last time

write policies
thinking about tradeoffs in cache design
average memory access time
hit time v miss rate v miss penalty
miss types (compulsory/capacity/conflict)
data misses and C code

quiz Q1

8 bits for offset
4 bits for index
$64-12=52$ bits for tag
1 tag (52 bits) + valid bit per block
16 blocks
$16 * 53=848$ bits

quiz Q2

write to L1
L1 is write-no-allocate: nothing stored in L1, just sent to next level (L2)

L2 is write-allocate: something stored
L2 is write-back: marked dirty when stored (instead of being sent to next level)

quiz Q4

read from 0×0 - bring in $0 \times 0-0 \times F$
write to 0×4 - mark $0 \times 0-0 \times F$ as dirty
write to address 0×2004 :
write-allocate - so need to add to cache:
first must evict $0 \times 0-0 \times F$ - write whole thing to memory
bring in $0 \times 2000-0 \times 2003$ and $0 \times 2005-0 \times 200 F$ - read from memory

C and cache misses (warmup 1)

```
int array[4];
```

int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 1 -set direct-mapped cache with 8B blocks?

some possiblities

Q1: how do cache blocks correspond to array elements? not enough information provided!

some possiblities

if array[0] starts at beginning of a cache block... array split across two cache blocks

memory access	cache contents afterwards
	(empty)
read array [0] (miss)	\{array[0], array[1] \}
read array[1] (hit)	\{array[0], array[1]\}
read array[2] (miss)	\{array[2], array[3]\}
read array[3] (hit)	\{array[2], array[3]\}

some possiblities

one cache block

if array[0] starts right in the middle of a cache block array split across three cache blocks

memory access	cache contents afterwards
-	$($ empty)
read array [0] (miss)	$\{\star \star \star \star, \operatorname{array[0]\} }$
read array [1] (miss)	$\{\operatorname{array[1],} \operatorname{array[2]\} }$
read array [2] (hit)	$\{\operatorname{array[1],} \operatorname{array[2]\} }$
read array [3] (miss)	$\{\operatorname{array[3],++++\} }$

some possiblities

if array[0] starts at an odd place in a cache block, need to read two cache blocks to get most array elements

memory access	cache contents afterwards
	(empty)
read array [0] byte 0 (miss)	\{ ****, array[0] byte 0 \}
read array [0] byte 1-3 (miss)	$\{$ array[0] byte 1-3, array[2], array[3] byte 0 \}
read array[1] (hit)	$\{$ array[0] byte 1-3, array[2], array[3] byte 0 \}
read array[2] byte 0 (hit)	$\{$ array [0] byte 1-3, array[2], array[3] byte 0 \}
read array[2] byte 1-3 (miss)	\{part of array[2], array[3], ++++\}
read array[3] (hit)	\{part of array[2], array[3], ++++\}

aside: alignment

compilers and malloc/new implementations usually try align values align $=$ make address be multiple of something
most important reason: don't cross cache block boundaries

C and cache misses (warmup 2)

```
int array[4];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
odd_sum += array[1];
odd_sum += array[3];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

Assume array[0] at beginning of cache block.
How many data cache misses on a 1-set direct-mapped cache with 8B blocks?

exercise solution

one cache block

```
array[0] array[1] array[2] array [3]
```

memory access	cache contents afterwards
	(empty)
read array [0] (miss)	\{array[0], array[1]\}
read array[2] (miss)	\{array[2], array[3]\}
read array[1] (miss)	\{array[0], array[1]\}
read array [3] (miss)	\{array[2], array[3]\}

C and cache misses (warmup 3)

```
int array[8];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
even_sum += array[4];
odd_sum += array[5];
even_sum += array[6];
odd_sum += array[7];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny), and array[0] at beginning of cache block.

