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Changelog

Changes made in this version not seen in first lecture:
6 November: Correct center to edge in several places and be more cagey
about whether the edge is faster or not
6 November: disk scheduling: put SSTF abbervation on slide
6 November: SSDs: remove remarks about set to 1s as confusing

1



last time

I/O: DMA

FAT filesystem
divided into clusters (one or more sectors)
table of integers per cluster
in file: table entry = number of next cluster
special value indicates end of file
out of file: table entry = 0 for free

how disks work (start)
cylinders, tracks, sectors
seek time, rotational latency, etc.
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missing detail on FAT

multiple copies of file allocation table

typically (but not always) contain same information

idea: part of disk can fail

want to be able to still read the FAT if so

→ backup copy
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note on due dates

FAT due dates moved to Mondays
caveat: I may not provide much help on weekends

final assignment due last day of class, but…

will not accept submissions after final exam (10 December)
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no DMA?

anonymous feedback question: “Can you elaborate on what devices
do when they don’t support DMA?”

still connected to CPU via some sort of bus
typically same bus CPU uses to access memory

CPU writes to/reads from this bus to access device controller

without DMA: this is how data and status and commands are
transferred

with DMA: this how status and commands are transferred
device retrieves data from memory
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why hard drives?

what filesystems were designed for

currently most cost-effective way to have a lot of online storage

solid state drives (SSDs) imitate hard drive interfaces
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hard drives
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arm
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sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data
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disk latency components

queue time — how long read waits in line?
depends on number of reads at a time, scheduling strategy

disk controller/etc. processing time

seek time — head to cylinder

rotational latency — platter rotate to sector

transfer time

10



cylinders and latency

cylinders closer to edge of disk are faster (maybe)

less rotational latency
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sector numbers

historically: OS knew cylinder/head/track location

now: opaque sector numbers
more flexible for hard drive makers
same interface for SSDs, etc.

typical pattern: low sector numbers = closer to center

typical pattern: adjacent sector numbers = adjacent on disk

actual mapping: decided by disk controller
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OS to disk interface

disk takes read/write requests
sector number(s)
location of data for sector
modern disk controllers: typically direct memory access

can have queue of pending requests

disk processes them in some order
OS can say “write X before Y”
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hard disks are unreliable

Google study (2007), heavily utilized cheap disks

1.7% to 8.6% annualized failure rate
varies with age
≈ a disk fails each year
disk fails = needs to be replaced

9% of working disks had reallocated sectors
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bad sectors

modern disk controllers do sector remapping

part of physical disk becomes bad — use a different one

this is expected behavior

maintain mapping (special part of disk)
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error correcting codes

disk store 0s/1s magnetically
very, very, very small and fragile space

magnetic signals can fade over time/be damaged/intefere/etc.

but use error detecting+correcting codes

error detecting — can tell OS “don’t have data”
result: data corruption is very rare
data loss much more common

error correcting codes — extra copies to fix problems
only works if not too many bits damaged
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queuing requests

recall: multiple active requests

queue of reads/writes
in disk controller and/or OS

disk is faster for adjacent/close-by reads/writes
less seek time/rotational latency
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disk scheduling

schedule I/O to the disk

schedule = decide what read/write to do next
OS decides what to request from disk next?
controller decides which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests
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some disk scheduling algorithms

SSTF : take request with shortest seek time next
subject to starvation — stuck on one side of disk

SCAN/elevator : move disk head towards center, then away
let requests pile up between passes
limits starvation; good overall throughput

C-SCAN: take next request closer to center of disk (if any)
take requests when moving from outside of disk to inside
let requests pile up between passes
limits starvation; good overall throughput
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caching in the controller

controller often has a DRAM cache

can hold things controller thinks OS might read
e.g. sectors ‘near’ recently read sectors
helps hide sector remapping costs?

can hold data waiting to be written
makes writes a lot faster
problem for reliability
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disk performance and filesystems

filesystem can do contiguous reads/writes
bunch of consecutive sectors much faster to read

filesystem can start a lot of reads/writes at once
avoid reading something to find out what to read next
array of sectors better than linked list

filesystem can keep important data close to maybe faster edge of
disk

e.g. disk header/file allocation table
disk typically has lower sector numbers for faster parts
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solid state disk architecture
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flash

no moving parts
no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
afte that, flash fails
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SSDs: flash as disk

SSDs: implement hard disk interface for NAND flash
read/write sectors at a time
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out
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block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32
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block remapping
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block remapping

controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose
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SSD performance

reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)

27



aside: future storage

emerging non-volatile memories…

slower than DRAM (“normal memory”)

faster than SSDs

read/write interface like DRAM but persistent
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FAT scattered data

file data and metadata scattered throughout disk
directory entry
many places in file allocation table

slow to find location of kth cluster of file
first read FAT entries for clusters 0 to k − 1

need to scan FAT to allocate new blocks

all not good for contiguous reads/writes
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FAT in practice

typically keep entire file alocation table in memory

still pretty slow to find kth cluster of file
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xv6 filesystem

xv6’s filesystem similar to modern Unix filesytems

better at doing contiguous reads than FAT

better at handling crashes

supports hard links (more on these later)

divides disk into blocks instead of clusters

file block numbers, free blocks, etc. in different tables

31



xv6 disk layout
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the disk
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super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map
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xv6 directory entries

struct dirent {
ushort inum;
char name[DIRSIZ];

