last time

multi-level page table lookup

dividing virtual address into parts page table at level N: physical page number of next level's table conversion of physical page num to physical address

cache accesses and multi-level PTs

four-level page tables — five cache accesses per program memory access

L1 cache hits — typically a couple cycles each?

so add 8 cycles to each program memory access?

not acceptable

program memory active sets

0xFFFF FFFF FFFF FFFF

0×FFFF 8000 0000 0000

0x7F...

small areas of memory active at a time one or two pages in each area?

0x0000 0000 0040 0000

page table entries and locality

page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

page table entries and locality

page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

needed page table entries are very small

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache	TLB
physical addresses	virtual page numbers
bytes from memory	page table entries
tens of bytes per block	one page table entry per block
usually thousands of blocks	usually tens of entries

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache		TLB
physical add	resses	virtual page numbers
bytes from n	nemory	page table entries
tens of bytes per block		one page able entry per block
usually thousands of blocks		usually te is of entries
5	only caches the page table lookup itself	
	(generally) just entries from the last-level page tables	

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1	cache	TLB	
phy	ysical addresses	virtual page numbers	
byt	es from memory	page table entries	
ter	is of bytes per block	one page table entry per	block
usually thousands of blocks usually tens of entries		usually tens of entries	
	not much spatial locality between page table entries		

not much spatial locality between page table entries (they're used for kilobytes of data already) (and if spatial locality, maybe use larger page size?)

caled a **TLB** (translation lookaside buffer)

very small cache of page table entries

L1 cache		TLB
physical addresses		virtual page numbers
bytes from memory		page table entries
tens of bytes per block		one page table entry per block
usually thousands of blo	ocks	usually tens of entries
	few	active page table entries at a time
	enal	oles highly associative cache designs

TLB and the MMU (2) TLB miss: TLB gets a copy of the page table entry se fault? 11 0101 01 00 1101 ГLВ check valid and permission bit page table \times PTE size base register 0x10000 split PTE parts 1101 0011 11 00 1101 1111 physical address data or instruction cache

TLB and multi-level page tables

TLB caches valid last-level page table entries

doesn't matter which last-level page table

means TLB output can be used directly to form address

TLB and two-level lookup

TLB and two-level lookup

backup slides