virtual memory 2



last time
message passing
two-level page table structure

tricks with page fault handlers

just-in-time correction of bad/missing page table entry
return from handler — retry access

allocate-on-demand

don't set page table entry when program thinks memory alloc'd
actually alloc memory when first page fault for each page happens

copy-on-write
mark each page as read-only instead of copying
actually copy each page when page/protection fault for write happens



fast copies
recall : fork()

creates a copy of an entire program!

(usually, the copy then calls execve — replaces itself with another
program)

how isn't this really slow?



do we really need a complete copy?

bash new copy of bash
Used by OS Used by OS
Stack Stack
Heap / other dynamic Heap / other dynamic
Writable data Writable data
Code + Constants Code + Constants




do we really need a complete copy?

bash new copy of bash
Used by OS Used by OS
Stack Stack
Heap / other dynamic Heap / other dynamic
Writable data Writable data
Code + Constants Code + Constants

shared as read-only



do we really need a complete copy?

bash new copy of bash
Used by OS Used by OS
Stack Stack
Heap / other dynamic Heap / other dynamic
Writable data Writable data
Code + Constants can't be shared? Code + Constants




trick for extra sharing

sharing writeable data is fine — until either process modifies the
copy

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it's written



copy-on-write and page tables

VPN valid? Write?phySIcal
page
Ox00601 1 1 |0x12345
Ox00602 1 1 |0x12347
Ox00603 1 1 |0x12340
Ox00604 1 1 |Ox200DF
Ox00605 1 1 |OxX200AF




copy-on-write and page tables

VPN

0x00601
Ox00602
Ox00603
0x00604
0x00605

vaIid?write?phySlcaI

Ox12345

0x12347

0x12340

OXx200DF

H [ Y [N TR [RY Y O

ololo|o|ol:

OX200AF

VPN

0x00601
0x00602
Ox00603
0x00604
Ox00605

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

valid?write?phyzlcaI

Ox12345

0x12347

0x12340

Ox200DF

=Rk

lololo|lo|e|:

OX200AF




copy-on-write and page tables

VPN

0x00601
Ox00602
Ox00603
0x00604
0x00605

vaIid?write?phySlcaI

OX200AF

[OX00605

hysical
VPN valid? Write?p yzlca
1 0 |0x12345 Ox00601 1 0O |0x12345
1 0 |0x12347 Ox00602 1 0 [0x12347
1 0 [0x12340 Ox00603 1 0 [0x12340
1 0O |Ox200DF Ox00604 1 0O [OX200DF
1 0 1 0]

OX200AF

when either process tries to write read-only page
triggers a fault — OS actually copies the page




copy-on-write and page tables

VPN

0x00601
Ox00602
Ox00603
0x00604
0x00605

vaIid?write?phySlcaI

OX200AF

[OX00605

hysical
VPN valid? Write?p yzlca
1 0 |0x12345 Ox00601 1 0O |0x12345
1 0 |0x12347 Ox00602 1 0 [0x12347
1 0 [0x12340 Ox00603 1 0 [0x12340
1 0O |Ox200DF Ox00604 1 0O [OX200DF
1 0 1 1

OxX300FD

after allocating a copy, OS reruns the write instruction




copy-on write cases

trying to write forbidden page (e.g. kernel memory)
kill program instead of making it writable

trying to write read-only page and...

only one page table entry refers to it
make it writeable
return from fault

multiple process’s page table entries refer to it
copy the page
replace read-only page table entry to point to copy
return from fault



mmap

Linux/Unix has a function to “map” a file to memory

int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 (zero-indexed) from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
datal[100] = 'x';
// can continue to use 'data' like an array



mmap options (1)

#include <sys/mman.h>
void *mmap(void *addr, size_t length, 1int prot, 1int flags,
int fd, off_t offset);

length bytes from open file fd starting at byte offset

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)



mmap options (1)

#include <sys/mman.h>
void *mmap(void *addr, size_t length, 1int prot, 1int flags,
int fd, off_t offset);

length bytes from open file fd starting at byte offset

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)



mmap options (1)