How many data cache misses on a 2 -set direct-mapped cache with 8B blocks?

exercise solution

one cache block

exercise solution

one cache block one cache block one cache block one cache block

exercise solution

one cache block one cache block one cache block one cache block

	(index 1)		(index 1)		(index 0)		
\cdots		array[0] array[1]	array [2]	array [3]	array [4]	array [5]	arra
	memory access	set 0 afterwards		set 1 afterwards			
	-	(empty)		(empty)			
	read array [0] (miss)	\{array [0], array [1] \}		(empty)			
	read array[1] (hit)	\{array[0], array[1]		(empty)			
	read array[2] (miss)	\{array [0], array[1]\}		\{array[2], array[3]			
	read array[3] (hit)	\{array [0], array [1] \}		\{array[2], array[3]			
	read array [4] (miss)	\{array [4], array [5] \}		\{array[2], array[3]			
	read array [5] (hit)	\{array [4], array [5] \}		\{array [2], array [3]			
	read array[6] (miss)	\{array [4], array [5] \}		\{array[6], array[7]\}			
	read array[7] (hit)	\{array[4], array[5]\}		\{array[6], array[7]\}			

exercise solution

one cache block one cache block one cache block one cache block observation: what happens in set 0 doesn't affect set 1

exercise solution

read array [4] (miss)	$\{\operatorname{array[4],} \operatorname{array[5]\} }$
read array [5] (hit)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$

exercise solution

one cache block one cache block one cache block one cache block

read array [4] (miss)	$\{\operatorname{array[4],} \operatorname{array[5]\} }$
read array [5] (hit)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$

exercise solution

one cache block one cache block one cache block one cache block

read array[2] (miss)
read array[3] (hit)

$\{\operatorname{array[2]}, \operatorname{array[3]}\}$
$\{\operatorname{array}[2], \operatorname{array[3]}\}$

$\mid\{\operatorname{array}[6], \operatorname{array}[7]\}$
$\{\operatorname{array}[6], \operatorname{array[7]\} }$

read array[7] (hit)

C and cache misses (warmup 4)

```
int array[8];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
even_sum += array[4];
even_sum += array[6];
odd_sum += array[1];
odd_sum += array[3];
odd_sum += array[5];
odd_sum += array[7];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2-set direct-mapped cache with 8B blocks?

exercise solution

one cache block one cache block one cache block one cache block (index 1) (index 0) (index 1) (index 0)

exercise solution

one cache block one cache block one cache block one cache block (index 1$) \quad($ index 0$) \quad$ (index 1$) 0$)

read $\operatorname{array}[4]$ (miss)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$
read array [1] (miss)	$\{\operatorname{array}[4], \operatorname{array}[5]\}, \operatorname{array}[1]\}$
read array [3] (miss)	$\{\operatorname{array}[0], \operatorname{array}[1]\}$

exercise solution

one cache block one cache block one cache block one cache block (index 1) (index 0) (index 1) (index 0)

read array[2] (miss)	\{array [0], array [1]	\{array[2], array[3]
read array [4] (miss)		\{array[2], array[3]\}
read array [6] (miss)	\{array [4], array [5] \}	\{array[6], array[7]\}
read array [1] (miss)	\{array [0], array [1] \}	\{array [6], array [7]\}
read array [3] (miss)	$\{\operatorname{array~[0],~array~[1]\} ~}$	\{array[2], array[3]
read array [5] (miss)		\{array [2], array [3]\}
read array [7] (miss)	$\{\operatorname{array~[4],~array~[5]\} ~}$	\{array[6], array[7]

arrays and cache misses (1)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1000; i += 2) {
even_sum += array[i + 0];
odd_sum += array[i + 1];
}
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?

arrays and cache misses (2)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)
    even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)
odd_sum += array[i + 1];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks? Would a set-associtative cache be better? What if the array had 1000 elements?

approximate miss analysis

very tedious to precisely count cache misses
even more tedious when we take advanced cache optimizations into account
instead, approximations:
good or bad temporal/spatial locality good temporal locality: value stays in cache good spatial locality: use all parts of cache block
with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once (that is, once each time the inner loop is run) ...if they can all fit in the cache

approximate miss analysis

very tedious to precisely count cache misses
even more tedious when we take advanced cache optimizations into account
instead, approximations:
good or bad temporal/spatial locality good temporal locality: value stays in cache good spatial locality: use all parts of cache block
with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once (that is, once each time the inner loop is run) ...if they can all fit in the cache

locality exercise (1)

```
/* version 1 */
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 2 */
for (int j = 0; j < N; ++j)
    for (int i = 0; i < N; ++i)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

exercise: miss estimating (1)

```
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
    A[i] += B[j] * C[i * N + j]
```

Assume: 4 array elements per block, N very large, nothing in cache at beginning.

