
Synchronization (finish) / Deadlock

1

Changelog
Changes made in this version not seen in first lecture:

3 October 2019: correct reader-priority rwlock code to include readers
== 0 check before signaling in ReadUnlock

1

last time
counting semaphores

up: increment counter
down: decrement counter, but wait first if count is zero
intuition: track available quantity of resource

binary semaphores

semaphores and monitors accomplish the same things

reader/writer locks
implementing with monitors
reader-priority or writer-priority

2

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state

3

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers

3

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)

3

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers

3

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers

3

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

3

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

4

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
5

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
5

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
5

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

6

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

6

choosing orderings?
can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now”
e.g. writer-priority: readers can go if no writer waiting

7

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)

...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

8

rwlock exercise (2)
suppose we want something in-between reader and writer priority:
reader-priority except if writers wait more than 1 second
exercise: what do we change?
...
int waiting_readers = 0;
ReadLock() {

mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers + readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

} 9

rwlock exercise (1)
suppose there are multiple waiting writers

which one gets waken up first?
whichever gets signal’d or gets lock first

could instead keep in order they started waiting

exercise: what extra information should we track?
hint: we might need an array

mutex_t lock; cond_t ok_to_read_cv, ok_to_write_cv;
int readers, writers, waiting_writers;

10

rwlock exercise solution?
list of waiting writes?
struct WaitingWriter {

cond_t cv;
bool ready;

};
Queue<WaitingWriter*> waiting_writers;

WriteLock(...) {
...
if (need to wait) {
WaitingWriter self;
self.ready = false;
...
while(!self.ready) {

pthread_cond_wait(&self.cv, &lock);
}

}
...

}
11

rwlock exercise solution?
dedicated writing thread with queue

(DoWrite∼Produce; WritingThread∼Consume)
ThreadSafeQueue<WritingTask*> waiting_writes;
WritingThread() {

while (true) {
WritingTask* task = waiting_writer.Dequeue();
WriteLock();
DoWriteTask(task);
task.done = true;
cond_broadcast(&task.cv);

}
}
DoWrite(task) {

// instead of WriteLock(); DoWriteTask(...); WriteUnlock()
WritingTask task = ...;
waiting_writes.Enqueue(&task);
while (!task.done) { cond_wait(&task.cv); }

}

12

the one-way bridge

13

the one-way bridge

13

the one-way bridge

13

the one-way bridge

13

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

14

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

14

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

14

pipe() deadlock
BROKEN example:
int child_to_parent_pipe[2], parent_to_child_pipe[2];
pipe(child_to_parent_pipe); pipe(parent_to_child_pipe);
if (fork() == 0) {

/* child */
write(child_to_parent_pipe[1], buffer, HUGE_SIZE);
read(parent_to_child_pipe[0], buffer, HUGE_SIZE);
exit(0);

} else {
/* parent */
write(parent_to_child_pipe[1], buffer, HUGE_SIZE);
read(child_to_parent[0], buffer, HUGE_SIZE);

}

This will hang forever (if HUGE_SIZE is big enough).

15

deadlock waiting
child writing to pipe waiting for free buffer space

…which will not be available until parent reads

parent writing to pipe waiting for free buffer space

…which will not be available until child reads

16

circular dependency
parent to child

pipe buffer

child to parent
pipe buffer

parent
process

child
process

waiting for space
to write

waiting for space
to write

needs to be
read by process
to free space

needs to be
read by process
to free space

17

moving two files
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock(&from_dir−>lock);
mutex_lock(&to_dir−>lock);

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

18

moving two files: lucky timeline (1)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

lock(&B->lock);
lock(&A->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

19

moving two files: lucky timeline (2)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);

lock(&B->lock…
(do move) (waiting for B lock)
unlock(&B->lock);

lock(&B->lock);
lock(&A->lock…

unlock(&A->lock);
lock(&A->lock);
(do move)
unlock(&A->lock);
unlock(&B->lock);

