
Changelog
Changes made in this version not seen in first lecture:

3 September 2019: xv6: where the context is: rename from/to into A/B
to avoid overloading ”to” and be consistent with the preceeding context
switch picture
3 September 2019: xv6: where the context is: make user stacks boxes
labelled on top to increase consistency
3 September 2019: xv6: where the context is: add animation frame
identifying that the saved kernel stack pointers are what are passed to
swtch()
3 September 2019: xv6: where the context is: begin diagram with build
identifying what an address space is to hopefully make it clearer
4 September 2019: xv6: where the context is: mark where pointers point
with arrows

0

system calls / context switches

1

last time
kernel versus user mode

exceptions (AKA traps AKA …): run OS when needed
controlled mechanism for switching (system calls — type of exception)
handling input
keeping programs from running for too long

path of a system call in xv6

logistics

2

quiz demo

3

xv6 demo

4

write syscall in xv6

user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $0x40)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

save regs in trapframe
then function call

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

7

write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $0x40)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

save regs in trapframe
then function call

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

7

write syscall in xv6

user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $0x40)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

save regs in trapframe
then function call

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

8

xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications
kernel stack allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per process
change which one exceptions use
as part of switching which processes
is active on a processor

9

xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications

kernel stack allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per process
change which one exceptions use
as part of switching which processes
is active on a processor

9

xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications

kernel stack allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per process
change which one exceptions use
as part of switching which processes
is active on a processor

9

xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications

kernel stacks allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per process
change which one exceptions use
as part of switching which processes
is active on a processor

9

aside: nested exceptions
x86 switches to kernel stack on exception…

assuming it’s switching to kernel mode

system call or timer interrupt in user mode
start at top of kernel stack

timer interrupt during system call
continue using current kernel stack

10

write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $0x40)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

save regs in trapframe
then function call

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

11

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

12

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

13

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

14

non-system call exceptions
xv6: there are traps other than system calls

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory
xv6’s action : kill the program

I/O — handle I/O

15

aside: interrupt descriptor table
x86’s interrupt descriptor table has an entry for each kind of
exception

segmentation fault
timer expired (“your program ran too long”)
divide-by-zero
system calls
…

shown earlier: being set for syscalls — SETGATE macro

xv6 sets all the table entries

…and they always call the trap() function
xv6 design choice: could have separate functions for each

16

xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
for (int i = 0; i < 256; i++)
SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);

SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

SETGATE() — set entry in that table

17

non-system call exceptions
xv6: there are traps other than system calls

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory
xv6’s action : kill the program

I/O — handle I/O

18

xv6: timer interrupt
void
trap(struct trapframe *tf)
{

switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)
acquire/release — related to synchronization (later)

19

xv6: timer interrupt
void
trap(struct trapframe *tf)
{

switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)
acquire/release — related to synchronization (later)

19

xv6: timer interrupt
void
trap(struct trapframe *tf)
{

switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)
acquire/release — related to synchronization (later)

19

xv6: timer interrupt
void
trap(struct trapframe *tf)
{

switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)

acquire/release — related to synchronization (later)

19

xv6: timer interrupt
void
trap(struct trapframe *tf)
{

switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)

acquire/release — related to synchronization (later)

19

non-system call exceptions
xv6: there are traps other than system calls

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory
xv6’s action : kill the program

I/O — handle I/O

20

xv6: faults
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
default:

...
cprintf("pid %d %s: trap %d err %d on cpu %d "

"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;
}

}

unknown exception
print message and kill running program
assume it screwed up

prints out trap number
can lookup in traps.h

21

xv6: faults
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
default:

...
cprintf("pid %d %s: trap %d err %d on cpu %d "

"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;
}

}

unknown exception
print message and kill running program
assume it screwed up

prints out trap number
can lookup in traps.h

21

non-system call exceptions
xv6: there are traps other than system calls

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory
xv6’s action : kill the program

