
Synchronization 2

1

last time
basic pthreads API

atomic operations

atomic operation != instruction (on multicore)

(not) building locks from atomic load/store

locks (the concept)

disabling interrupt for locks

2

xv6 interrupt disabling (1)
...
acquire(struct spinlock *lk) {
pushcli(); // disable interrupts to avoid deadlock
... /* this part basically just for multicore */

}
release(struct spinlock *lk)
{
... /* this part basically just for multicore */
popcli();

}

3

xv6 push/popcli
pushcli / popcli — need to be in pairs

pushcli — disable interrupts if not already

popcli — enable interrupts if corresponding pushcli disabled them
don’t enable them if they were already disabled

4

a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

5

a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

5

a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ???

6

a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ???

6

load/store reordering
recall?: out-of-order processors

processors execute instructons in different order
hide delays from slow caches, variable computation rates, etc.

convenient optimization: execute loads/stores in different order

7

why load/store reordering?
prior example: load of x executing before store of y

why do this? otherwise delay the load
if x and y unrelated — no benefit to waiting

8

some x86 reordering restrictions
each core sees its own loads/stores in order

(if a core store something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores “too early”)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 9

how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules

special instructions that restirct ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence

10

compilers changes loads/stores too (1)
void Alice() {

note_from_alice = 1;
do {} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
cmpl $0, no_milk // if (no_milk != 0) ...
...

11

compilers changes loads/stores too (1)
void Alice() {

note_from_alice = 1;
do {} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
cmpl $0, no_milk // if (no_milk != 0) ...
...

11

compilers changes loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2

12

compilers changes loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2

12

compilers changes loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2

12

pthreads and reordering
many pthreads functions prevent reordering

everything before function call actually happens before

includes preventing some optimizations
e.g. keeping global variable in register for too long

pthread_mutex_lock/unlock, pthread_create, pthread_join, …
basically: if pthreads is waiting for/starting something, no weird ordering

13

C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing

14

C++: preventing reordering example (1)
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L2:
mfence // make sure store is visible to other cores before loading
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...

15

C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

16

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

17

GCC: built-in atmoic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses

18

GCC: preventing reordering example (1)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...

19

GCC: preventing reordering example (2)
void Alice() {

int one = 1;
__atomic_store(¬e_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(¬e_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

20

connecting CPUs and memory
multiple processors, common memory

how do processors communicate with memory?

21

shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

tagged messages — everyone gets everything, filters

contention if multiple communicators
some hardware enforces only one at a time

22

shared buses and scaling
shared buses perform poorly with “too many” CPUs

so, there are other designs

we’ll gloss over these for now

23

shared buses and caches
remember caches?

memory is pretty slow

each CPU wants to keep local copies of memory

what happens when multiple CPUs cache same memory?

24

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

25

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

25

“snooping” the bus
every processor already receives every read/write to memory

take advantage of this to update caches

idea: use messages to clean up “bad” cache entries

26

cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block

sample states:
Modified: cache has updated value
Shared: cache is only reading, has same as memory/others
Invalid

27

cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block

sample states:
Modified: cache has updated value
Shared: cache is only reading, has same as memory/others
Invalid

27

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

28

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

28

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

28

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

29

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

29

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 101102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

29

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

29

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

29

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100102 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

29

MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”

30

MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)

31

MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it

32

MSI extensions
extra states for unmodified values where no other cache has a copy

avoid sending “I am writing” message later

allow values to be sent directly between caches
(MSI: value needs to go to memory first)

support not sending invalidate/etc. messages to all cores
requires some tracking of what cores have each address
only makes sense with non-shared-bus design

33

atomic read-modfiy-write
really hard to build locks for atomic load store

and normal load/stores aren’t even atomic…

…so processors provide read/modify/write operations

one instruction that
atomically
reads and modifies and writes back a value

34

x86 atomic exchange
lock xchg (%ecx), %eax

atomic exchange

temp ← M[ECX]

M[ECX] ← EAX

EAX ← temp

…without being interrupted by other processors, etc.

35

test-and-set: using atomic exchange
one instruction that…

writes a fixed new value

and reads the old value

write: mark a locked as TAKEN (no matter what)

read: see if it was already TAKEN (if so, only us)

36

test-and-set: using atomic exchange
one instruction that…

writes a fixed new value

and reads the old value

write: mark a locked as TAKEN (no matter what)

read: see if it was already TAKEN (if so, only us)

36

implementing atomic exchange
get cache block into Modified state

do read+modify+write operation while state doesn’t change

recall: Modified state = “I am the only one with a copy”

37

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0
ret

set lock variable to 1 (locked)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (unlocked)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

38

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0
ret

set lock variable to 1 (locked)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (unlocked)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

38

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0
ret

set lock variable to 1 (locked)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (unlocked)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

38

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0
ret

set lock variable to 1 (locked)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (unlocked)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

38

x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0
ret

set lock variable to 1 (locked)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (unlocked)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

38

some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}

39

some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch_and_add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}

40

append to singly-linked list
/*

assumption 1: other threads may be appending to list,
but nodes are not being removed, reordered, etc.

