semaphores / reader/writer

Changelog

Changes made in this version not seen in first lecture:
1 October 2019: fix mixup of ‘result’ and ‘value’ in semaphore exercise
return
3 October 2019: correct reader-priority rwlock code to include readers
== 0 check before signaling in ReadUnlock

last time

monitors = mutex + condition variable

mutex protects shared data
important: locked mutex = whether thread should wait wont' change

condition variable (CV): abstracts queue of waiting threads

CV wait: unlock a mutex + start waiting on queue
done simultaneously so thread doesn't miss its signal to wake up
spurious wakeups — need to double-check condition

CV broadcast: remove all threads from CV queue, have them
reacquire lock

CV signal: remove one threads from CV queue, have it reacquire
lock
no guarantee that it reacquire lock first (except rare Hoare-style
monitors)

monitor exercise (1)
suppose we want producer/consumer, but..

but change to ConsumeTwo() which returns a pair of values

and don't want two calls to ConsumeTwo() to wait...
with each getting one item

what should we change below?

pthread_mutex_t lock; Consume () {

pthread_cond_t data_ready; pthread_mutex_lock(&lock);

UnboundedQueue buffer; while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock]

Produce(item) { }
pthread_mutex_lock (&lock); item = buffer.dequeue();
buffer.enqueue(item); pthread_mutex_unlock(&lock);
pthread_cond_signal(&data_ready); return -item;
pthread_mutex_unlock(&lock) ; }

}

monitor exercise: solution (1)

(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:

Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock) ;
}
ConsumeTwo () {
pthread_mutex_lock(&lock) ;
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
iteml = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(iteml, item2);

monitor exercise: solution 2

(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):

Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready) ;
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock) ;

Consume () {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return titem;
}
ConsumeTwo () {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
iteml = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return Combine(iteml, item2);

monitor exercise: slow solution

(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {

pthread_mutex_lock(&lock);

buffer.enqueue(item);

// broadcast and not signal, b/c we might wakeup only ConsumeTwo () otherwise
pthread_cond_broadcast(&data_ready);

pthread_mutex_unlock(&lock) ;

Consume () {

}

pthread_mutex_lock(&lock);

while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();

pthread_mutex_unlock(&lock) ;

return titem;

ConsumeTwo () {

pthread_mutex_lock(&lock);

while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
iteml = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock) ;

return Combine(iteml, item2);

monitor exercise (2)
suppose we want to implement a one-use barrier

what goes in the blanks?

struct BarrierInfo {
pthread_mutex_t lock;
int total_threads; // initially total # of threads
int number_reached; // initially 0

13

void BarrierWait(BarrierInfo *barrier) {
pthread_mutex_lock(&barrier—>1lock);
++number_reached;

pthread_mutex_unlock(&barrier—>lock);

mutex/cond var init/destroy

pthread_mutex_t mutex;

pthread_cond_t cv;

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv, NULL);

// —=OR--

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

// and when done:

pthread_cond_destroy(&cv);
pthread_mutex_destroy(&mutex) ;

generalizing locks: semaphores
semaphore has a non-negative integer value and two operations:

P() or down or wait:

wait for semaphore to become positive (> 0),
then decerement by 1

V() or up or signal or post:
increment semaphore by 1 (waking up thread if needed)

P, V from Dutch: proberen (test), verhogen (increment)

semaphores are kinda integers
semaphore like an integer, but..

cannot read/write directly
down /up operaion only way to access (typically)
exception: initialization

never negative — wait instead

down operation wants to make negative? thread waits

10

reserving books

suppose tracking copies of library book..

Semaphore free_copies = Semaphore(3);
void ReserveBook() {
// wait for copy to be free
free_copies.down();

ee. // ... then take reserved copy
b

void ReturnBook() {

... // return reserved copy
free_copies.up();
// ... then wakekup waiting thread

11

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1

Copy 2

Copy 3

free copies

12

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

taken out

\

=

Copy 2

Copy 3

free copies

after calling down to reserve

12

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

\

-

taken out
Copy 2

Copy 3

free copies

after calling down to reserve

12

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

taken out
taken out

taken out

\

=

—

free copies @

after calling down three times
to reserve all copies

12

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

taken out
taken out

taken out

\

=

—

free copies @
e

reserve book
call down again
start waiting...