Example: $N / 4$ estimated misses for A accesses:
$\mathrm{A}[\mathrm{i}]$ should always be hit on all but first iteration of inner-most loop. first iter: $A[i]$ should be hit about $3 / 4$ s of the time (same block as $A[i-1]$ that often)

Exericse: estimate \# of misses for B, C

a note on matrix storage

$A-N \times N$ matrix
represent as array
makes dynamic sizes easier:

```
float A_2d_array[N][N];
float *A_flat \(=m a l l o c(N * N)\);
```

A_flat $[i \star N+j]===A _2 d _a r r a y[i][j]$

convertion re: rows/columns

going to call the first index rows
$A_{i, j}$ is A row i, column j
rows are stored together
this is an arbitrary choice

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

if array starts on cache block first cache block $=$ first elements all together in one row!

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

second cache block:
1 from row 0
3 from row 1

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

generally: cache blocks contain data from 1 or 2 rows \rightarrow better performance from reusing rows

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j})$
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i \star N+k] \star B[k \star N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i \star N+j]+=A[i * N+k] * B[k \star N+j] ;$

loop orders and locality

loop body: $C_{i j}+=A_{i k} B_{k j}$
kij order: $C_{i j}, B_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $C_{i j}$ has temporal locality

loop orders and locality

loop body: $C_{i j}+=A_{i k} B_{k j}$
kij order: $C_{i j}, B_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $C_{i j}$ has temporal locality

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i \star N+k] \star B[k \star N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i \star N+j]+=A[i * N+k] * B[k \star N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $k=0 ; k<N ;++k)$
$C[i \star N+j]+=A[i \star N+k] \star B[k \star N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i \star N+j]+=A[i * N+k] \star B[k \star N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $k=0 ; k<N ;++k)$
$C[i \star N+j]+=A[i \star N+k] * B[k \star N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i * N+j]+=A[i \star N+k] \star B[k \star N+j] ;$

which is better?

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
        C[i*N+j] += A[i * N + k] * B[k * N + j];
/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        C[i*N+j] += A[i * N + k] * B[k*N + j];
```

exercise: Which version has better spatial/temporal locality for... ... accesses to C? ...accesses to A? ...accesses to B ?

array usage: $i j k$ order

array usage: $i j k$ order

array usage: $i j k$ order

for all i : for all j : for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: temporal locality in C
bad temporal locality in everything else (everything accessed exactly once)

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j :
for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: row of A (elements used once) column of B (elements used once) single element of C (used many times)

array usage: $i j k$ order

looking only at two innermost loops together: some temporal locality in A (column reused) some temporal locality in B (row reused) some temporal locality in C (row reused)

array usage: kij order

for all k :
for all i :
for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

if N large:
using $C_{i j}$ once per load into cache (but using $C_{i, j+1}$ right after)
using $A_{i k}$ many times per load-into-cache using $B_{k j}$ once per load into cache (but using $B_{k, j+1}$ right after)

array usage: kij order

for all k :
for all i :
for all j :
$C_{i j}+=A_{i k} \times B_{k j}$
looking only at innermost loop: spatial locality in B, C (use most of loaded B, C cache blocks) no useful spatial locality in A (rest of A's cache block wasted)

array usage: kij order

$A_{x 0} \quad A_{x N}$
for all k : for all i : for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: temporal locality in A no temporal locality in B, C
(B, C values used exactly once)

array usage: kij order

looking only at innermost loop: processing one element of A (use many times) row of B (each element used once) $C_{i j}+=A_{i k} \times B_{k j}$ column of C (each element used once)

array usage: kij order

looking only at two innermost loops together: for all i : for all j :
$C_{i j}+=A_{i k} \times B_{k j}$ good temporal locality in A (column reused) good temporal locality in B (row reused) bad temporal locality in C (nothing reused)

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $k=0 ; k<N ;++k)$
$C[i \star N+j]+=A[i \star N+k] * B[k \star N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i \star N+j]+=A[i * N+k] * B[k \star N+j] ;$

performance (with $A=B$)

alternate view 1: cycles/instruction

alternate view 2: cycles/operation

counting misses: version 1