20

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

21

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

21

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

21

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

21

moving two files: dependencies
directory A

directory B

thread 1 thread 2

waiting for lock

waiting for lock

lock held by

lock held by

22

moving three files: dependencies
directory A

directory Bdirectory C

thread 1 thread 2

thread 3

waiting for lock

waiting for lock

waiting for lock

lock held by

lock held by

lock held by

23

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")

lock(&A->lock);

lock(&B->lock);

lock(&C->lock);

lock(&B->lock… stalled

lock(&C->lock… stalled

lock(&A->lock… stalled

24

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

25

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

26

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

27

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

28

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

28

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

29

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

29

deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1

30

how is deadlock possible?
Given list: A, B, C, D, E
RemoveNode(LinkedListNode *node) {

pthread_mutex_lock(&node−>lock);
pthread_mutex_lock(&node−>prev−>lock);
pthread_mutex_lock(&node−>next−>lock);
node−>next−>prev = node−>prev;
node−>prev−>next = node−>next;
pthread_mutex_unlock(&node−>next−>lock);
pthread_mutex_unlock(&node−>prev−>lock);
pthread_mutex_unlock(&node−>lock);

}

Which of these (all run in parallel) can deadlock?
B. RemoveNode(B) and RemoveNode(C)
A. RemoveNode(B) and RemoveNode(D)
C. RemoveNode(B) and RemoveNode(C) and RemoveNode(D)
C. A and C D. B and C
E. all of the above F. none of the above 31

how is deadlock — solution
Remove B Remove C
lock B lock C
lock A (prev) wait to lock B (prev)
wait to lock C (next)

With B and D — only overlap in in node C — no circular wait possible

33

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
35

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
36

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
37

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
38

AllocateOrFail
Thread 1 Thread 2

AllocateOrFail(1 MB)
AllocateOrFail(1 MB)

AllocateOrFail(1 MB) fails!
AllocateOrFail(1 MB) fails!

Free(1 MB) (cleanup after failure)
Free(1 MB) (cleanup after failure)

okay, now what?
give up?
both try again? — maybe this will keep happening? (called livelock)
try one-at-a-time? — gaurenteed to work, but tricky to implement

39

AllocateOrSteal
Thread 1 Thread 2

AllocateOrSteal(1 MB)
AllocateOrSteal(1 MB)

AllocateOrSteal(1 MB) Thread killed to free 1MB
(do work)

problem: can one actually implement this?

problem: can one kill thread and keep system in consistent state?

40

fail/steal with locks
pthreads provides pthread_mutex_trylock — “lock or fail”

some databases implement revocable locks
do equivalent of throwing exception in thread to ‘steal’ lock
need to carefully arrange for operation to be cleaned up

41

abort and retry limits?
abort-and-retry

how many times will you retry?

42

moving two files: abort-and-retry
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
while (mutex_trylock(&from_dir−>lock) == LOCKED) {
if (mutex_trylock(&to_dir−>lock) == LOCKED) break;
mutex_unlock(&from_dir−>lock);

}

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

43

moving two files: lots of bad luck?
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
trylock(&A->lock) → LOCKED

trylock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
trylock(&A->lock) → LOCKED

trylock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
44

livelock
livelock: keep aborting and retrying without end

like deadlock — no one’s making progress
potentially forever

unlike deadlock — threads are not waiting

45

preventing livelock
make schedule random — e.g. random waiting after abort

make threads run one-at-a-time if lots of aborting

other ideas?

46

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
47

stealing locks???
how do we make stealing locks possible

unclean: just kill the thread
problem: inconsistent state?

clean: have code to undo partial oepration
some databases do this

won’t go into detail in this class

48

revokable locks?
try {

AcquireLock();
use shared data

} catch (LockRevokedException le) {
undo operation hopefully?

} finally {
ReleaseLock();

}

49

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
50

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

51

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

51

acquiring locks in consistent order (2)
often by convention, e.g. Linux kernel comments:
/*
* ...
* Lock order:
* contex.ldt_usr_sem
* mmap_sem
* context.lock
*/

/*
* ...
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
* ...
*/

52

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
53

allocating all at once?
for resources like disk space, memory

figure out maximum allocation when starting thread
“only” need conservative estimate

only start thread if those resources are available

okay solution for embedded systems?