assumption 2: the processor will not previous reoreder stores
into *new_last_node to take place after the
store for the compare_and_swap

*/
void append_to_list(ListNode *head, ListNode *new_last_node) {
ListNode *current_last_node = head;
do {
while (current_last_node−>next) {

current_last_node = current_last_node−>next;
}

} while (
!compare_and_swap(¤t_last_node−>next,

NULL, new_last_node)
);

}
41

common atomic operation pattern
try to acquire lock, or update next pointer, or …

detect if try failed

if so, repeat

42

exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

43

solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

44

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t want to be waiting for lock
held by non-running thread

xchg wraps the lock xchg instruction
same as loop above

avoid load store reordering (including by compiler)
on x86, xchg alone avoids processor’s reordering
(but compiler might need more hints)

45

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}
don’t want to be waiting for lock
held by non-running thread

xchg wraps the lock xchg instruction
same as loop above

avoid load store reordering (including by compiler)
on x86, xchg alone avoids processor’s reordering
(but compiler might need more hints)

45

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t want to be waiting for lock
held by non-running thread

xchg wraps the lock xchg instruction
same as loop above

avoid load store reordering (including by compiler)
on x86, xchg alone avoids processor’s reordering
(but compiler might need more hints)

45

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t want to be waiting for lock
held by non-running thread

xchg wraps the lock xchg instruction
same as loop above

avoid load store reordering (including by compiler)
on x86, xchg alone avoids processor’s reordering
(but compiler might need more hints)

45

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into mov into lk−>locked

46

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into mov into lk−>locked

46

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into mov into lk−>locked
46

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into mov into lk−>locked

46

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

47

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

47

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

47

xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}

47

spinlock problems
spinlocks can send a lot of messages on the shared bus

makes every non-cached memory access slower…

wasting CPU time waiting for another thread
could we do something useful instead?

48

spinlock problems
spinlocks can send a lot of messages on the shared bus

makes every non-cached memory access slower…

wasting CPU time waiting for another thread
could we do something useful instead?

49

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

50

ping-ponging
test-and-set problem: cache block “ping-pongs” between caches

each waiting processor reserves block to modify

each transfer of block sends messages on bus

…so bus can’t be used for real work
like what the processor with the lock is doing

51

test-and-test-and-set (pseudo-C)
acquire(int *the_lock) {

do {
while (ATOMIC−READ(the_lock) == 0) { /* try again */ }

} while (ATOMIC−TEST−AND−SET(the_lock) == ALREADY_SET);
}

52

test-and-test-and-set (assembly)
acquire:

cmp $0, the_lock // test the lock non-atomically
// unlike lock xchg --- keeps lock in Shared state!

jne acquire // try again (still locked)
// lock possibly free
// but another processor might lock
// before we get a chance to
// ... so try wtih atomic swap:
movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 (someone else got it first):
jne acquire // try again
ret

53

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

54

couldn’t the read-modify-write instruction…
notice that the value of the lock isn’t changing…

and keep it in the shared state

maybe — but extra step in “common” case
(swapping different values)

55

more room for improvement?
can still have a lot of attempts to modify locks after unlocked

there other spinlock designs that avoid this
ticket locks
MCS locks
…

56

modifying cache blocks in parallel
cache coherency works on cache blocks

but typical memory access — less than cache block
e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

cache coherency — write instructions happen one at a time:
processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block

57

modifying things in parallel (code)
void *sum_up(void *raw_dest) {

int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {

*dest += data[i];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

}

58

performance v. array element gap
(assuming sum_up compiled to not omit memory accesses)

10 20 30 40 50 60 70
distance between array elements (bytes)

0

100000000

200000000

300000000

400000000

500000000

tim
e

(c
yc

le
s)

59

false sharing
synchronizing to access two independent things

two parts of same cache block

solution: separate them

60

spinlock problems
spinlocks can send a lot of messages on the shared bus

makes every non-cached memory access slower…

wasting CPU time waiting for another thread
could we do something useful instead?

61

problem: busy waits
while(xchg(&lk−>locked, 1) != 0)
;

what if it’s going to be a while?

waiting for process that’s waiting for I/O?

really would like to do something else with CPU instead…

62

mutexes: intelligent waiting
mutexes — locks that wait better

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

63

mutexes: intelligent waiting
mutexes — locks that wait better

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

63

mutex implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

64

mutex implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

64

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock

instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

65

mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock

66

backup slides

67

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

68

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

68

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

69

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

69

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

69

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

70

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

70

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

70

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

70

	xv6's push/popcli
	revisiting atomicity
	load/store reordering
	by compilers, too!

	pthreads and load/store reordering
	processor buses
	cache coherency
	problem setup / snooping
	adding more state: MSI
	beyond MSI

	read-modify-write atomic operations
	x86 atomic exchange
	x86 spinlock
	more atomic operations

	xv6's spinlock debugging
	test-and-test-and-set
	false sharing
	motivation: avoiding busy-waits
	mutexes and implementation sketch
	backup sides
	disabling interrupts for locks