```
for (int \(i=0 ; i<N ;++i)\)
    for (int j \(=0 ; j<N ;++j)\)
        for (int \(k=0 ; k<N ;++k)\)
            \(C[i * N+j]+=A[i * N+k] * B[k * N+j] ;\)
```

if N really large
assumption: can't get close to storing N values in cache at once
for A: about $N \div$ block size misses per k-loop
total misses: $N^{3} \div$ block size
for B: about N misses per k-loop
total misses: N^{3}
for C : about $1 \div$ block size miss per k -loop
total misses: $N^{2} \div$ block size

counting misses: version 2

```
for (int \(k=0 ; k<N ;++k)\)
    for (int i \(=0 ; i<N ;++i)\)
    for (int \(j=0 ; j<N ;++j)\)
    \(C[i * N+j]+=A[i * N+k] * B[k * N+j] ;\)
```

for A : about 1 misses per j-loop total misses: N^{2}
for B: about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size
for C : about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size

backup slides

exercise: miss estimating (2)

```
for (int k = 0; k < 1000; k += 1)
    for (int i = 0; i < 1000; i += 1)
    for (int j = 0; j < 1000; j += 1)
    A[k*N+j] += B[i*N+j];
```

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements
estimate: approximately how many misses for A, B ?

misses with skipping

