
1



last time
multi-level page table lookup

dividing virtual address into parts
page table at level N: physical page number of next level’s table
conversion of physical page num to physical address

2



cache accesses and multi-level PTs
four-level page tables — five cache accesses per program memory
access

L1 cache hits — typically a couple cycles each?

so add 8 cycles to each program memory access?

not acceptable

3



program memory active sets
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

small areas of memory active at a time
one or two pages in each area?

4



page table entries and locality
page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

needed page table entries are very small

5



page table entries and locality
page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

needed page table entries are very small

5



page table entry cache
caled a TLB (translation lookaside buffer)

very small cache of page table entries

L1 cache TLB
physical addresses virtual page numbers
bytes from memory page table entries
tens of bytes per block one page table entry per block
usually thousands of blocks usually tens of entries

only caches the page table lookup itself
(generally) just entries from the last-level page tablesnot much spatial locality between page table entries

(they’re used for kilobytes of data already)
(and if spatial locality, maybe use larger page size?)

few active page table entries at a time
enables highly associative cache designs

6



page table entry cache
caled a TLB (translation lookaside buffer)

very small cache of page table entries

L1 cache TLB
physical addresses virtual page numbers
bytes from memory page table entries
tens of bytes per block one page table entry per block
usually thousands of blocks usually tens of entries

only caches the page table lookup itself
(generally) just entries from the last-level page tables

not much spatial locality between page table entries
(they’re used for kilobytes of data already)
(and if spatial locality, maybe use larger page size?)

few active page table entries at a time
enables highly associative cache designs

6



page table entry cache
caled a TLB (translation lookaside buffer)

very small cache of page table entries

L1 cache TLB
physical addresses virtual page numbers
bytes from memory page table entries
tens of bytes per block one page table entry per block
usually thousands of blocks usually tens of entries

only caches the page table lookup itself
(generally) just entries from the last-level page tables

not much spatial locality between page table entries
(they’re used for kilobytes of data already)
(and if spatial locality, maybe use larger page size?)

few active page table entries at a time
enables highly associative cache designs

6



page table entry cache
caled a TLB (translation lookaside buffer)

very small cache of page table entries

L1 cache TLB
physical addresses virtual page numbers
bytes from memory page table entries
tens of bytes per block one page table entry per block
usually thousands of blocks usually tens of entries

only caches the page table lookup itself
(generally) just entries from the last-level page tablesnot much spatial locality between page table entries

(they’re used for kilobytes of data already)
(and if spatial locality, maybe use larger page size?)

few active page table entries at a time
enables highly associative cache designs

6



TLB and the MMU (1)

MMU
(‘page table walk’ logic)

L1 Cache/Memory

TLB

address
from

program

7



TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

8



TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

8



TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

8



TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happens

TLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

8



TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happens

TLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

8



TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

8



TLB and multi-level page tables
TLB caches valid last-level page table entries

doesn’t matter which last-level page table

means TLB output can be used directly to form address

9



TLB and two-level lookup

11 0101 01 00 1011 00 00 1101 1111

×
PTE
size

0x10000

page table
base register

+

TLB hit

TLB miss

data or instruction cache

1101 0011 111st PTE
addr.

valid, etc?

split
PTE
parts

cause fault?

×
page
size

+

phys
page #

phys
addr

2nd PTE
addr.

×
PTE
size

split
PTE
parts

valid, etc?

cause fault?

TLB

00 1101 1111
physical address

virtual address

10



TLB and two-level lookup

11 0101 01 00 1011 00 00 1101 1111

×
PTE
size

0x10000

page table
base register

+

TLB hit

TLB miss

data or instruction cache

1101 0011 111st PTE
addr.

valid, etc?

split
PTE
parts

cause fault?

×
page
size

+

phys
page #

phys
addr

2nd PTE
addr.

×
PTE
size

split
PTE
parts

valid, etc?

cause fault?

TLB

00 1101 1111
physical address

virtual address

10



backup slides

11


	last time
	TLB
	why does caching work?
	how TLBs fit in the pipeline
	how TLB fits in page table lookup

	backup slides

