
virtual memory 2

1

last time
message passing

two-level page table structure

tricks with page fault handlers
just-in-time correction of bad/missing page table entry
return from handler — retry access

allocate-on-demand
don’t set page table entry when program thinks memory alloc’d
actually alloc memory when first page fault for each page happens

copy-on-write
mark each page as read-only instead of copying
actually copy each page when page/protection fault for write happens

2

fast copies
recall : fork()

creates a copy of an entire program!

(usually, the copy then calls execve — replaces itself with another
program)

how isn’t this really slow?

3

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

4

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

4

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

4

trick for extra sharing
sharing writeable data is fine — until either process modifies the
copy

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

5

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

6

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

6

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

6

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

6

copy-on write cases
trying to write forbidden page (e.g. kernel memory)

kill program instead of making it writable

trying to write read-only page and…

only one page table entry refers to it
make it writeable
return from fault

multiple process’s page table entries refer to it
copy the page
replace read-only page table entry to point to copy
return from fault

7

mmap
Linux/Unix has a function to “map” a file to memory
int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 (zero-indexed) from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
data[100] = 'x';

// can continue to use 'data' like an array

8

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

9

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

9

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

9

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)

…along with additional flags:
MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
… (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)

…along with additional flags:
MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
… (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)

…along with additional flags:
MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
… (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)

…along with additional flags:
MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
… (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000

read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000

read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/cat

device major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/cat

device major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

13

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)

read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)

read from second page?
page fault

PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault

PF handler: find cached page
update page table, retry

read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry

read from first page?
page fault

PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault

PF handler: no cached page
first read in page

PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page

PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

shared mmap
int fd = open("/tmp/somefile.dat", O_RDWR);
mmap(0, 64 * 1024, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

from /proc/PID/maps for this program:

7f93ad877000-7f93ad887000 rw-s 00000000 08:01 1839758 /tmp/somefile.dat

15

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

17

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before

write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page tablecopies of file data, modified

18

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before

write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page tablecopies of file data, modified

18

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before
write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page table

copies of file data, modified

18

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before
write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page table

copies of file data, modified

18

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

19

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

swapped out data (if any)

access new page
page fault handler
allocates on demand

need more memory
save page to disk
temporarily

data in memory

20

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

swapped out data (if any)

access new page
page fault handler
allocates on demand

need more memory
save page to disk
temporarily

data in memory

20

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

swapped out data (if any)

access new page
page fault handler
allocates on demand

need more memory
save page to disk
temporarily

data in memory

20

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

swapped out data (if any)

access new page
page fault handler
allocates on demand

need more memory
save page to disk
temporarily

data in memory

20

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

swapped out data (if any)

access new page
page fault handler
allocates on demand

need more memory
save page to disk
temporarily

data in memory

20

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

swapped out data (if any)

access new page
page fault handler
allocates on demand

need more memory
save page to disk
temporarily

data in memory

20

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
just read/write memory

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0x1000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0xb000);

21

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file
need to free up more space?
can move copied data to disk

“swapped out”
modified data
‘swapped out’
modified data

22

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file

need to free up more space?
can move copied data to disk

“swapped out”
modified data
‘swapped out’
modified data

22

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file

need to free up more space?
can move copied data to disk

“swapped out”
modified data

‘swapped out’
modified data

22

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file
need to free up more space?
can move copied data to disk

“swapped out”
modified data

‘swapped out’
modified data

22

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

23

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

23

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

24

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

24

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

24

the page cache
memory is a cache for disk

files, program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

25

the page cache
memory is a cache for disk

files, program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

25

memory as a cache for disk
“cache block” ≈ physical page

fully associative
any virtual address/file part can be stored in any physical page

replacement is managed by the OS

normal cache hits happen without OS
common case that needs to be fast

26

page cache components [text]
mapping: virtual address or file+offset → physical page

handle cache hits

find backing location based on virtual address/file+offset
handle cache misses

track information about each physical page
handle page allocation
handle cache eviction

27

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

29

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

30

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

31

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

31

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

31

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

32

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

33

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

34

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

35

minor and major faults
minor page fault

page is already in page cache
just fill in page table entry

major page fault
page not cached, need to allocate

36

Linux: reporting minor/major faults
$ /usr/bin/time --verbose some-command

Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

...
Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423
Involuntary context switches: 53
Swaps: 0

...
Exit status: 0

37

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

38

Linux: tracking files in memory
struct file {

...
struct inode *f_inode;
...