```
int array1[512]; int array2[512];
for (int i = 0; i < 512; i += 1)
    sum += array1[i] * array2[i];
}
```

Assume everything but array1, array2 is kept in registers (and the compiler does not do anything funny).

About how many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?
Hint: depends on relative placement of array1, array2

best/worst case

array1[i] and array2 [i] always different sets:
$=$ distance from array 1 to array 2 not multiple of $\#$ sets \times bytes $/$ set 2 misses every 4 i
blocks of 4 array $1[X]$ values loaded, then used 4 times before loading next block (and same for array2[X])
array1[i] and array2 [i] same sets:
$=$ distance from array 1 to array 2 is multiple of \# sets \times bytes/set 2 misses every i
block of 4 array $1[X]$ values loaded, one value used from it, then, block of 4 array $2[X]$ values replaces it, one value used from it, ...

worst case in practice?

two rows of matrix?
often sizeof(row) bytes apart
if the row size is multiple of number of sets \times bytes per block, oops!

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8-way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8-way	fully assoc.
1 KB	8.63%	6.97%	5.63%	5.34%
2 KB	5.71%	4.23%	3.30%	3.05%
4 KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

$L 1$ misses (with $A=B$)

L1 miss detail (1)

L1 miss detail (2)

read misses/1K instruction

addresses

$B[k \star 114+j]$	is at	10	0000	0000	0100
$B[k \star 114+j+1]$	is at	10	0000	0000	1000
$B[(k+1) \star 114+j]$	is at	10	0011	1001	0100
$B[(k+2) \star 114+j]$	is at	10	0101	0101	1100
\cdots					
$B[(k+9) \star 114+j]$	is at	11	0000	0000	1100

addresses

$B[k \star 114+j]$	is at	10	0000	0000	0100
$B[k \star 114+j+1]$	is at	10	0000	0000	1000
$B[(k+1) \star 114+j]$	is at	10	0011	1001	0100
$B[(k+2) \star 114+j]$	is at	10	0101	0101	1100
\cdots					
$B[(k+9) \star 114+j]$	is at	11	0000	0000	1100

test system L1 cache: 6 index bits, 6 block offset bits

conflict misses

powers of two - lower order bits unchanged
$B[k * 93+j]$ and $B[(k+11) * 93+j]:$
1023 elements apart (4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set
$B[k * 93+(j+1)]$ will not be cached (next i loop)
even if in same block as $B[k * 93+j]$
how to fix? improve spatial locality
(maybe even if it requires copying)

split caches; multiple cores

hierarchy and instruction/data caches

typically separate data and instruction caches for L1
(almost) never going to read instructions as data or vice-versa avoids instructions evicting data and vice-versa
can optimize instruction cache for different access pattern easier to build fast caches: that handles less accesses at a time

inclusive versus exclusive

L2 inclusive of L1
everything in L1 cache duplicated in L2 adding to L1 also adds to L2

L2 cache

L2 exclusive of L1

L2 contains different data than L1 adding to L 1 must remove from L2 probably evicting from L1 adds to L2

L2 cache

inclusive versus exclusive

L2 inclusive of L 1

everything in L 1 cache duplicated in L 2
adding to L 1 also adds to L 2

inclusive policy:
no extra work on eviction
but duplicated data
easier to explain when
$\mathrm{L} k$ shared by multiple $\mathrm{L}(k-1)$ caches?

inclusive versus exclusive

exclusive policy: avoid duplicated data sometimes called victim cache (contains cache eviction victims)
makes less sense with multicore

L2 exclusive of L1

L2 contains different data than L1 adding to L 1 must remove from L2 probably evicting from L1 adds to L2

L2 cache

exercise (1)

initial cache: 64 -byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

exercise (2)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256 -byte block, 8 ways/set, 64 KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

exercise (3)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of conflict misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256 -byte block, 8 ways/set, 64 KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

prefetching

seems like we can't really improve cold misses...
have to have a miss to bring value into the cache?

prefetching

seems like we can't really improve cold misses...
have to have a miss to bring value into the cache?
solution: don't require miss: 'prefetch' the value before it's accessed
remaining problem: how do we know what to fetch?

common access patterns

suppose recently accessed 16B cache blocks are at: $0 \times 48010,0 \times 48020,0 \times 48030,0 \times 48040$
guess what's accessed next

common access patterns

suppose recently accessed 16B cache blocks are at: $0 \times 48010,0 \times 48020,0 \times 48030,0 \times 48040$
guess what's accessed next
common pattern with instruction fetches and array accesses

prefetching idea

look for sequential accesses
bring in guess at next-to-be-accessed value
if right: no cache miss (even if never accessed before)
if wrong: possibly evicted something else - could cause more misses
fortunately, sequential access guesses almost always right

quiz exercise solution

one cache block one cache block (set index 1) (set index 0)
 one cache block (set index 1)
 one cache block (set index 0)

memory access	set 0 afterwards	set 1 afterwards
-	(empty)	(empty)
read array[0] (miss)	\{array[0], array[1]\}	(empty)
read array[3] (miss)	\{array[0], array[1]\}	\{array[2], array[3]
read array[6] (miss)	\{array[0], array[1]\}	\{array[6], array[7]\}
read array[1] (hit)	\{array [0], array[1]	\{array [6], array [7] \}
read array[4] (miss)	\{array[4], array[5]\}	\{array[6], array[7]\}
read array[7] (hit)	\{array[4], array[5]\}	\{array[6], array[7]\}
read array[2] (miss)	\{array[4], array[5]\}	\{array[2], array[3]\}
read array[5] (hit)	\{array [4], array[5]\}	\{array [6], array[7]\}
read array[8] (miss)	$\{\operatorname{array}[8], \operatorname{array}[9]\}$	\{array [6], array[7]

quiz exercise solution

one cache block one cache block one cache block one cache block (set index 1$) \quad($ set index 0$) \quad($ set index 1$) \quad($ set index 0$)$
$\ldots \quad \overbrace{\operatorname{array[0]}[\operatorname{array[1]}} . \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} \cdot . .$.

memory access	set $\mathbf{0}$ afterwards
-	(empty)
read array[0] (miss)	$\{\operatorname{array[0],~array[1]\} }$

read $\operatorname{array}[1]$ (hit)	$\{\operatorname{array[0],} \operatorname{array[1]\} }$
read array[4] (miss)	$\{\operatorname{array[4],} \operatorname{array[5]\} }$

read $\operatorname{array}[5]$ (hit)	$\{\operatorname{array[4],} \operatorname{array[5]\} }$
read array [8] (miss)	$\{\operatorname{array[8],} \operatorname{array[9]\} }$

quiz exercise solution

one cache block one cache block one cache block one cache block (set index 1$) \quad($ set index 0$) \quad($ set index 1$) \quad($ set index 0$)$
$\cdots \overbrace{\operatorname{array[0]}}^{\square} \overbrace{\operatorname{array[1]}} \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} . .$.

memory access
-

set 1 afterwards
(empty)

read array[3] (miss)
read array[6] (miss)

\{array [2], $\operatorname{array[3]\} }$
$\{\operatorname{array}[6], \operatorname{array}[7]\}$

read $\operatorname{array[7]~(hit)~}$
read $\operatorname{array[2]~(miss)~}$

$\{\operatorname{array}[6], \operatorname{array}[7]\}$
array[2], array[3] $\}$

not the quiz problem

one cache block one cache block one cache bloc one cache block
$\cdots \overbrace{\operatorname{array[0]} \operatorname{array[1]} \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} . . .}$
if 1-set 2-way cache instead of 2-set 1-way cache:

memory access	single set with 2-ways, LRU first
-	---, --
read array [0] (miss)	---, \{array [0], array[1]\}
read array [3] (miss)	\{array[0], array[1]\}, \{array[2], array[3]\}
read array [6] (miss)	\{array[2], array[3]\}, \{array[6], array[7]\}
read array [1] (miss)	\{array[6], array[7]\}, \{array[0], array[1]\}
read array [4] (miss)	\{array[0], array[1]\}, \{array [3], array[4]\}
read array [7] (miss)	\{array[3], array [4]\}, \{array [6], array[7]\}
read array [2] (miss)	\{array[6], array[7]\}, \{array[2], array[3]\}
read array [5] (miss)	\{array[2], array[3]\}, \{array[5], array[6]\}
read array [8] (miss)	\{array[5], array[6]\}, \{array[8], array[9]\}

mapping of sets to memory (direct-mapped)

memory

mapping of sets to memory (3-way)

C and cache misses (4)

