
mutexes / barriers / monitors

1



last time
cache coherency

multiple cores, each with own cache
at most one cache with modified value
watch other processor’s accesses to monitor value
use invalidation to prevent others from getting modified value

atomic read/modify/write operations
read and modify value without letting other processor’s interrupt
example: atomic exchange
example: atomic compare-and-swap (if X=A, set X to B + return 1; else
return 0)

spinlocks: lock via loop with atomic operation
e.g. acquire = set lock to TAKEN + read was NOT-TAKEN
loop to keep retrying (“spin”) until successful

mutexes: reasonable waiting locks
2



cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3: 3



exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

4



solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

5



mutexes: intelligent waiting
mutexes — locks that wait better

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

6



mutexes: intelligent waiting
mutexes — locks that wait better

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

6



mutex implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

7



mutex implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

7



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock

instead of setting lock_taken to false
choose thread to hand-off lock to
LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex: one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

subtle: what if UnlockMutex() runs in between these lines?
reason why we make thread not runnable before releasing guard spinlock
instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
make current thread not runnable
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
make that thread runnable
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

if woken up here, need to make sure scheduler
doesn’t run us on another core until we
switch to the scheduler (and save our regs)
xv6 solution: acquire ptable lock
Linux solution: seperate ‘on cpu’ flags

8



mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock

9



recall: pthread mutex
#include <pthread.h>

pthread_mutex_t some_lock;
pthread_mutex_init(&some_lock, NULL);
// or: pthread_mutex_t some_lock = PTHREAD_MUTEX_INITIALIZER;
...
pthread_mutex_lock(&some_lock);
...
pthread_mutex_unlock(&some_lock);
pthread_mutex_destroy(&some_lock);

10



pthread mutexes: addt’l features
mutex attributes (pthread_mutexattr_t) allow:

(reference: man pthread.h)

error-checking mutexes
locking mutex twice in same thread?
unlocking already unlocked mutex?
…

mutexes shared between processes
otherwise: must be only threads of same process
(unanswered question: where to store mutex?)

…

11



POSIX mutex restrictions
pthread_mutex rule: unlock from same thread you lock in

implementation I gave before — not a problem

…but there other ways to implement mutexes
e.g. might involve comparing with “holding” thread ID

12



are locks enough?
do we need more than locks?

13



example 1: pipes?
suppose we want to implement a pipe with threads

read sometimes needs to wait for a write

don’t want busy-wait
(and trick of having writer unlock() so reader can finish a lock() is illegal)

14



more synchronization primitives
need other ways to wait for threads to finish

we’ll introduce three extensions of locks for this:
barriers
counting semaphores
condition variables

all (typically) implemented with read/modify/write instructions
+ queues of waiting threads

15



example 2: parallel processing
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

16



example 2: parallel processing
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

16



barriers API
barrier.Initialize(NumberOfThreads)

barrier.Wait() — return after all threads have waited

idea: multiple threads perform computations in parallel

threads wait for all other threads to call Wait()

17



barrier: waiting for finish

partial_mins[0] =
/* min of first

50M elems */;

barrier.Wait();

total_min = min(
partial_mins[0],
partial_mins[1]

);

Thread 0

barrier.Initialize(2);

partial_mins[1] =
/* min of last

50M elems */
barrier.Wait();

Thread 1

18



barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

19



barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

19



barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

19



pthread barriers
pthread_barrier_t barrier;
pthread_barrier_init(

&barrier,
NULL /* attributes */,
numberOfThreads

);
...
...
pthread_barrier_wait(&barrier);

20



generalizing locks
barriers are very useful

do things locks can’t do

but can’t do things locks can do

semaphores and condition variables are more general

can implement locks and barriers and …

21



example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

22



example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

22



example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

22



monitors/condition variables
locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables

23



monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

24



monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

24



monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

24



monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

24



condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

25



condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

25



condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

25



condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

25



condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

25



pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

26



pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

26



pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

26



pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

26



pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

26



WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

27



WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

28



why the loop
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

29



why the loop
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

29



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

30



Hoare versus Mesa monitors
Hoare-style monitors

signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style

31



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

32



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

32



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

32



bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

32



monitor pattern
pthread_mutex_lock(&lock);
while (!condition A) {

pthread_cond_wait(&condvar_for_A, &lock);
}
... /* manipulate shared data, changing other conditions */
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
if (set condition C) {

pthread_cond_broadcast(&condvar_for_C);
/* or signal, if only one thread cares */

}
...
pthread_mutex_unlock(&lock)

33



monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X

correct but slow to…
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

34



monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X
correct but slow to…

broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

34



monitor exercise (1)
suppose we want producer/consumer, but…

but change to ConsumeTwo() which returns a pair of values
and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

35



monitor exercise: solution (1)
(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock);

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

36



monitor exercise: solution 2
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready);
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock);

}
Consume() {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

} 37



monitor exercise: slow solution
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
// broadcast and not signal, b/c we might wakeup only ConsumeTwo() otherwise
pthread_cond_broadcast(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

} 38


	cache coherency exercise
	read/modify/write exercise

	mutexes and implementation sketch
	recall: POSIX mutexes
	pthread_mutex: lock where you unlock

	are locks enough?
	barriers (for life HW)
	more general constructs
	producer/consumer problem
	monitors
	introduction
	unbounded queue with monitors
	Hoare scheduling note
	bounded producer/consumer with monitors
	general monitor pattern

	monitor exercise