};
...
struct inode {

...
struct address_space i_data;
...

};
...
struct address_space {

...
struct radix_tree_root i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

process control block (task_struct)

open file info (struct file)

file on disk info (struct inode)

address_space
cached physical pages for file
mmap() virtual addresses for file

39

Linux: tracking files in memory
struct file {

...
struct inode *f_inode;
...

};
...
struct inode {

...
struct address_space i_data;
...

};
...
struct address_space {

...
struct radix_tree_root i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

process control block (task_struct)

open file info (struct file)

file on disk info (struct inode)

address_space
cached physical pages for file
mmap() virtual addresses for file

39

mapped pages (read/write, shared)

file data, cached in memory

file data on disk/SSD

40

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

41

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

42

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

42

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

42

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

43

recall: Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

44

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

45

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

45

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

45

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)

flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

45

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)

flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

45

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

46

Linux: tracking swapped out pages
need to lookup location on disk

potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

47

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

48

tracking physical pages: finding free pages
Linux has list of “least recently used” pages:
struct page {

...
struct list_head lru; /* list_head ~ next/prev pointer */
...

};

how we’re going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, …)

49

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

50

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

50

tracking physical pages: finding mappings
want to evict a page? remove from page tables, etc.

need to track where every page is used!

51

Linux: reverse mapping (file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

per-physical page info
(struct page) page number

given page number
find references to that page
(e.g. to remove/change them)

52

Linux: reverse mapping (non-file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

linked list of mmap regions
(anon_vma)

page table

per-physical page info
(struct page) page number

given non-file page
(heap, copied-on-write copy of file, etc.)
find references to that page
(may be multiple because of fork, etc.)

53

list of allocations per page
naive solution: seperate list for each page?

a lot of overhead (many tens of bytes per 4K page?)

but, trick: many pages ‘copied’ at the same time (e.g. fork)

idea: share list between all pages
initially: list one of mmap region
on fork: add to existing list; create a new one

54

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

55

page replacement
step 1: evict a page to free a physical page

step 2: load new, more important in its place

56

evicting a page
find a ‘victim’ page to evict

remove victim page from page table, etc.
every page table it is referenced by
every list of file pages
…

if needed, save victim page to disk

57

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

58

page replacement goals
hit rate: minimize number of misses

throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

59

max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

60

max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

60

being proactive?
can avoid misses by “reading ahead”

guess what’s needed — read in ahead of time
wrong guesses can have costs besides more cache misses

we will get back to this later

for now — only access/evict on demand

61

optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

62

optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

62

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

63

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

63

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

63

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

63

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

63

Belady’s MIN exercise

A B C D B B A C A D C

1 A
2 B
3 C

phys.
page#

referenced (virtual) pages:
time

exercise: What does this access to D replace? (A, B, or C?)

64

predicting the future?
can’t really…

look for common patterns

65

the working set model
one common pattern: working sets

at any time, program is using a subset of its memory
set of running functions
their local variables, (parts of) global data structure

subset called its working set

rest of memory is inactive

…until program switches to different working set

66

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

67

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

67

cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 68

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

69

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

69

practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

70

practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

70

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

71

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

71

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

71

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

71

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

71

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

72

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

72

least recently used (exercise) (1)
A B A D C B D B C D A

1
2
3

73

least recently used (exercise) (2)
A B A D C B D B C D A

1 A A A A
2 B B B
3 D

74

pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
mechanism: make every access page fault
which will make everything really slow

75

pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
mechanism: make every access page fault
which will make everything really slow

75

page fault for every access?
want every access to page fault? make every page invalid

…but want access to happen eventually

…which requires marking page as valid

…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

76

page fault for every access?
want every access to page fault? make every page invalid

…but want access to happen eventually

…which requires marking page as valid

…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

76

page fault for every access?
want every access to page fault? make every page invalid

…but want access to happen eventually

…which requires marking page as valid

…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower
76

so, what’s practical
probably won’t implement LRU — too slow

what can we practically do?