```
typedef struct {
    int a_value, b_value;
    int other_values[6];
} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

C and cache misses (4, rewrite)

```
int array[40]
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 40; i += 8)
    a_sum += array[i];
for (int i = 1; i < 40; i += 8)
    b_sum += array[i];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B cache with 16B cache blocks and LRU replacement?

C and cache misses (4, solution pt 1)

 ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way4 sets total
accessing $0,8,16,24,32,1,9,17,25,33$

C and cache misses (4, solution pt 1)

ints 4 byte \rightarrow array $[0$ to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing $0,8,16,24,32,1,9,17,25,33$
$0(\operatorname{set} 0), 8(\operatorname{set} 2), 16(\operatorname{set} 0), 24(\operatorname{set} 2), 32(\operatorname{set} 0)$
$1(\operatorname{set} 0), 9(\operatorname{set} 2), 17(\operatorname{set} 0), 25(\operatorname{set} 2), 33(\operatorname{set} 0)$

C and cache misses (4, solution pt 2)

access	set 0 after (LRU first)	result	
-	-, -		
array[0]	-, array[0 to 3]	miss	
array[16]	array[0 to 3], array[16 to 19]	miss	6 misses for set 0
array[32]	array[16 to 19], array[32 to 35]	miss	
array[1]	array[32 to 35], array[0 to 3]	miss	
array[17]	array[0 to 3], array[16 to 19]	miss	
array[32]	array[16 to 19], array[32 to 35]	miss	

C and cache misses (4, solution pt 3)

access	set 2 after (LRU first)	result	
-	-,		
array[8]	-, array[8 to 11]	miss	2 misses for set 1
array[24]	array[8 to 11], array[24 to 27]	miss	
array[9]	array[8 to 11], array[24 to 27]	hit	
array[25]	array[16 to 19], array[32 to 35]	hit	

C and cache misses (3)

```
typedef struct {
    int a_value, b_value;
    int other_values[10];
} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)
    b_sum += items[i].b_value;
```

observation: 12 ints in struct: only first two used
equivalent to accessing array[0], array[12], array[24], etc.
...then accessing array[1], array[13], array[25], etc.

C and cache misses (3, rewritten?)

```
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)
    a_sum += array[i];
for (int i = 1; i < 60; i += 12)
    b_sum += array[i];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative cache with 16B cache blocks and LRU replacement? observation 1: first loop has 5 misses - first accesses to blocks observation 2: array[0] and array[1], array[12] and array[13], etc. in same cache block

C and cache misses (3, solution)

ints 4 byte $\rightarrow \operatorname{array[0~to~3]~and~array[16~to~19]~in~same~cache~set~}$ $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array [0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3, solution)

ints 4 byte $\rightarrow \operatorname{array[0~to~3]~and~array[16~to~19]~in~same~cache~set~}$ $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array [0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3, solution)

ints 4 byte \rightarrow array[0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice no replacement needed
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array [0 to 3]
set 5 contains block with array[20 to 23] etc.

C and cache misses (3)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
        b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?

C and cache misses (3, rewritten?)

item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i $=0$; i < 1024; i += 128)
a_sum += array[i];
for (int i = 1; i < 1024; i += 128) b_sum += array[i];

C and cache misses (4)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 4-way set associative 2 KB direct-mapped cache with 16B cache blocks?