I/O — handle I/O

22

xv6: I/O
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
case T_IRQ0 + IRQ_IDE:

ideintr();
lapiceoi();
break;

...
case T_IRQ0 + IRQ_KBD:

kbdintr();
lapiceoi();
break;

case T_IRQ0 + IRQ_COM1:
uartintr();
lapiceoi();
break;

ide = disk interface
kbd = keyboard
uart = serial port (external terminal)

23

xv6: keyboard I/O
void
kbdintr(void)
{

consoleintr(kbdgetc);
}
...
void consoleintr(...)
{

...
wakeup(&input.r);

...
}

finds process waiting on console
make it run soon
(xv6 choice: usually not immediately)

24

xv6: keyboard I/O
void
kbdintr(void)
{

consoleintr(kbdgetc);
}
...
void consoleintr(...)
{

...
wakeup(&input.r);

...
}

finds process waiting on console
make it run soon
(xv6 choice: usually not immediately)

24

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay (from loop.exe’s view)
call get_time

// whatever get_time does
subq %rbp, %rax
...

25

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay (from loop.exe’s view)
call get_time

// whatever get_time does
subq %rbp, %rax
...

25

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay (from loop.exe’s view)
call get_time

// whatever get_time does
subq %rbp, %rax
...

25

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

26

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

26

OS and time multiplexing
starts running instead of normal program via exception

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

27

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

address space = page table base pointer

28

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

29

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

xv6: A’s registers saved by
exception handler
into “trapframe”
on A’s kernel stack

30

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory
xv6: A’s registers saved by
exception handler
into “trapframe”
on A’s kernel stack

30

exercise: counting context switches
two active processes:

A: running infinite loop
B: described below

process B asks to read from from the keyboard

after input is available, B reads from a file

then, B does a computation and writes the result to the screen

how many system calls do we expect?

how many context switches do we expect?
your answers can be ranges

31

counting system calls
(no system calls from A)

B: read from keyboard
maybe more than one — lots to read?

B: read from file
maybe more than one — opening file + lots to read?

B: write to screen
maybe more than one — lots to write?

(3 or more from B)

32

counting context switches
B makes system call to read from keyboard

(1) switch to A while B waits

keyboard input: B can run

(2) switch to B to handle input

B makes system call to read from file
(3?) switch to A while waiting for disk?

if data from file not available right away

(4) switch to B to do computation + write system call

+ maybe switch between A + B while both are computing?
33

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

34

context switch in xv6
will mostly talk about kernel thread switch:

xv6 function: swtch()

save kernel registers for A, restore for B

in xv6: separate from saving/restoring user registers
one of many possible OS design choices

additional process switch pieces: (switchuvm())
changing address space (page tables)
telling processor new stack pointer for exceptions

35

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

37

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

37

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

37

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

37

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

38

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control blocksave/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

38

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

38

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

38

thread switching
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

}

void swtch(struct context **old, struct context *new);

structure to save context in
yes, it looks like we’re missing
some registers we need…

eip = saved program counterfunction to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

39

thread switching
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

}

void swtch(struct context **old, struct context *new);

structure to save context in
yes, it looks like we’re missing
some registers we need…

eip = saved program counterfunction to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

39

thread switching
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

}

void swtch(struct context **old, struct context *new);

structure to save context in
yes, it looks like we’re missing
some registers we need…

eip = saved program counter

function to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

39

thread switching
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

}

void swtch(struct context **old, struct context *new);

structure to save context in
yes, it looks like we’re missing
some registers we need…

eip = saved program counter

function to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

39

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

40

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

40

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

40

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

40

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

40

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

40

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

saved: ebp, ebx, esi, ediwhat about other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: set by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from new context

41

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

saved: ebp, ebx, esi, ediwhat about other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: set by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from new context

41

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

saved: ebp, ebx, esi, edi

what about other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: set by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from new context

41

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

saved: ebp, ebx, esi, edi

what about other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: set by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from new context

