
semaphores / reader/writer

1

Changelog
Changes made in this version not seen in first lecture:

1 October 2019: fix mixup of ‘result’ and ‘value’ in semaphore exercise
return
3 October 2019: correct reader-priority rwlock code to include readers
== 0 check before signaling in ReadUnlock

1

last time
monitors = mutex + condition variable
mutex protects shared data

important: locked mutex = whether thread should wait wont’ change

condition variable (CV): abstracts queue of waiting threads
CV wait: unlock a mutex + start waiting on queue

done simultaneously so thread doesn’t miss its signal to wake up
spurious wakeups — need to double-check condition

CV broadcast: remove all threads from CV queue, have them
reacquire lock
CV signal: remove one threads from CV queue, have it reacquire
lock

no guarantee that it reacquire lock first (except rare Hoare-style
monitors)
so thread needs to double-check condition even with no spurious wakeups

2

monitor exercise (1)
suppose we want producer/consumer, but…

but change to ConsumeTwo() which returns a pair of values
and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

3

monitor exercise: solution (1)
(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock);

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

4

monitor exercise: solution 2
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready);
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock);

}
Consume() {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

} 5

monitor exercise: slow solution
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
// broadcast and not signal, b/c we might wakeup only ConsumeTwo() otherwise
pthread_cond_broadcast(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

} 6

monitor exercise (2)
suppose we want to implement a one-use barrier
what goes in the blanks?
struct BarrierInfo {

pthread_mutex_t lock;
int total_threads; // initially total # of threads
int number_reached; // initially 0

};

void BarrierWait(BarrierInfo *barrier) {
pthread_mutex_lock(&barrier−>lock);
++number_reached;

pthread_mutex_unlock(&barrier−>lock);

}

7

mutex/cond var init/destroy
pthread_mutex_t mutex;
pthread_cond_t cv;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv, NULL);
// --OR--
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

// and when done:
...
pthread_cond_destroy(&cv);
pthread_mutex_destroy(&mutex);

8

generalizing locks: semaphores
semaphore has a non-negative integer value and two operations:

P() or down or wait:
wait for semaphore to become positive (> 0),
then decerement by 1

V() or up or signal or post:
increment semaphore by 1 (waking up thread if needed)

P, V from Dutch: proberen (test), verhogen (increment)

9

semaphores are kinda integers
semaphore like an integer, but…

cannot read/write directly
down/up operaion only way to access (typically)
exception: initialization

never negative — wait instead
down operation wants to make negative? thread waits

10

reserving books
suppose tracking copies of library book…
Semaphore free_copies = Semaphore(3);
void ReserveBook() {

// wait for copy to be free
free_copies.down();
... // ... then take reserved copy

}

void ReturnBook() {
... // return reserved copy
free_copies.up();
// ... then wakekup waiting thread

}
11

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

12

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copiestaken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

12

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

2free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

12

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

12

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

12

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

12

implementing mutexes with semaphores
struct Mutex {

Semaphore s; /* with inital value 1 */
/* value = 1 --> mutex if free */
/* value = 0 --> mutex is busy */

}

MutexLock(Mutex *m) {
m−>s.down();

}

MutexUnlock(Mutex *m) {
m−>s.up();

}

13

implementing join with semaphores
struct Thread {

...
Semaphore finish_semaphore; /* with initial value 0 */
/* value = 0: either thread not finished OR already joined */
/* value = 1: thread finished AND not joined */

};
thread_join(Thread *t) {

t−>finish_semaphore−>down();
}

/* assume called when thread finishes */
thread_exit(Thread *t) {

t−>finish_semaphore−>up();
/* tricky part: deallocating struct Thread safely? */

}

14

POSIX semaphores
#include <semaphore.h>
...
sem_t my_semaphore;
int process_shared = /* 1 if sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);
...
sem_wait(&my_semaphore); /* down */
sem_post(&my_semaphore); /* up */
...
sem_destroy(&my_semaphore);

15

semaphore exercise
int value; sem_t empty, ready;

void PutValue(int argument) {
sem_wait(&empty);
value = argument;
sem_post(&ready);

}

int GetValue() {
int result;

result = value;

return result;

}

GetValue() waits for PutValue() to happen, then reutrns value, allows
next PutValue() to happen. What goes in blanks?

A: sem_post(&empty) / sem_wait(&ready)
B: sem_wait(&ready) / sem_post(&empty)
C: sem_post(&ready) / sem_wait(&empty)
D: sem_post(&ready) / sem_post(&empty)
E: sem_wait(&empty) / sem_post(&ready)
F: something else

16

semaphore exercise [solution]
int value;
sem_t empty, ready;
void PutValue(int argument) {

sem_wait(&empty);
value = argument;
sem_post(&ready);

}
int GetValue() {

int result;
sem_wait(&ready);
result = value;
sem_post(&empty);
return result;

}

18

semaphore intuition
What do you need to wait for?

critical section to be finished
queue to be non-empty
array to have space for new items

what can you count that will be 0 when you need to wait?
of threads that can start critical section now
of threads that can join another thread without waiting
of items in queue
of empty spaces in array

use up/down operations to maintain count

19

producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

20

producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

20

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

21

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

21

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

21

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?