54

deadlock detection
idea: search for cyclic dependencies

55

detecting deadlocks on locks
let’s say I want to detect deadlocks that only involve mutexes

goal: help programmers debug deadlocks

…by modifying my threading library:
struct Thread {

... /* stuff for implementing thread */
/* what extra fields go here? */

};

struct Mutex {
... /* stuff for implementing mutex */
/* what extra fields go here? */

};

56

deadlock detection
idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?

57

aside: deadlock detection in reality
instrument all contended resources?

add tracking of who locked what
modify every lock implementation — no simple spinlocks?
some tricky cases: e.g. what about counting semaphores?

doing something useful on deadlock?
want way to “undo” partially done operations

…but done for some applications

common example: for locks in a database
database typically has customized locking code
“undo” exists as side-effect of code for handling power/disk failures

58

resource allocation graphs
nodes: resources or threads

edge thread→resource: thread waiting for resource

edge resource→thread: resource is “owned” by thread
holds lock on
will be deallocated by
…

59

resource allocate graphs
resource A

resource B

thread 1 thread 2

waiting on

waiting on

owned by

owned by

60

searching for cycles
cycle → deadlock happened!

finding cycles: recall 2150 topological sort (maybe???)

61

resource allocation graphs and quantity
so far: assuming resource is fully taken or not at all taken

what about resources like memory?
two processes can take parts of resource
…but deadlock still possible

there’s a version of resource allocation graphs for this case

62

using deadlock detection for prevention
suppose you know the maximum resources a process could request

make decision when starting process (“admission control”)

ask “what if every process was waiting for maximum resources”
including the one we’re starting

would it cause deadlock? then don’t let it start

called Baker’s algorithm

63

using deadlock detection for prevention
suppose you know the maximum resources a process could request

make decision when starting process (“admission control”)

ask “what if every process was waiting for maximum resources”
including the one we’re starting

would it cause deadlock? then don’t let it start

called Baker’s algorithm

63

beyond threads: event based programming
writing server that servers multiple clients?

e.g. multiple web browsers at a time

maybe don’t really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

issue: read from/write to multiple streams at once?

64

beyond threads: event based programming
writing server that servers multiple clients?

e.g. multiple web browsers at a time

maybe don’t really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

issue: read from/write to multiple streams at once?

64

event loops
while (true) {

event = WaitForNextEvent();
switch (event.type) {
case NEW_CONNECTION:

handleNewConnection(event); break;
case CAN_READ_DATA_WITHOUT_WAITING:

connection = LookupConnection(event.fd);
handleRead(connection);
break;

case CAN_WRITE_DATA_WITHOUT_WAITING:
connection = LookupConnection(event.fd);
handleWrite(connection);
break;
...

}
}

65

some single-threaded processing code
void ProcessRequest(int fd) {
while (true) {
char command[1024] = {};
size_t command_length = 0;
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) − command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length − 1] != '\n');
if (IsExitCommand(command)) { return; }
char response[1024];
computeResponse(response, commmand);
size_t total_written = 0;
while (total_written < sizeof(response)) {

...
}

}
}

original code: loop to handle one request
reads/writes multiple times; each read/write can block

struct Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;
...

};

66

some single-threaded processing code
void ProcessRequest(int fd) {
while (true) {
char command[1024] = {};
size_t command_length = 0;
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) − command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length − 1] != '\n');
if (IsExitCommand(command)) { return; }
char response[1024];
computeResponse(response, commmand);
size_t total_written = 0;
while (total_written < sizeof(response)) {

...
}

}
}

original code: loop to handle one request
reads/writes multiple times; each read/write can block

struct Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;
...

