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last time
write policies

thinking about tradeoffs in cache design

average memory access time
hit time v miss rate v miss penalty

miss types (compulsory/capacity/conflict)

data misses and C code
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quiz Q1
8 bits for offset

4 bits for index

64-12=52 bits for tag

1 tag (52 bits) + valid bit per block

16 blocks

16 * 53 = 848 bits
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quiz Q2
write to L1

L1 is write-no-allocate: nothing stored in L1, just sent to next level
(L2)

L2 is write-allocate: something stored

L2 is write-back: marked dirty when stored (instead of being sent
to next level)
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quiz Q4
read from 0x0 — bring in 0x0-0xF

write to 0x4 — mark 0x0-0xF as dirty

write to address 0x2004:

write-allocate — so need to add to cache:

first must evict 0x0–0xF — write whole thing to memory

bring in 0x2000-0x2003 and 0x2005-0x200F — read from memory

5



C and cache misses (warmup 1)
int array[4];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?
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some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!

if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}
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some possiblities
… …array[0]array[1]array[2]array[3]
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some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!
if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
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memory access cache contents afterwards
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read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }
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read array[3] (hit) {part of array[2], array[3], ++++}
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aside: alignment
compilers and malloc/new implementations usually try align values

align = make address be multiple of something

most important reason: don’t cross cache block boundaries
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C and cache misses (warmup 2)
int array[4];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
odd_sum += array[1];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

Assume array[0] at beginning of cache block.

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?
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exercise solution

… …array[0]array[1]array[2]array[3]

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[1] (miss) {array[0], array[1]}
read array[3] (miss) {array[2], array[3]}
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C and cache misses (warmup 3)
int array[8];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
even_sum += array[4];
odd_sum += array[5];
even_sum += array[6];
odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny), and array[0] at beginning of cache block.

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?
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exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content
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C and cache misses (warmup 4)
int array[8];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
even_sum += array[4];
even_sum += array[6];
odd_sum += array[1];
odd_sum += array[3];
odd_sum += array[5];
odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?
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exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
(index 0)

one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]}
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exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)

one cache block
(index 1)

one cache block
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(index 1)
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read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]}
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exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]

one cache block
(index 0)
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(index 1)

one cache block
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one cache block
(index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]}
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arrays and cache misses (1)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1000; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?
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arrays and cache misses (2)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtative cache be better?
What if the array had 1000 elements?
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approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:

good or bad temporal/spatial locality
good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache
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locality exercise (1)
/* version 1 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 2 */
for (int j = 0; j < N; ++j)

for (int i = 0; i < N; ++i)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?
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exercise: miss estimating (1)
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

Assume: 4 array elements per block, N very large, nothing in cache
at beginning.

Example: N/4 estimated misses for A accesses:
A[i] should always be hit on all but first iteration of inner-most loop.
first iter: A[i] should be hit about 3/4s of the time (same block as A[i-1]
that often)

Exericse: estimate # of misses for B, C
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a note on matrix storage
A — N × N matrix

represent as array

makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat = malloc(N * N);

A_flat[i * N + j] === A_2d_array[i][j]
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convertion re: rows/columns
going to call the first index rows

Ai,j is A row i, column j

rows are stored together

this is an arbitrary choice
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5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows
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→ better performance from reusing rows
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i * N + j] += A[i * N + k] * B[k * N + j];
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj
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C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j];
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loop orders and locality
loop body: Cij+ = AikBkj

kij order: Cij, Bkj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Cij has temporal locality
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which is better?

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

exercise: Which version has better spatial/temporal locality for…
…accesses to C? …accesses to A? …accesses to B?
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array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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probably not still in cache next time
(but, at least some spatial locality)
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j];
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performance (with A=B)
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alternate view 1: cycles/instruction
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alternate view 2: cycles/operation
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counting misses: version 1
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i * N + j] += A[i * N + k] * B[k * N + j];

if N really large
assumption: can’t get close to storing N values in cache at once

for A: about N ÷ block size misses per k-loop
total misses: N3 ÷ block size

for B: about N misses per k-loop
total misses: N3

for C: about 1 ÷ block size miss per k-loop
total misses: N2 ÷ block size
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counting misses: version 2
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i * N + j] += A[i * N + k] * B[k * N + j];

for A: about 1 misses per j-loop
total misses: N2

for B: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

for C: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size
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backup slides
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exercise: miss estimating (2)
for (int k = 0; k < 1000; k += 1)

for (int i = 0; i < 1000; i += 1)
for (int j = 0; j < 1000; j += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block

assuming: cache not close to big enough to hold 1K elements

estimate: approximately how many misses for A, B?
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misses with skipping
int array1[512]; int array2[512];
...
for (int i = 0; i < 512; i += 1)

sum += array1[i] * array2[i];
}

Assume everything but array1, array2 is kept in registers (and the compiler
does not do anything funny).