};

inum — index into inode array on disk

name — name of file or directory

each directory reference to inode called a hard link
multiple hard links to file allowed!
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xv6 allocating inodes/blocks

need new inode or data block: linear search

simplest solution: xv6 always takes the first one that’s free
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xv6 FS pros versus FAT

support for reliability — log
more on this later

possibly easier to scan for free blocks
more compact free block map

easier to find location of kth block of file
element of addrs array

file type/size information held with block locations
inode number = everything about open file
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missing pieces

what’s the log? (more on that later)

how big is addrs — list of blocks in inode
what about large files?

other file metadata?
creation times, etc. — xv6 doesn’t have it
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xv6 inode: direct and indirect blocks

addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs

…

data blocks

…

block of
indirect blocks
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xv6 file sizes

512 byte blocks

2-byte block pointers: 256 block pointers in the indirect block

256 blocks = 262144 bytes of data referenced

12 direct blocks @ 512 bytes each = 6144 bytes

1 indirect block @ 262144 bytes each = 262144 bytes

maximum file size
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Linux ext2 inode

struct ext2_inode {
__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection
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ext2 indirect blocks

12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, how big can a file be?
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indirect block advantages

small files: all direct blocks + no extra space beyond inode

larger files — more indirection
file should be large enough to hide extra indirection cost
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sparse files

the xv6 filesystem and ext2 allow sparse files

“holes” with no data blocks
#include <stdio.h>
int main(void) {

FILE *fh = fopen("sparse.dat", "w");
fseek(fh, 1024 * 1024, SEEK_SET);
fprintf(fh, "Some␣data␣here\n");
fclose(fh);

}

sparse.dat is 1MB file which uses a handful of blocks
most of its block pointers are some NULL (‘no such block’) value

including some direct and indirect ones
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xv6 inode: sparse file

addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs data blocks

…

block of
indirect blocks

(none)

(none)
(none)

(none)
(none)

(none)

(none)

(none)
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hard links

xv6/ext2 directory entries: name, inode number

all non-name information: in the inode itself

each directory entry is a hard link

a file can have multiple hard links
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ln

$ echo "This is a test." >test.txt
$ ln test.txt new.txt
$ cat new.txt
This is a test.
$ echo "This is different." >new.txt
$ cat new.txt
This is different.
$ cat test.txt
This is different.

ln OLD NEW — NEW is the same file as OLD
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link counts

xv6 and ext2 track number of links
zero — actually delete file

also count open files as a link

trick: create file, open it, delete it

file not really deleted until you close it
…but doesn’t have a name (no hard link in directory)
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link counts

xv6 and ext2 track number of links
zero — actually delete file

also count open files as a link

trick: create file, open it, delete it
file not really deleted until you close it
…but doesn’t have a name (no hard link in directory)
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link, unlink

ln OLD NEW calls the POSIX link() function

rm FOO calls the POSIX unlink() function
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soft or symbolic links

POSIX also supports soft/symbolic links
reference a file by name
special type of file whose data is the name
$ echo "This is a test." >test.txt
$ ln −s test.txt new.txt
$ ls −l new.txt
lrwxrwxrwx 1 charles charles 8 Oct 29 20:49 new.txt −> test.txt
$ cat new.txt
This is a test.
$ rm test.txt
$ cat new.txt
cat: new.txt: No such file or directory
$ echo "New contents." >test.txt
$ cat new.txt
New contents.
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xv6 filesystem performance issues

inode, block map stored far away from file data
long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths
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Fast File System

the Berkeley Fast File System (FFS) ‘solved’ some of these
problems

McKusick et al, “A Fast File System for UNIX” https:
//people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf

Linux’s ext2 filesystem based on FFS
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xv6 filesystem performance issues

inode, block map stored far away from file data
long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths
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block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
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inode
array data for block group 1

block group 1

inodes
1024–2047

blocks 1–8191for directories /, /a/b/c, /w/f
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allocation within block groups

In-use block

Expected typical arrangement.

Start of
Block Group

Free block

Small files fill holes near start of block group.

Start of
Block Group

Write a two block file

Large files fill holes near start of block group and then write 
most data to sequential range blocks.

Write a large file
Start of

Block Group

Anderson and Dahlin, Operating Systems: Principles and Practice 2nd edition, Figure 13.14 53



FFS block groups

making a subdirectory: new block group
for inode + data (entries) in different

writing a file: same block group as directory, first free block
intuition: non-small files get contiguous groups at end of block
FFS keeps disk deliberately underutilized (e.g. 10% free) to ensure this

can wait until dirty file data flushed from cache to allocate blocks
makes it easier to allocate contiguous ranges of blocks
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xv6 filesystem performance issues

inode, block map stored far away from file data
long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths
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