};

66

some single-threaded processing code
void ProcessRequest(int fd) {
while (true) {
char command[1024] = {};
size_t command_length = 0;
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) − command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length − 1] != '\n');
if (IsExitCommand(command)) { return; }
char response[1024];
computeResponse(response, commmand);
size_t total_written = 0;
while (total_written < sizeof(response)) {

...
}

}
}

original code: loop to handle one request
reads/writes multiple times; each read/write can block

struct Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;
...

};

66

as event code
handleRead(Connection *c) {

ssize_t read_result =
read(fd, c−>command + command_length,

sizeof(command) − c−>command_length);
if (read_result <= 0) handle_error();
c−>command_length += read_result;

if (c−>command[c−>command_length − 1] == '\n') {
computeResponse(c−>response, c−>command);
StopWaitingToRead(c−>fd);
StartWaitingToWrite(c−>fd);

}
}

new code: one read step per handleRead call
Connection struct: info between write calls

67

as event code
handleRead(Connection *c) {

ssize_t read_result =
read(fd, c−>command + command_length,

sizeof(command) − c−>command_length);
if (read_result <= 0) handle_error();
c−>command_length += read_result;

if (c−>command[c−>command_length − 1] == '\n') {
computeResponse(c−>response, c−>command);
StopWaitingToRead(c−>fd);
StartWaitingToWrite(c−>fd);

}
}

new code: one read step per handleRead call
Connection struct: info between write calls

67

POSIX support for event loops
select and poll functions

take list(s) of file descriptors to read and to write
wait for them to be read/writeable without waiting
(or for new connections associated with them, etc.)

many OS-specific extensions/improvements/alternatives:
examples: Linux epoll, Windows IO completion ports
better ways of managing list of file descriptors
enqueue read/write instead of learning when read/write okay

68

message passing
instead of having variables, locks between threads…

send messages between threads/processes

what you need anyways between machines
big ‘supercomputers’ = really many machines together

arguably an easier model to program
can’t have locking issues

69

message passing API
core functions: Send(toId, data)/Recv(fromId, data)

simplest(?) version: functions wait for other processes/threads
if (thread_id == 0) {

for (int i = 1; i < MAX_THREAD; ++i) {
Send(i, getWorkForThread(i));

}
for (int i = 1; i < MAX_THREAD; ++i) {

WorkResult result;
Recv(i, &result);
handleResultForThread(i, result);

}
} else {

WorkInfo work;
Recv(0, &work);
Send(0, ComputeResultFor(work));

}

70

message passing game of life

process 4

process 3

process 2 divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

71

message passing game of life

process 4

process 3

process 2

divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

71

message passing game of life

process 4

process 3

process 2

divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

71

message passing game of life

process 4

process 3

process 2

divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

71

message passing game of life

process 4

process 3

process 2

divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

71

message passing game of life

process 4

process 3

process 2

divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

71

72

backup slides

73

Linux out-of-memory killer
Linux by default overcommits memory

tell processes they have more memory than is available
(some recommend disabling this feature)

problem: what if wrong?
could wait for program to finish, free memory…
but could be waiting forever because of deadlock

solution: kill a process
(and try to choose one that’s not important)

74

database transactions
databases operations organized into transactions

happens all at once or not at all

until transaction is committed, not finalized

code to undo transaction in case it’s not okay

database deadlock solution: invoke undo transaction code

…then rerun transaction later

75

divided resources
what about resources like memory?

allocating 1MB of memory:
thread ‘owns’ the 1MB, but…
another thread can use can use any other 1MB

want to track all of memory together

“partial ownership”
locked half the memory

76

dividable/interchangeable resources

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

waiting on
one unitowned by

77

deadlock detection
cycle-finding not enough

new idea: try to simulate progress
anything not waiting releases resources (as it finishes)
anything waiting on only free resources no one else wants takes resources

see if everything gets resources eventually

78

deadlock detection (with variable resources)
(pseudocode)
class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;
map<Thread, Resources> requested;
map<Thread, Resources> owned;

≤ — free resources include everything being requested
(enough memory, disk, each lock requested, etc.)
note: not requesting anything right now? — always true

assume requested resources taken
then everything taken releasedkeep going until nothing changes