77

tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78

tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78

tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78

tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78

recording accesses
goal: “check is this physical page still being used?”

software support: temporarily mark page table invalid
use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

79

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info
processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

80

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time Y …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault

update page info +
mark present

80

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

81

accessed bits: multiple processes

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00483 1 1 0 … 0x4442
… … … … … …

page table for program 2
OS needs to clear+checkall accessed bitsfor the physical page

82

dirty bits
“was this part of the mmap’d file changed?”

“is the old swapped copy still up to date?”

software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

83

x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

84

85

backup slides

86

aside: Zipf model
working set model makes sense for programs

but not the only use of caches

example: Wikipedia — most popular articles

87

Wikipedia page views for 1 hour

100 101 102 103 104 105 106

Rank

100

101

102

103

104

105

Vi

ew
s

NOTE: log-log-scale
88

Zipf distribution
Zipf distribution: straight line on log-log graph of rank v. count

a few items a much more popular than others
most caching benefit here

long tail: lots of items accessed a very small number of times
more cache less efficient — but does something
not like working set model, where there’s just not more

89

good caching strategy for Zipf
keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

90

good caching strategy for Zipf
keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

90

alternative policies for Zipf
least frequently used

very simple policy
if pure Zipf distribution — what you want
practical problem: what about changes in popularity?

least frequently used + adjustments for ‘recentness’

more?

91

models of reuse
working set/locality

active things are likely to be active soon
what’s popular changes over time
want: something like least-recently used

Zipf distribution
some things are just popular always
want: something like least-frequently used

other models?
when X is loaded, Y is always needed?

want: identify pairs of related values, load/discard together
some things are only used once

want: identify these, do not cache

92

the page cache
memory is a cache for disk

files, program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

93

the page cache
memory is a cache for disk

files, program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

93

memory as a cache for disk
“cache block” ≈ physical page

fully associative
any virtual address/file part can be stored in any physical page

replacement is managed by the OS

normal cache hits happen without OS
common case that needs to be fast

94

Linux: physical page → file → PTE
Linux tracking where file pages are in page tables:
struct page {

...
struct address_space *mapping;
pgoff_t index; /* Our offset within mapping. */
...

};
struct address_space {

...
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

};

tree of mappings lets us find vm_area_structs and PTEs

rather complicated look up (but writing ot disk is already slow)

96

detecting accesses
non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

97

detecting accesses
non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

97

detecting accesses
non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

97

x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

98

multiple mappings?
page can have many page table entries

file mmap’d in many processes (e.g. 10 instances of emacs.exe)
copy-on-write pages after fork
address in kernel memory + address in user memory?
…

want to check all the accessed bits

99

aside: detecting write accesses
for updating mmap files/swap want to detect writes

same options as detect accesses in general:

software-only: temporarily set page table entry read-only
page fault handler records write + sets as writeable

hardware assisted: hardware sets dirty bit in page table
OS scans dirty bits later

100

working set model and phases
what happens when a program changes what it’s doing?

e.g. finish parsing input, now process it

phase change — discard one working set, gain another

phase changes likely to have spike of cache misses
whatever was cached, not what’s being accessed anymore
maybe along with change in kind of instructions being run

101

evidence of phases (gzip)

Sherwood et al, “Discovering and Exploiting Program Phases” 102

evidence of phases (gcc)

Sherwood et al, “Discovering and Exploiting Program Phases” 103

estimating working sets
working set ≈ what’s been used recently

assuming not in phase change…

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

104

using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

105

using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

105

using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

105

	copy-on-write
	mmap
	mmap interface
	Linux: /proc/PID/maps
	read-only mmaps
	shared mmaps
	copy-on-write mmaps
	unbacked maps and swapping (simple)
	copy-on-write maps and swapping

	generalizing mmap: swapping
	memory as a cache for disk
	page cache components
	forward mappings: cache hits

	handling evictions
	on page replacement choices
	page replacement policy goals
	Belady's MIN
	the working set model
	LRU
	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	accessed/dirty bit

	Backup slides
	aside: Zipf model
	cache model summary
	memory as a cache for disk
	linux maps example
	Linux reverse page map (code)
	accessed/dirty bit (text version)
	working set and phases