About how many data cache misses on a 2KB direct-mapped
cache with 16B cache blocks?
Hint: depends on relative placement of array1, array2

How about on a two-way set associative cache?
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best/worst case
array1[i] and array2[i] always different sets:

= distance from array1 to array2 not multiple of # sets × bytes/set
2 misses every 4 i
blocks of 4 array1[X] values loaded, then used 4 times before loading
next block
(and same for array2[X])

array1[i] and array2[i] same sets:
= distance from array1 to array2 is multiple of # sets × bytes/set
2 misses every i
block of 4 array1[X] values loaded, one value used from it,
then, block of 4 array2[X] values replaces it, one value used from it, …
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worst case in practice?
two rows of matrix?

often sizeof(row) bytes apart

if the row size is multiple of number of sets × bytes per block,
oops!
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cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 51

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/
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L1 misses (with A=B)
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L1 miss detail (1)
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L1 miss detail (2)
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addresses
B[k*114+j] is at 10 0000 0000 0100
B[k*114+j+1] is at 10 0000 0000 1000
B[(k+1)*114+j] is at 10 0011 1001 0100
B[(k+2)*114+j] is at 10 0101 0101 1100
…
B[(k+9)*114+j] is at 11 0000 0000 1100

test system L1 cache: 6 index bits, 6 block offset bits
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conflict misses
powers of two — lower order bits unchanged

B[k*93+j] and B[(k+11)*93+j]:
1023 elements apart (4092 bytes; 63.9 cache blocks)

64 sets in L1 cache: usually maps to same set

B[k*93+(j+1)] will not be cached (next i loop)

even if in same block as B[k*93+j]

how to fix? improve spatial locality
(maybe even if it requires copying)
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split caches; multiple cores
instr.
cache
(core 1)

data
cache
(core 1)

instr.
cache
(core 1)

instr.
cache
(core 2)

data
cache
(core 2)

unified
L2 cache
(core 1)

unified
L2 cache
(core 2)

L3 cache
(shared between cores)
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hierarchy and instruction/data caches
typically separate data and instruction caches for L1

(almost) never going to read instructions as data or vice-versa

avoids instructions evicting data and vice-versa

can optimize instruction cache for different access pattern

easier to build fast caches: that handles less accesses at a time
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inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore
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exercise (1)
initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set
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exercise (2)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size
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exercise (3)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size
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prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?
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common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

64



common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

64



prefetching idea
look for sequential accesses

bring in guess at next-to-be-accessed value

if right: no cache miss (even if never accessed before)

if wrong: possibly evicted something else — could cause more
misses

fortunately, sequential access guesses almost always right
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quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}
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not the quiz problem

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block one cache bloc one cache blockone cache block

memory access single set with 2-ways, LRU first
— ---, ---
read array[0] (miss) ---, {array[0], array[1]}
read array[3] (miss) {array[0], array[1]}, {array[2], array[3]}
read array[6] (miss) {array[2], array[3]}, {array[6], array[7]}
read array[1] (miss) {array[6], array[7]}, {array[0], array[1]}
read array[4] (miss) {array[0], array[1]}, {array[3], array[4]}
read array[7] (miss) {array[3], array[4]}, {array[6], array[7]}
read array[2] (miss) {array[6], array[7]}, {array[2], array[3]}
read array[5] (miss) {array[2], array[3]}, {array[5], array[6]}
read array[8] (miss) {array[5], array[6]}, {array[8], array[9]}

if 1-set 2-way cache instead of 2-set 1-way cache:
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mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!
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mapping of sets to memory (3-way)
3-way set assoc. cache

set 0
memory

array[0]

array[X]
where X = way size

array element size

accesses (way size) bytes apart in array?
beware conflict misses!
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C and cache misses (4)
typedef struct {

int a_value, b_value;
int other_values[6];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).
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C and cache misses (4, rewrite)
int array[40]
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 40; i += 8)

a_sum += array[i];
for (int i = 1; i < 40; i += 8)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B
cache with 16B cache blocks and LRU replacement?
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C and cache misses (4, solution pt 1)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing 0, 8, 16, 24, 32, 1, 9, 17, 25, 33

0 (set 0), 8 (set 2), 16 (set 0), 24 (set 2), 32 (set 0)

1 (set 0), 9 (set 2), 17 (set 0), 25 (set 2), 33 (set 0)
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C and cache misses (4, solution pt 2)
access set 0 after (LRU first) result
— —, —
array[0] —, array[0 to 3] miss
array[16] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss
array[1] array[32 to 35], array[0 to 3] miss
array[17] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss

6 misses for set 0
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C and cache misses (4, solution pt 3)
access set 2 after (LRU first) result
— —, —
array[8] —, array[8 to 11] miss
array[24] array[8 to 11], array[24 to 27] miss
array[9] array[8 to 11], array[24 to 27] hit
array[25] array[16 to 19], array[32 to 35] hit

2 misses for set 1
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C and cache misses (3)
typedef struct {

int a_value, b_value;
int other_values[10];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

observation: 12 ints in struct: only first two used

equivalent to accessing array[0], array[12], array[24], etc.

…then accessing array[1], array[13], array[25], etc.
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C and cache misses (3, rewritten?)
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)

a_sum += array[i];
for (int i = 1; i < 60; i += 12)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative
cache with 16B cache blocks and LRU replacement?
observation 1: first loop has 5 misses — first accesses to blocks
observation 2: array[0] and array[1], array[12] and array[13], etc. in
same cache block
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C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.
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C and cache misses (3)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?
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C and cache misses (3, rewritten?)
item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)

a_sum += array[i];
for (int i = 1; i < 1024; i += 128)

b_sum += array[i];
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C and cache misses (4)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks?
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thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]
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thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …

address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
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array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)
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more than 3?
can we just keep doing this increase from 3 to some large X? …

assumption: X values from A would stay in cache
X too large — cache not big enough

assumption: X blocks from B would help with spatial locality
X too large — evicted from cache before next iteration
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array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

89



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

89



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

89



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

89



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

89



keeping values in cache
can’t explicitly ensure values are kept in cache

…but reusing values effectively does this
cache will try to keep recently used values

cache optimization ideas: choose what’s in the cache
for thinking about it: load values explicitly
for implementing it: access only values we want loaded
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inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore
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locality exercise (2)
/* version 2 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 3 */
for (int ii = 0; ii < N; ii += 32)

for (int jj = 0; jj < N; jj += 32)
for (int i = ii; i < ii + 32; ++i)

for (int j = jj; j < jj + 32; ++j)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?
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