12

counting resources: reserving books

suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

S -

taken out free copies @
taken out i ‘/\.
taken out T Copy.3. return book reserve book
L call down
call up waiting

release waiter done waiting

12

implementing mutexes with semaphores

struct Mutex {
Semaphore s; /* with inital value 1 */
/* value 1 --> mutex if free */
/* value 0 --> mutex is busy */

}

MutexLock (Mutex *m) {
m—>s.down () ;

}

MutexUnlock (Mutex *m) {
m—>s.up();

}

13

implementing join with semaphores
struct Thread {

Semaphore finish_semaphore; /* with initial value 0 */
/* value = 0: either thread not finished OR already joined */
/* value = 1: thread finished AND not joined */
I
thread_join(Thread *t) {

t—>finish_semaphore—>down() ;
+

/* assume called when thread finishes */
thread_exit(Thread *t) {

t—>finish_semaphore—>up();

/* tricky part: deallocating struct Thread safely? */

14

POSIX semaphores

#include <semaphore.h>

sem_t my_semaphore;

int process_shared = /* 1 i1f sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);

sem_wait(&my_semaphore); /* down */
sem_post (&my_semaphore); /* up */

sem_destroy (&my_semaphore) ;

15

semaphore exercise

int value; sem_t empty, ready;

void PutValue(int argument) {

sem_wait(&empty);
value = argument;
sem_post(&ready);

int GetValue() {
int result;

return result;

}

TMMOON ™ >

: sem_post(&empty) / sem_wait(&ready)
: sem_wait(&ready) / sem_post(&empty)
: sem_post(&ready) / sem_wait(&empty)
: sem_post(&ready) / sem_post(&empty)
. sem_wait(&empty) / sem_post(&ready)
: something else

GetValue() waits for PutValue() to happen, then reutrns value, allows
next PutValue() to happen. What goes in blanks?

16

semaphore exercise [solution]

int value;

sem_t empty, ready;

void PutValue(int argument) {
sem_wait(&empty);
value = argument;
sem_post (&ready) ;

int GetValue() {
int result;
sem_wait(&ready);
result = value;
sem_post (&empty);
return result;

semaphore intuition

What do you need to wait for?
critical section to be finished
queue to be non-empty
array to have space for new items

what can you count that will be 0 when you need to wait?

of threads that can start critical section now

of threads that can join another thread without waiting
of items in queue

of empty spaces in array

use up/down operations to maintain count

19

producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

20

producer/consumer constraints
consumer waits for producer(s) if buffer is empty
producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:

sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full

sem_t mutex; // either waits i1f anyone changing buffer
FixedSizedQueue buffer;

20

producer/consumer pseudocode

sem_init(&full_slots, ..., @ /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);

buffer.set_size(BUFFER_CAPACITY);

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex) ;
buffer.enqueue(item);
sem_post (&mutex) ;
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex) ;
item = buffer.dequeue();
sem_post (&mutex) ;
sem_post(&empty_slots); // let producer reuse item slot
return item;

producer/consumer pseudocode

sem_init(&full_slots, ..., @ /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);

buffer.set_size(BUFFER_CAPACITY);

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex) ;
buffer.enqueue(item);
sem_post (&mutex) ;
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex) ;
item = buffer.dequeue();
sem_post (&mutex) ;
sem_post(&empty_slots); // let producer reuse item slot
return item;

producer/consumer pseudocode

sem_init(&full_slots, ..., @ /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);

buffer.set_size(BUFFER_CAPACITY);

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex) ;
buffer.enqueue(item);
sem_post (&mutex) ;
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex) ;
item = buffer.dequeue();
sem_post (&mutex) ;
sem_post(&empty_slots); // let producer reuse item slot
return item;

producer/consumer pseudocode

sem_init(&full_slots, ..., @ /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);

buffer.set_size(BUFFER_CAPACITY);

Produce(item) {
sem_wait(&empty_slots); // wait until free slot., reserve it
sem_wait(&mutex) ; Can we do

buffer.enqueue(item); 4)
sem_post (&mutex); sem_wait (&mutex);

sem_post(&full_slots); | sem_wait(&empty_slots); o gota
} instead?