79

deadlock detection (with variable resources)
(pseudocode)
class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;
map<Thread, Resources> requested;
map<Thread, Resources> owned;

...
do { done = true;
for (Thread t : all threads with owned or requested resources) {
// if everything requested is free, finish
if (requested[t] <= free_resources) {

requested[t] = no_resources;
free_resources += owned[t];
owned[t] = no_resources;
done = false;

}
}

} while (!done);
if (owned.size() > 0) { DeadlockDetected() }

≤ — free resources include everything being requested
(enough memory, disk, each lock requested, etc.)
note: not requesting anything right now? — always true

assume requested resources taken
then everything taken released

keep going until nothing changes

79

deadlock detection (with variable resources)
(pseudocode)
class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;
map<Thread, Resources> requested;
map<Thread, Resources> owned;

...
do { done = true;
for (Thread t : all threads with owned or requested resources) {
// if everything requested is free, finish
if (requested[t] <= free_resources) {

requested[t] = no_resources;
free_resources += owned[t];
owned[t] = no_resources;
done = false;

}
}

} while (!done);
if (owned.size() > 0) { DeadlockDetected() }

≤ — free resources include everything being requested
(enough memory, disk, each lock requested, etc.)
note: not requesting anything right now? — always true

assume requested resources taken
then everything taken released

keep going until nothing changes

79

deadlock detection (with variable resources)
(pseudocode)
class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;
map<Thread, Resources> requested;
map<Thread, Resources> owned;

...
do { done = true;
for (Thread t : all threads with owned or requested resources) {
// if everything requested is free, finish
if (requested[t] <= free_resources) {

requested[t] = no_resources;
free_resources += owned[t];
owned[t] = no_resources;
done = false;

}
}

} while (!done);
if (owned.size() > 0) { DeadlockDetected() }

≤ — free resources include everything being requested
(enough memory, disk, each lock requested, etc.)
note: not requesting anything right now? — always true

assume requested resources taken
then everything taken released

keep going until nothing changes

79

deadlock detection (with variable resources)
(pseudocode)
class Resources { map<ResourceType, int> amounts; ... };
Resources free_resources;
map<Thread, Resources> requested;
map<Thread, Resources> owned;

...
do { done = true;
for (Thread t : all threads with owned or requested resources) {
// if everything requested is free, finish
if (requested[t] <= free_resources) {

requested[t] = no_resources;
free_resources += owned[t];
owned[t] = no_resources;
done = false;

}
}

} while (!done);
if (owned.size() > 0) { DeadlockDetected() }

≤ — free resources include everything being requested
(enough memory, disk, each lock requested, etc.)
note: not requesting anything right now? — always true

assume requested resources taken
then everything taken released

keep going until nothing changes

79

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishessimulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishessimulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishessimulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishessimulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishessimulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishessimulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

simulate all threads finishing? no deadlock

80

finding no deadlock (take free)

resource A — 3 units

resource B — 1 unit

thread 1 thread 2

waiting on
two units

owns 2 units
(was waiting on)

waiting on
one unit

owns
(was waiting)owned by

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

algorithm: if all resources
requested by thread free

simulate: it gets ownership of them

algorithm: if thread not
requesting more resources

simulate: it finishes

simulate all threads finishing? no deadlock

80

	reader-writer
	implementing rwlocks with monitors
	reader/writer lock walkthrough
	reader/writer lock extensions???
	reader/writer lock extensions???

	deadlock examples
	a one-way bridge
	dining philosophers
	with pipes
	with locks
	with memory

	definition
	short intuition
	conditions for deadlock

	exercise
	deadlock prevention
	techniques overview
	example: no waiting
	livelock
	revocable locks
	example: consistent order
	pre-requesting maximum resources

	deadlock detection
	resource allocation graphs
	for deadlock prevention

	alternatives to threading
	event-based programming
	message passing

	backup slides
	revocable lock examples
	resource allocation graphs and quantities, prevention

