
CS 4414 — Operating System — Introduction

1

two sections

there are two sections of Operating Systems
Reiss at 9:30am and Grimshaw at 11am

we will share TAs, large parts of assignments/quizzes

…but there will be differences
e.g. written part in Grimshaw’s assignments
e.g. assignment submission

2

course webpage

https://www.cs.virginia.edu/~cr4bd/4414/F2018/

linked off Collab

3

https://www.cs.virginia.edu/~cr4bd/4414/F2018/

homeworks

there will be programming assignments

…mostly in C or C++
(I recommend C++)

one or two weeks
if two weeks “checkpoint” submission after first week

schedule is aggressive…
might push back pre-midterm assignments by one week
…depending how fast lectures go

4

xv6

some assignments will use xv6, a teaching operating system

simplified OS based on an old Unix version
built by some people at MIT

theoretically actually boots on real 32-bit x86 hardware

…and supports multicore!

5

quizzes

there will be online quizzes after each week of lecture

…starting after next week

same interface as CS 3330, but no time limit
(haven’t seen it? we’ll talk more next week)

quizzes are open notes, open book, open Internet

6

exams

midterm and final

let us know soon if you can’t make the midterm

7

textbook

recommended textbook:
Operating Systems: Principles and Practice

no required textbook

alternative: Operating Systems: Three Easy Pieces (free PDFs)
some topics we’ll cover where this may be primary textbook

alternative: Silberchartz (used in previous semesters)
full version: Operating System Concepts, Ninth Edition

8

cheating: homeworks

don’t

homeworks are individual

no code from prior semesters

no sharing code, pesudocode, detailed descriptions of code

no code from Internet, with extremely limited exceptions
tiny things solving problems that aren’t point of assignment
e.g. code to split string into array for non-text-parsing assignment
e.g. something explicitly permitted by the assignent writeup
in doubt: ask

9

cheating: quizzes

don’t

quizzes: also individual

don’t share answers

don’t IM people for answers

don’t ask on StackOverflow for answers

10

getting help

Piazza

office hours (will be posted soon)

emailing me

11

C/C++ refreshers

some TAs will run a refresher on C and C++

totally optional, but 2150 was a while ago…

probably two sessions, probably Thursday

stay tuned

12

what is an operating system? (1)

layer of software to provide access to HW

abstraction of complex hardware
protected access to shared resources
communication
security

app 1 app 2 app 3

operating system

hardware
13

history: computer operator

via National Library of Medicine; computer operators operating an Honeywell 800 14

what is an operating system? (2)

software providing a more convenient/featureful machine interface

15

what is an operating system? (3)

referee — resource sharing, protection, isolation

illusionist — clean, easy abstractions

glue — common services
storage, window systems, authorization, networking, …

16

what is an operating system? (3)

referee — resource sharing, protection, isolation

illusionist — clean, easy abstractions

glue — common services
storage, window systems, authorization, networking, …

16

what is an operating system? (3)

referee — resource sharing, protection, isolation

illusionist — clean, easy abstractions

glue — common services
storage, window systems, authorization, networking, …

16

common goal: hide complexity

hiding complexity

competing applications — failures, malicious applications
text editor shouldn’t need to know if browser is running

varying hardware — diverse and changing interfaces
different keyboard interfaces, disk interfaces, video interfaces, etc.
applications shouldn’t change

17

common goal: hide complexity

hiding complexity

competing applications — failures, malicious applications
text editor shouldn’t need to know if browser is running

varying hardware — diverse and changing interfaces
different keyboard interfaces, disk interfaces, video interfaces, etc.
applications shouldn’t change

17

common goal: for application programmer

write once for lots of hardware

avoid reimplementing common functionality

don’t worry about other programs

18

the virtual machine interface

application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

19

system virtual machines

run entire operating systems
for OS development, portability

interface ≈ hardware interface (but maybe not the real hardware)
aid reusing existing raw hardware-targeted code
different “application programmer”