No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

21

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

21

producer/consumer: cannot reorder
mutex/empty
ProducerReordered() {

// BROKEN: WRONG ORDER
sem_wait(&mutex);
sem_wait(&empty_slots);

...

sem_post(&mutex);

Consumer() {
sem_wait(&full_slots);

// can't finish until
// Producer's sem_post(&mutex):
sem_wait(&mutex);

...

// so this is not reached
sem_post(&full_slots);

22

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

23

producer/consumer summary
producer: wait (down) empty_slots, post (up) full_slots

consumer: wait (down) full_slots, post (up) empty_slots

two producers or consumers?
still works!

24

binary semaphores
binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

25

counting semaphores with binary semaphores
via Hemmendinger, “Comments on ‘A correect and unrestrictive implementation of general semaphores’ ” (1989); Barz, “Implementing semaphores by binary

semaphores” (1983)

// assuming initialValue > 0
BinarySemaphore mutex(1);
int value = initialValue ;
BinarySemaphore gate(1 /* if initialValue >= 1 */);

/* gate = # threads that can Down() now */

void Down() {
gate.Down();
// wait, if needed
mutex.Down();
value -= 1;
if (value > 0) {

gate.Up();
// because next down should finish
// now (but not marked to before)

}
mutex.Up();

}

void Up() {
mutex.Down();
value += 1;
if (value == 1) {
gate.Up();
// because down should finish now
// but could not before

}
mutex.Up();

}

26

gate intuition/pattern
gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

common pattern with semaphores:

allow threads one-by-one past ‘gate’
keep gate open forever? thread passing gate allows next in

27

gate intuition/pattern
gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

common pattern with semaphores:

allow threads one-by-one past ‘gate’
keep gate open forever? thread passing gate allows next in

27

Anderson-Dahlin and semaphores
Anderson/Dahlin complains about semaphores

“Our view is that programming with locks and condition variables is
superior to programming with semaphores.”

argument 1: clearer to have separate constructs for
waiting for condition to be come true, and
allowing only one thread to manipulate a thing at a time

arugment 2: tricky to verify thread calls up exactly once for every
down

alternatives allow one to be sloppier (in a sense)

28

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

29

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

29

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

29

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 29

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 29

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?

30

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?
30

exercise: why broadcast?
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

exercise: why can’t this be pthread_cond_signal?

hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in
31

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

32

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

32

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

32

semaphores with monitors: no condition
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
pthread_cond_signal(

&count_is_positive_cv
);
pthread_mutex_unlock(&lock);

}

same as where we started…

33

semaphores with monitors: alt w/ signal
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
if (count > 0) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

34

on signal/broadcast generally
whenever using signal need to ask
what if more than one thread is waiting?

be concerned about “skipping” cases where thread would wake up
unfortunately, Mesa-style scheduling/spurious wakeups make this harder

35

monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

36

monitors with semaphores: cvs
condition variables are more challenging

start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

annoying: signal wakes up non-waiting threads (in the far future)

37

monitors with semaphores: cvs
condition variables are more challenging

start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

annoying: signal wakes up non-waiting threads (in the far future)

37

monitors with semaphores: cvs (better)
condition variables are more challenging

start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

38

monitors with semaphores: broadcast
now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

39

monitors with semaphores: chosen order
if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

40

monitors with semaphores: chosen order
if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

40

reader/writer problem
some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

41

reader/writer problem
some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

41

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

42

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

42

pthread rwlocks
pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);
...

pthread_rwlock_rdlock(&rwlock);
... /* read shared data */
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
... /* read+write shared data */
pthread_rwlock_unlock(&rwlock);

...
pthread_rwlock_destroy(&rwlock);

43

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state

44

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers

44

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)

44

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers

44

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers

44

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

44

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

45

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
46

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
46

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
46

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

47

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

47

choosing orderings?
can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now”
e.g. writer-priority: readers can go if no writer waiting

48

	monitor exercise
	monitor exercise 2
	monitor POSIX API details
	counting semaphores
	introduction
	examples
	POSIX semaphores
	semaphore exercise
	semaphore intuition

	producer/consumer with counting semaphores
	aside: binary semaphores
	the textbook's complaint about semaphores
	relating monitors and semaphores
	implementing semaphores with monitors
	semaphores with monitors: broadcast?
	implementing monitors with semaphores

	reader-writer
	reader/writer problem
	reader/writer locks
	implementing rwlocks with monitors