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex) ;
item = buffer.dequeue();
sem_post (&mutex) ;
sem_post(&empty_slots); // let producer reuse item slot
return item;

producer/consumer pseudocode

sem_init(&full_slots,

sem_init(&empty_slots, ...,

sem_init(&mutex,

., 0 /* # buffer slots initially used */);

BUFFER_CAPACITY) ;

., 1 /* # thread that can use buffer at once */);

buffer.set_size(BUFFER_CAPACITY);

Produce(item) {

}

sem_wait(&empty_slots);
sem_wait(&mutex) ;
buffer.enqueue(item);
sem_post (&mutex) ;
sem_post(&full_slots);

Consume() {

sem_wait(&full_slots);
sem_wait(&mutex) ;

item = buffer.dequeue()
sem_post (&mutex) ;
sem_post (&empty_slots);
return item;

// wait until free slot., reserve it

Can we do
sem_wait(&mutex) ;

sem_wait(&empty_slots); fo gata
instead?

No. Consumer waits on sem_wait (&mutex)
SO can't sem_post (&empty_slots)

(result: producer waits forever

problem called deadlock)

21

producer/consumer: cannot reorder

mutex/empty

ProducerReordered() { Consumer () {
// BROKEN: WRONG ORDER sem_wait(&full_slots);
sem_wait(&mutex) ;
sem_wait(&empty_slots); // can't finish until

// Producer's sem_post(&mutex) :

sem_wait(&mutex) ;
sem_post (&mutex) ;

// so this i1s not reached
sem_post (&full_slots);

22

producer/consumer pseudocode

sem_init(&full_slots, ..., @ /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);

buffer.set_size(BUFFER_CAPACITY);

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex) ;
buffer.enqueue(item);
sem_post (&mutex) ;

sem_post (&full_slots| Can we do s more data
¥ sem_post (&full_slots);

Consume () { ~ sem_post (&mutex) ;
sem_wait(&full_slots| instead? , reserve it
sem_wait(&mutex) ; .
item = buffer.deaueu Yes — post never waits

sem_post (&mutex) ;
sem_post(&empty_slots); // let producer reuse item slot
return item;

producer/consumer summary
producer: wait (down) empty_slots, post (up) full_slots

consumer: wait (down) full_slots, post (up) empty_slots

two producers or consumers?
still works!

24

binary semaphores
binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores

exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

25

counting semaphores with binary semaphores

via Hemmendinger, “Comments on ‘A correect and unrestrictive implementation of general semaphores’ " (1989); Barz, “Implementing semaphores by binary

semaphores” (1983)

// assuming initialValue > 0

BinarySemaphore mutex(1);

int value = initialValue ;

BinarySemaphore gate(l1 /* if initialValue >= 1 */);
/* gate = # threads that can Down() now */

void Down() { void Up() {

gate.Down(); mutex.Down () ;

// wait, if needed value += 1;

mutex.Down () ; if (value == 1) {

value -= 1; gate.Up();

if (value > 0) { // because down should finish now
gate.Up(); // but could not before
// because next down should finish }

// now (but not marked to before) mutex.Up();
} }
mutex.Up();

26

gate intuition/pattern
gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

27

gate intuition/pattern
gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

common pattern with semaphores:

allow threads one-by-one past ‘gate’
keep gate open forever? thread passing gate allows next in

27

Anderson-Dahlin and semaphores

Anderson/Dahlin complains about semaphores

“Our view is that programming with locks and condition variables is
superior to programming with semaphores.”