41

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

saved: ebp, ebx, esi, ediwhat about other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: set by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from new context

41

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

saved: ebp, ebx, esi, ediwhat about other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: set by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from new context

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp

← %esp

← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp

← %esp

← %esp

← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp

← %esp
← %esp

← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

43

kernel-space context switch summary
swtch function

saves registers on current kernel stack
switches to new kernel stack and restores its registers

initial setup — manually construct stack values

44

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

45

the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

initial user registers created manually on stack
(as if saved by system call)

other code (not shown) handles setting address space

46

the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

initial user registers created manually on stack
(as if saved by system call)

other code (not shown) handles setting address space

46

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

47

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

48

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

49

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

50

exercise
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value of
loop.exe’s eax stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

51

52

backup slides

53

backup slides

54

write syscall in xv6: summary
write function — syscall wrapper uses int $0x40
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
54

write syscall in xv6: summary
write function — syscall wrapper uses int $0x40
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
55

write syscall in xv6: summary
write function — syscall wrapper uses int $0x40
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
56

xv6intro homework
get familiar with xv6 OS

add a new system call: writecount()

returns total number of times write call happened

57

homework steps
system call implementation: sys_writecount

hint in writeup: imitate sys_uptime
need a counter for number of writes

add writecount to several tables/lists
(list of handlers, list of library functions to create, etc.)
recommendation: imitate how other system calls are listed

create a userspace program that calls writecount
recommendation: copy from given programs

58

note on locks
some existing code uses acquire/release

you do not have to do this

only for multiprocessor support

…but, copying what’s done for ticks would be correct

59

syscalls in xv6
fork, exec, exit, wait, kill, getpid — process control

open, read, write, close, fstat, dup — file operations

mknod, unlink, link, chdir — directory operations

…

60

write syscall in xv6: user mode

...
#define SYS_write 16
...

syscall.h

...
write(1,

"Hello, World!\n",
14);

...

main.c

(after macro replacement)
#include "syscall.h"
// ...
.globl write
write:

/* 16 = SYS_write */
movl $16, %eax
/* 0x40 = T_SYSCALL */
int $0x40
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (0x40 in this case) — type of exception
xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention
(arguments on stack)

62

write syscall in xv6: user mode

...
#define SYS_write 16
...

syscall.h

...
write(1,

"Hello, World!\n",
14);

...

main.c

(after macro replacement)
#include "syscall.h"
// ...
.globl write
write:

/* 16 = SYS_write */
movl $16, %eax
/* 0x40 = T_SYSCALL */
int $0x40
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (0x40 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention
(arguments on stack)

62

write syscall in xv6: user mode

...
#define SYS_write 16
...

syscall.h

...
write(1,

"Hello, World!\n",
14);

...

main.c

(after macro replacement)
#include "syscall.h"
// ...
.globl write
write:

/* 16 = SYS_write */
movl $16, %eax
/* 0x40 = T_SYSCALL */
int $0x40
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (0x40 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention
(arguments on stack)

62

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

63

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

64

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c
struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

64

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

64

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

64

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

65

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

65

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

65

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

65

write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

66

write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

66

write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

66

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table
table of handler functions for each interrupt type

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL (= 0x40) interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress handling can interrupt slow syscall
con: makes writing system calls safely more complicated
pro: slow system calls don’t stop timers, keypresses, etc. from working

xv6 choice: interrupts are disabled during non-syscall exception handling
(e.g. don’t worry about keypress being handled while timer being handled)

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

67

recall: address translation

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

69

	system calls in xv6 (summary)
	xv6's address layout
	swapping stacks from system calls
	setup: infinite loop
	other exceptions
	time multiplexing

	context switches, generally
	counting context switches
	xv6 kernel context switches
	overview
	context switch parts
	xv6 context location summary
	thread switch
	xv6 context location detail

	exercise: infinite loop switch storage location
	backup slides
	xv6intro homework
	system calls in xv6 (full)
	address space