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ set 1 : address 16 to 31 , (16 to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ set 1 : address 16 to 31 , (16 to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511]

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3] block at $0+2 \mathrm{~KB}$: array [512] through array [515]
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7] block at $16+2 \mathrm{~KB}$: array[516] through array[519]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511] block at $2032+2 \mathrm{~KB}$: array[1020] through array[1023]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$.

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$.
address 1008: array[252] through array[255]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
block at $0+1 \mathrm{~KB}$: array[256] through array[259] block at $0+2 \mathrm{~KB}$: array[512] through array[515]
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} . .$. address 1008: array[252] through array[255]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
block at $0+1 \mathrm{~KB}$: array $[256]$ through array[259] block at $0+2 \mathrm{~KB}$: array[512] through array[515]
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$. address 1008: array[252] through array[255]

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j :
for all k :
$C_{i j}+=A_{i k} \times B_{k j}$
looking only at two innermost loops together: good spatial locality in A poor spatial locality in B good spatial locality in C

array usage: kij order

simple blocking - with 3 ?

```
for (int kk = 0; kk < N; kk += 3)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*NN+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
            C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];
        }
```

$\frac{N}{3} \cdot N \mathrm{j}$-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N \div$ block size misses from C per j-loop iteration $N^{3} \div$ block size total misses (same as before)

simple blocking - with 3 ?

```
for (int kk = 0; kk < N; kk += 3)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
            C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];
        }
```

$\frac{N}{3} \cdot N \mathrm{j}$-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N \div$ block size misses from C per j-loop iteration $N^{3} \div$ block size total misses (same as before)

more than 3 ?

can we just keep doing this increase from 3 to some large X ? ... assumption: X values from A would stay in cache X too large - cache not big enough
assumption: X blocks from B would help with spatial locality X too large - evicted from cache before next iteration

array usage (2 k at a time)

$B_{k i}$ to $B_{k+1, i}$

for each kk: for each i:
for each j :
for $k=k k, k k+1$:

$$
C_{i j}+=A_{i k} \cdot B_{k j}
$$

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

within innermost loop good spatial locality in A bad locality in B
good temporal locality in C

array usage (2k at a time)

for each kk: for each i:
for each j :
for $k=k k, k k+1$: $C_{i j}+=A_{i k} \cdot B_{k j}$
loop over j : better spatial locality over A than before; still good temporal locality for A

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

loop over j : spatial locality over B is worse but probably not more misses cache needs to keep two cache blocks for next iter instead of one (probably has the space left over!)

array usage (2k at a time)

for each kk: for each i:
for each j :
for $k=k k, k k+1$: have more than 4 cache blocks? $C_{i j}+=A_{i k}$. increasing $k k$ increment would use more of them
right now: only really care about keeping 4 cache blocks in j loop

keeping values in cache

can't explicitly ensure values are kept in cache
...but reusing values effectively does this cache will try to keep recently used values
cache optimization ideas: choose what's in the cache for thinking about it: load values explicitly for implementing it: access only values we want loaded

inclusive versus exclusive

L2 inclusive of L1
everything in L1 cache duplicated in L2 adding to L1 also adds to L2

L2 cache

L2 exclusive of L1

L2 contains different data than L1 adding to L 1 must remove from L2 probably evicting from L1 adds to L2

L2 cache

inclusive versus exclusive

L2 inclusive of L 1

everything in L 1 cache duplicated in L 2
adding to L 1 also adds to L 2

inclusive policy:
no extra work on eviction
but duplicated data
easier to explain when
$\mathrm{L} k$ shared by multiple $\mathrm{L}(k-1)$ caches?

inclusive versus exclusive

exclusive policy: avoid duplicated data sometimes called victim cache (contains cache eviction victims)
makes less sense with multicore

L2 exclusive of L1

L2 contains different data than L1 adding to L 1 must remove from L2 probably evicting from L1 adds to L2

locality exercise (2)

```
/* version 2 */
for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 3 */
for (int ii = 0; ii < N; ii += 32)
    for (int jj = 0; jj < N; jj += 32)
        for (int i = ii; i < ij + 32; ++i)
        for (int j = jj; j < jj + 32; ++j)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