argument 1: clearer to have separate constructs for
waiting for condition to be come true, and
allowing only one thread to manipulate a thing at a time

arugment 2: tricky to verify thread calls up exactly once for every
down

alternatives allow one to be sloppier (in a sense)

28

building semaphore with monitors

pthread_mutex_t Tock;]

lock to protect shared state

29

building semaphore with monitors

pthread_mutex_t lock;
unsigned int count;|

lock to protect shared state
shared state: semaphore tracks a count

29

building semaphore with monitors

pthread_mutex_t lock;

unsigned 1int count;

* condition, broadcast when becomes count > 0 *
pthread_cond_t count_1is_positive_cv;

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

29

building semaphore with monitors

pthread_mutex_t lock;
unsigned 1int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {
pthread_mutex_lock(&lock);
while (!(count > 0)) {
pthread_cond_wait(
&count_is_positive_cv,
&lock) ;

1
count -= 1;
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

29

building semaphore with monitors

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(/* count must now be
&count_is_positive_cv, positive, and at most
&lock) ; one thread can go per
} call to Up() */
count -= 1; pthread_cond_signal(
pthread_mutex_unlock(&lock) ; &count_is_positive_cv
})
pthread_mutex_unlock(&lock);
lock to protect shared state }

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes ”

building semaphore with monitors (version B)

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(/* condition *just* became true *
&count_is_positive_cv, if (count == 1) {
&lock) ; pthread_cond_broadcast(
} &count_is_positive_cv
count -= 1;)
pthread_mutex_unlock(&lock) ; }
} pthread_mutex_unlock(&lock);
1

before: signal every time

can check if condition just became true instead?

building semaphore with monitors (version B)

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(/* condition *just* became true */
&count_is_positive_cv, if (count == 1) {
&lock) ; pthread_cond_broadcast(
} &count_is_positive_cv
count -= 1;)
pthread_mutex_unlock(&lock) ; }
} pthread_mutex_unlock(&lock) ;
}

before: signal every time
can check if condition just became true instead?

but do we really need to broadcast?

30

exercise: why broadcast?

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock);
while (!(count > 0)) { count += 1;
pthread_cond_wait(if (count == 1) { /* became > 0 */
&count_is_positive_cv, pthread_cond_broadcast(
&lock) ; &count_is_positive_cv
})
count -= 1; }
pthread_mutex_unlock(&lock) ; pthread_mutex_unlock(&lock) ;
} }

exercise: why can't this be pthread_cond_signal?
hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in

31

broadcast problem

Thread 1 Thread 2 Thread 3 Thread 4
Down()
lock
count == 07 yes
unlock/wait
Down()
lock
count == 07 yes
unlock /wait
Up()
lock
count += 1 (now 1) Up()
stop waiting on CV signal wait for lock
wait for lock unlock wait for lock

wait for lock

wait for lock

wait for lock

lock

count == 0?7 no

count -= 1 (becomes 1)
unlock

still waiting???

lock

count += 1 (now 2)

count !=1: don't signal

unlock

32

broadcast problem

Thread 1 Thread 2 Thread 3 Thread 4
Down()
lock
count == 07 yes
unlock/wait
Down()
lock
count == 07 yes
unlock /wait
Up()
lock
count += 1 (now 1) Up()
stop waiting on CV signal wait for lock
wait for lock unlock wait for lock

wait for lock

wait for lock

wait for lock

lock

count == 0?7 no

count -= 1 (becomes 1)
unlock

still waiting???

lock

count += 1 (now 2)

count !=1: don't signal

unlock

32

broadcast problem

Thread 1 Thread 2 Thread 3 Thread 4
Down()
lock
count == 07 yes
unlock/wait
Down()
lock
count == 07 yes
unlock /wait
Up()
lock
count += 1 (now 1) Up()

stop waiting on CV

<

wait for lock

wait for lock

wait for lock

wait for lock

lock

count == 0?7 no

count -= 1 (becomes 1)
unlock

N/Iesa—style monitors
signalling doesn't
“hand off"” lock

signal

wait for lock

unlock

wait for lock

still waiting???

lock

count += 1 (now 2)

count !=1: don't signal

unlock

32

semaphores with monitors: no condition

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(pthread_cond_signal(

&count_is_positive_cv, &count_is_positive_cv
&lock) ;)

} pthread_mutex_unlock(&lock);

count -= 1; 1

b
pthread_mutex_unlock(&lock) ;
}

same as where we started...

