 16 400
POWER8 4 byte 32 1400
MIPS32 4 byte 31 200
Itanium 41 bits* 128 300
Z80 1–4 byte 7 40
VAX 1–14 byte 8 150
z/Architecture 2–6 byte 16 1000
RISC V 4 byte* 31 500*

47

other choices: condition codes?
instead of:
cmpq %r11, %r12
je somewhere

could do:
/* _B_ranch if _EQ_ual */
beq %r11, %r12, somewhere

48

other choices: addressing modes
ways of specifying operands. examples:

x86-64: 10(%r11,%r12,4)

ARM: %r11 << 3 (shift register value by constant)

VAX: ((%r11)) (register value is pointer to pointer)

49

other choices: number of operands
add src1, src2, dest

ARM, POWER, MIPS, SPARC, …

add src2, src1=dest
x86, AVR, Z80, …

VAX: both

50

CISC and RISC
RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer

51

CISC and RISC
RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer

51

some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at
the value x.

EDITPC sourceLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by
patternPtr.

52

microcode

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

loop in hardware???

typically: lookup sequence of microinstructions (“microcode”)

secret simpler instruction set

53

Why RISC?
complex instructions were usually not faster

(even though programs with simple instructions were bigger)

complex instructions were harder to implement

compilers were replacing hand-written assembly
correct assumption: almost no one will write assembly anymore
incorrect assumption: okay to recompile frequently

54

typical RISC ISA properties
fewer, simpler instructions

seperate instructions to access memory

fixed-length instructions

more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes

55

is CISC the winner?
well, can’t get rid of x86 features

backwards compatibility matters

more application-specific instructions

but…compilers tend to use more RISC-like subset of instructions

modern x86: often convert to RISC-like “microinstructions”
sounds really expensive, but …
lots of instruction preprocessing used in ‘fast’ CPU designs
(even for RISC ISAs)

56

ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations assembly-writers wants

let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes things it can do efficiently to
assembly-writers

building blocks for compiler to make efficient programs?

note: general differences — no firm RISC v. CISC line

57

ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations assembly-writers wants

let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes things it can do efficiently to
assembly-writers

building blocks for compiler to make efficient programs?

note: general differences — no firm RISC v. CISC line

57

ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations assembly-writers wants

let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes things it can do efficiently to
assembly-writers

building blocks for compiler to make efficient programs?

note: general differences — no firm RISC v. CISC line

57

	last lecture topics
	shift right
	shr math
	recap

	bitwise gate ops
	and: the operation
	or/xor

	bit puzzles
	case study: ternary operator
	options to simplify
	one-bit case
	multi-bit x/y
	multi-bit everything

	case study: any-bit?
	problem setup
	wasted work with naive 4 bit soln
	a divide and conquer solution

	general strategies

	ISAS made today
	microarchitectures versus ISAs
	ISA goals?

	ISA choices
	CISC v RISC
	really complex instructions: VAX
	why RISC
	typical RISC properties
	Is CISC the winner?