20

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite threads — no matter number of CPUsmemory allocation functions
no worries about organization of “real” memory
files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite threads — no matter number of CPUs

memory allocation functions
no worries about organization of “real” memory
files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite threads — no matter number of CPUs

memory allocation functions
no worries about organization of “real” memory

files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite threads — no matter number of CPUsmemory allocation functions
no worries about organization of “real” memory

files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

the abstract virtual machine

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

22

abstract VM: application view

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating systemthe application’s “machine” is the operating system

no hardware I/O details visible — future-proof

more featureful interfaces than real hardware

23

abstract VM: OS viewapplications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …operating system’s job: translate one interface to another

24

program → process → CPU and memory

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

25

program → process → CPU and memory

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

25

program → process → CPU and memory

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

25

program → process → CPU and memory

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

25

files → input/output

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

files

26

security and protection

applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

segmentation fault

27

The Process

process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

28

goal: protection

run multiple applications, and …

keep them from crashing the OS

keep them from crashing each other

(keep parts of OS from crashing other parts?)

29

mechanism 1: dual-mode operation

processor has two modes: kernel (privileged) and user

some operations require kernel mode

OS controls what runs in kernel mode

30

mechanism 2: address translation

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

31

aside: alternate mechanisms

dual mode operation and address translation are common today

…so we’ll talk about them a lot

not the only ways to implement operating system features
(plausibly not even the most efficient…)

32

problem: OS needs to respond to events

keypress happens?

program using CPU for too long?

…

hardware support for running OS: exception
need hardware support because CPU is running application instructions

33

problem: OS needs to respond to events

keypress happens?

program using CPU for too long?

…

hardware support for running OS: exception
need hardware support because CPU is running application instructions

33

exceptions and dual-mode operation

rule: user code always runs in user mode

rule: only OS code ever runs in kernel mode

on exception: changes from user mode to kernel mode

…and is only mechanism for doing so
how OS controls what runs in kernel mode

34

exception terminology

CS 3330 terms:

interrupt: triggered by external event
timer, keyboard, network, …

fault: triggered by program doing something “bad”
invalid memory access, divide-by-zero, …

traps: triggered by explicit program action
system calls

aborts: something in the hardware broke

35

xv6 exception terms

everything is a called a trap

or sometimes an interrupt

no real distinction in name about kinds

36

real world exception terms

it’s all over the place…

context clues

37

kernel services

allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

38

hardware mechanism: deliberate exceptions

some instructions exist to trigger exceptions

still works like normal exception
starts executing OS-chosen handler
…in kernel mode

allows program requests privilieged instructions
OS handler decides what program can request
OS handler decides format of requests

39

system call timeline

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments */
movq $SYS_write, %rax
movq $FILENO_stdout, %rsi
movq $buffer, %rdi
movq $BUFFER_LEN, %r8
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

system call timeline

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments */
movq $SYS_write, %rax
movq $FILENO_stdout, %rsi
movq $buffer, %rdi
movq $BUFFER_LEN, %r8
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

system call timeline

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments */
movq $SYS_write, %rax
movq $FILENO_stdout, %rsi
movq $buffer, %rdi
movq $BUFFER_LEN, %r8
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

system call timeline

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments */
movq $SYS_write, %rax
movq $FILENO_stdout, %rsi
movq $buffer, %rdi
movq $BUFFER_LEN, %r8
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

the classic Unix design

applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

41

the classic Unix design

applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

41

the classic Unix design

applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

41

aside: is the OS the kernel?

OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

42

xv6

we will be using an teaching OS called “xv6”

based on Sixth Edition Unix

modified to be multicore and use 32-bit x86 (not PDP-11)

43

xv6 setup/assignment

first assignment — adding simple xv6 system call

includes xv6 download instructions

and link to xv6 book

44

xv6 technical requirements

you will need a Linux VM
we will supply one (soon), or get your own
should also have department lab accounts (eventually)
(it’s probably possible to use OS X, but you need a cross-compiler and
we don’t have instructions)

…with qemu installed
qemu (for us) = emulator for 32-bit x86 system
Ubuntu/Debian package qemu-system-i386

alternate: hopefully department login server
working on this

45

first assignment

get compiled and xv6 working

…toolkit uses an emulator
could run on real hardware or a standard VM, but a lot of details
also, emulator lets you use GDB

46

xv6: what’s included

Unix-like kernel
very small set of syscalls
some less featureful (e.g. exit without exit status)

userspace library
very limited

userspace programs
command line, ls, mkdir, echo, cat, etc.
some self-testing programs

47

xv6: echo.c

#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? "␣" : "\n");

exit();
}

48

xv6: echo.c

#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? "␣" : "\n");

exit();
}

48

xv6: echo.c

#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? "␣" : "\n");

exit();
}

48

xv6 demo

49

syscalls in xv6

fork, exit, wait, kill, getpid — process control

open, read, write, close, fstat, dup — file operations

mknod, unlink, link, chdir — directory operations

…

50

write syscall in xv6: user mode

...
#define SYS_write 16
...

syscall.h

...
write(1,

"Hello,␣World!\n",
14);

...

main.c

(after macro replacement)
#include "syscall.h"
// ...
.globl write
write:

/* 16 = SYS_write */
movl $16, %eax
/* 0x40 = T_SYSCALL */
int $0x40
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (0x40 in this case) — type of exception
xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention
(arguments + return value: on stack)

52

write syscall in xv6: user mode

...
#define SYS_write 16
...

syscall.h

...
write(1,

"Hello,␣World!\n",
14);

...

main.c

(after macro replacement)
#include "syscall.h"
// ...
.globl write
write:

/* 16 = SYS_write */
movl $16, %eax
/* 0x40 = T_SYSCALL */
int $0x40
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (0x40 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention
(arguments + return value: on stack)

52

write syscall in xv6: user mode

...
#define SYS_write 16
...

syscall.h

...
write(1,

"Hello,␣World!\n",
14);

...

main.c

(after macro replacement)
#include "syscall.h"
// ...
.globl write
write:

/* 16 = SYS_write */
movl $16, %eax
/* 0x40 = T_SYSCALL */
int $0x40
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (0x40 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention
(arguments + return value: on stack)

52

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

53

write syscall in xv6: the trap function

void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

54

write syscall in xv6: the trap function

void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c
struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

54

write syscall in xv6: the trap function

void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

54

write syscall in xv6: the trap function

void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

54

write syscall in xv6: the syscall function

static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

55

write syscall in xv6: the syscall function

static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

55

write syscall in xv6: the syscall function

static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

55

write syscall in xv6: the syscall function

static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

55

write syscall in xv6: sys_write

int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

56

write syscall in xv6: sys_write

int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

56

write syscall in xv6: sys_write

int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

56

write syscall in xv6: interrupt table setup

...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
alltraps:

...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

57

write syscall in xv6: summary

write function — syscall wrapper uses int $0x40

interrupt table entry setup points to assembly function
vector64()

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write
59

write syscall in xv6: summary

write function — syscall wrapper uses int $0x40

interrupt table entry setup points to assembly function
vector64()

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write
60

summary

dual-mode operation:
kernel-mode: can do anything
user-mode: normal programs run here, no direct access to devices

exceptions/interrupts
hardware runs OS for important events
only way to switch to kernel mode — do special things

address spaces:
each program gets its own memory

system calls:
controlled entry into kernel mode

61

	logistics
	what is an operating system?
	the process VM model
	process = thread + address space
	address spaces and dual-mode operation
	system calls
	system call sketch

	the Unix design and xv6
	xv6: things included

	system calls in xv6
	summary