33

semaphores with monitors: alt w/ signal

pthread_mutex_t lock;
unsigned 1int count;

/* condition, broadcast when becomes count > 0 */

pthread_cond_t count_is_positive_cv;

void down() {
pthread_mutex_lock(&lock);
while (!(count > 0)) {
pthread_cond_wait(

&count_is_positive_cv,

&lock) ;
}
count -= 1;
if (count > 0) {
pthread_cond_signal(

)3

&count_is_positive_cv

}

pthread_mutex_unlock(&lock) ;

void up() {

pthread_mutex_lock(&lock) ;
count += 1;
if (count == 1) {
pthread_cond_signal(
&count_is_positive_cv
)
}

pthread_mutex_unlock(&lock) ;

34

on signal /broadcast generally

whenever using signal need to ask
what if more than one thread is waiting?

be concerned about “skipping” cases where thread would wake up
unfortunately, Mesa-style scheduling/spurious wakeups make this harder

35

monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post (&semaphore);

}

36

monitors with semaphores: cvs
condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post (&threads_to_wakeup) ;
}

37

monitors with semaphores: cvs
condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post (&threads_to_wakeup) ;
}

annoying: signal wakes up non-waiting threads (in the far future)

monitors with semaphores: cvs (better)

condition variables are more challenging

start with only wait/signal:

sem_t private_lock; // initially 1

int num_waiters;

sem_t threads_to_wakeup; // initially 0

Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {
sem_post (&threads_to_wakeup) ;
--num_waiters;
}
sem_post(&private_lock);

}

38

monitors with semaphores: broadcast

now allows broadcast:

sem_t private_lock; // initially 1

int num_waiters;

sem_t threads_to_wakeup; // initially 0

Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {
sem_post (&threads_to_wakeup) ;
-—num_waiters;
}
sem_post (&private_lock);

}

39

monitors with semaphores: chosen order

if we want to make sure threads woken up in order

ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {
sem_t private_semaphore;
... /% init semaphore
with count 0 */ Signal() {

waiters.Enqueue (&semaphore) ; sem_t *next = waiters.DequeueOrNull();
lock.Unlock(); if (next != NULL) {
sem_post(private_semaphore); sem_post(next);

lock.Lock(); }

} X

monitors with semaphores: chosen order

if we want to make sure threads woken up in order

ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {
sem_t private_semaphore;
... /% init semaphore
with count 0 */ Signal() {

waiters.Enqueue (&semaphore) ; sem_t *next = waiters.DequeueOrNull();
lock.Unlock(); if (next != NULL) {
sem_post(private_semaphore); sem_post(next);

lock.Lock();

(but now implement queue with semaphores...)

40

reader/writer problem

some shared data

only one thread modifying (read-+write) at a time

read-only access from multiple threads is safe

41

reader/writer problem

some shared data

only one thread modifying (read-+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

41

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

42

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

42

pthread rwlocks

pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);

pthread_rwlock_rdlock (&rwlock) ;
.. /* read shared data */
pthread rwlock_unlock (&rwlock) ;

pthread_rwlock_wrlock(&rwlock) ;

. /* read+write shared data */
pthread rwlock_unlock (&rwlock) ;

é%ﬁread_rwlock_destroy(&rwlock);

43

rwlocks with monitors (attempt 1)

lock to protect shared state

44

rwlocks with monitors (attempt 1)

mutex_t lock;
unsigned int readers, writers;

state: number of active readers, writers

44

rwlocks with monitors (attempt 1)

mutex_t lock;
unsigned int readers, writers;

* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;

* condition, signal when readers + writers becomes 0 *
cond_t ok_to_write_cv;

conditions to wait for (no readers or writers, no writers)

44

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

}

ReadLock () {

mutex_lock(&lock);

while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

1

++readers;
mutex_unlock (&lock) ;

L
ReadUnlock() {

mutex_lock(&lock);

--readers;

if (readers == 0) {
cond_signal(&ok_to_write_cv);

1

mutex_unlock(&lock) ;

I

3

WriteLock() {

WriteUnlock() {

mutex_lock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

3

++writers;

mutex_unlock (&lock) ;

mutex_lock(&lock);

--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast (&ok_to_read_cv);
mutex_unlock (&lock) ;

roadcast — wakeup all readers when no writers

44

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;

/* condition, signal when writers becomes 0 */

cond_t ok_to_read_cv;

/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv);
}
t+readers; ++writers;
mutex_unlock(&lock); mutex_unlock(&lock);
} }
ReadUnlock() { WriteUnlock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
--readers; --writers;
if (readers == 0) { cond_signal(&ok_to_write_cv);
cond_signal(&ok_to_write_cv); cond_broadcast (&ok_to_read_cv);
} mutex_unlock(&lock);
mutex_unlock(&lock) ; }
}

wakeup a single writer when no readers or writers

44

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;

/* condition, signal when writers becomes 0 */

cond_t ok_to_read_cv;

/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv);
}
t+readers; ++writers;
mutex_unlock(&lock); mutex_unlock(&lock);
} }
ReadUnlock() { WriteUnlock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
--readers; --writers;
if (readers == 0) { cond_signal (&ok_to_write_cv);
cond_signal(&ok_to_write_cv); cond_broadcast (&ok_to_read_cv);
} mutex_unlock(&lock) ;
mutex_unlock(&lock) ; }

3
problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

44

reader /writer-priority

policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens

writers signalled first, maybe gets lock first?
..but non-determinstic in pthreads

can make explicit decision

45

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
|| waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock); } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

46

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
|| waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock); } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

46

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
|| waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock); } else {
} cond_broadcast (&ok_to_read_cv);
1
mutex_unlock(&lock) ;
}

46

reader-priority (1)

int waiting_readers = 0;
ReadLock() {
mutex_lock (&lock) ;
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);
}

--waiting_readers;
++readers;

mutex_unlock(&lock);
}

ReadUnlock() {

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
}

}

WriteLock() {
mutex_lock (&lock);
while (waiting_readers +
readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock (&lock) ;
}
WriteUnlock() {
mutex_lock(&lock) ;
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
} else {
cond_broadcast (&ok_to_read_cv);
}

mutex_unlock (&lock) ;

47

reader-priority (1)

int waiting_readers = 0;
ReadLock() {
mutex_lock (&lock) ;
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);
}

--waiting_readers;
++readers;

mutex_unlock(&lock);
}

ReadUnlock() {

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
}

}

WriteLock() {
mutex_lock (&lock) ;
while (waiting_readers +
readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock (&lock) ;
}
WriteUnlock() {
mutex_lock(&lock) ;
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
} else {
cond_broadcast (&ok_to_read_cv);
}

mutex_unlock (&lock) ;

47

choosing orderings?
can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now”
e.g. writer-priority: readers can go if no writer waiting

48

	monitor exercise
	monitor exercise 2
	monitor POSIX API details
	counting semaphores
	introduction
	examples
	POSIX semaphores
	semaphore exercise
	semaphore intuition

	producer/consumer with counting semaphores
	aside: binary semaphores
	the textbook's complaint about semaphores
	relating monitors and semaphores
	implementing semaphores with monitors
	semaphores with monitors: broadcast?
	implementing monitors with semaphores

	reader-writer
	reader/writer problem
	reader/writer locks
	implementing rwlocks with monitors

