
POSIX API (finish) / Scheduling intro

1



last time
shells: program for users to run other programs

files: open before use, read/write bytes, explicit close

file descriptor: index into per-process table

fork: copy table
same index refers to same open file
not deep copy — shared offsets, etc.

dup2: assign one entry to another

close: deallocate table entry

pipe: create pair of connected file descriptors

2



shell assignment corrections
make archive versus make submit

phrasing on outputting exit statuses
output must be in order of pipeline
don’t care how you actually wait for commands (only that you do)

3



Unix API summary
spawn and wait for program: fork (copy), then

in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1

4



exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C

5



exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C

5



partial reads
read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

6



next topic: processes and scheduling

7



xv6: process table
struct {
struct spinlock lock;
struct proc proc[NPROC]

} ptable;

fixed size array of all processes

lock to keep more than one thing from accessing it at once
rule: don’t change a process’s state (RUNNING, etc.) without
‘acquiring’ lock

8



xv6: allocating a struct proc
acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == UNUSED)

goto found;

release(&ptable.lock);

just search for PCB with “UNUSED” state

not found? fork fails

if found — allocate memory, etc.

9



xv6: creating the first process
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable

10



xv6: creating the first process
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable

10



xv6: creating the first process
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable

10



xv6: creating the first process
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointer

set process as runnable

10



xv6: creating the first process
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointer

set process as runnable

10



threads versus processes
for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space (accessible memory)
open files
current working directory
…

11



xv6 processes versus threads
xv6: one thread per process

so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

12



xv6 processes versus threads
xv6: one thread per process

so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

12



single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process

13



thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for

14



thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready

could be put on CPU actually on CPU

need external event to happen

done except for being waited for

14



thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready

could be put on CPU

actually on CPU

need external event to happen

done except for being waited for

14



thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU

actually on CPU

need external event to happen

done except for being waited for

14



thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for

14



thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for

14



alternative view: queues
ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threadsready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?

15



alternative view: queues
ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threads

ready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?

15



alternative view: queues
ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threads

ready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?

15



on queues in xv6
xv6 doesn’t represent queues explicitly

no queue class/struct

ready queue: process list ignoring non-RUNNABLE entries

I/O queues: process list where SLEEPING, chan = I/O device

real OSs: typically separate list of processes
maybe sorted?

16



scheduling
scheduling = removing process/thread to remove from queue

mostly for the ready queue (pre-CPU)
remove a process and start running it

17



example other scheduling problems
batch job scheduling

e.g. what to run on my supercomputer?

jobs that run for a long time (tens of seconds to days)

can’t easily ‘context switch’ (save job to disk??)

I/O scheduling

what order to read/write things to/from network, hard disk, etc.

18



this lecture
main target: CPU scheduling

…on a system where programs do a lot of I/O

…and other programs use the CPU when they do

…with only a single CPU

many ideas port to other scheduling problems
especially simpler/less specialized policies

19



scheduling policy
scheduling policy = what to remove from queue

20



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

21



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

21



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

21



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

21



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

21



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

21



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

22



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

22



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process state

switch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

22



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process state

switch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

22



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

22



the xv6 scheduler: on process start

void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}

p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);

scheduler()

scheduler switched with process table locked
need to unlock before running user code
(so other cores, interrupts can use table or
run scheduler)

23



the xv6 scheduler: on process start

void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}

p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);

scheduler()

scheduler switched with process table locked
need to unlock before running user code
(so other cores, interrupts can use table or
run scheduler)

23



the xv6 scheduler: on process start

void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}

p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);

scheduler()

scheduler switched with process table locked
need to unlock before running user code
(so other cores, interrupts can use table or
run scheduler)

23



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

25



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

25



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

25



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

... for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

25



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

... for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

25



the xv6 scheduler: SLEEPING to RUNNABLE
static void
wakeup1(void *chan)
{
struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == SLEEPING && p−>chan == chan)

p−>state = RUNNABLE;
}

26



xv6 scheduler code choices
separate scheduler thread

switch to scheduler, scheduler switches to next thread
other OSes: call scheduler, switch directly to next thread
pro: simpler code organization (keep scheduler state in local variables)
con: slower — extra register saving and restoring

scan process list to find sleeping/waiting threads
other OSes: separate lists of waiting/sleeping threads
pro: simpler: no code to maintian queues of threads
con: slower to find sleeping/waiting threads
con: much, much slower if many waiting threads

27



the scheduling policy problem
what RUNNABLE program should we run?

xv6 answer: whatever’s next in list

best answer?
well, what should we care about?

28



some simplifying assumptions
welcome to 1970:

one program per user

one thread per program

programs are independent

29


	POSIX api summary
	exercise

	xv6: process table
	loose end: xv6: creating the first process
	on threads versus processes
	thread states and queues
	the scheduler concept
	xv6 scheduler and policy
	the scheduling policy problem