#include <sys/mman.h>
void *mmap(void *addr, size_t length, 1int prot, int flags,
int fd, off_t offset);

length bytes from open file fd starting at byte offset

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)



mmap options (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, 1int prot, 1int flags,
int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)
..along with additional flags:

MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
.. (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10



mmap options (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, 1int prot, int flags,
int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)
..along with additional flags:

MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
.. (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10



mmap options (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, 1int prot, 1int flags,
int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)
..along with additional flags:

MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
.. (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10



mmap options (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, 1int prot, 1int flags,
int fd, off_t offset);

flags, choose at least
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file (using copy-on-write)
..along with additional flags:

MAP_ANONYMOUS (not POSIX) — ignore fd, just allocate space
.. (and more not shown)

addr, suggestion about where to put mapping (may be ignored)
can pass NULL — “choose for me”
address chosen will be returned

10



Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
00602000—-0060bOOO r—p 00002000 08:01 48328831
0060b000—0060c000 rw—p 0000b000 08:01 48328831
01974000—-01995000 rw—p 00000000 00:00 O
7f60c718b00O-7f60c7490000 r—p 00000000 08:01
7f60c7490000—-7f60c764€000 r—xp 00000000 08:01
7f60c764€000—-7f60c784e000 ——p 001be@OO 08:01
7f60c784e000—-7f60c7852000 r—p 001be@OO 08:01
7f60c7852000—7f60c7854000 rw—p 001c2000 08:01
7f60c7854000—-7f60c7859000 rw—p 00000000 00:00
7f60c7859000—-7f60c787c000 r—xp 00000000 08:01
7f60c7a39000-7f60c7a3b00O® rw—p 00000000 00:00
7f60c7a7a000—-7f60c7a7b00O® rw—p 00000000 00:00
7f60c7a7b00O—-7f60Cc7a7c000 r—p 00022000 08:01
7f60c7a7c000-7f60c7a7dOOO® rw—p 00023000 08:01
7f60c7a7do0O—-7f60Cc7a7e000 rw—p 00000000 00:00
7ffc5d2b2000—-7ffc5d2d3000 rw—p 00000000 00:00
7ffc5d3b0000—-7ffc5d3b3000 r—p 00000000 00:00
7ffc5d3b3000—-7ffc5d3b5000 r—xp 00000000 00:00

FEFFFFffff600000—ffffffffff601000 r—xp 00000000 00:00 0

77483660
96659129
96659129
96659129
96659129
0
96659109
0
0
96659109
96659109
0
0
0
0

/bin/cat

/bin/cat

/bin/cat

[heap]
Jusr/1lib/locale/locale—archive
/1ib/x86_64—Llinux—gnu/libc—2.19
/1ib/x86_64—1inux—gnu/libc—2.19
/1ib/x86_64—Llinux—gnu/libc—2.19
/1ib/x86_64—T1inux—gnu/libc—2.19

/1ib/x86_64—Tlinux—gnu/1d—2.19.s
/1ib/x86_64—1inux—gnu/1d—2.19.s
/1ib/x86_64—Llinux—gnu/1ld—2.19.s
[stack]

[vvar]

[vdso]
[vsyscall]

12



Linux maps

$ cat /proc/self/maps

00400000—0040b000 r—xp 00000000 08:01 48328831
00602000—0060bOEO r—p 00002000 08:01 48328831
0060b000—0060c000 rw—p 0000b000 08:01 48328831
01974000—-01995000 rw—p 00000000 00:00 O

/bin/cat
/bin/cat
/bin/cat
[heap]

7f60c718b00O—-7f60c7490000 r—p 00000000 08:01 77483660 /usr/lib/locale/locale—archive
7f60c7490000—7f60c764€000 r—xp 00000000 08:01 96659129 /1ib/x86_64—1inux— gnu/11bc 2.19

7f60c764e000—-7f60c784e000 o N0lbonnn NQ.NT

0AAEQ100

15b Qc £A 1 ni, L —2.19

7f60c784e000—-7f60c7852000

—-2.19

S 3

7f60c7852000—7f60Cc7854000
7f60c7854000—-7f60c7859000 rw—p 00000000 00:00
7f60c7859000—-7f60c787c000 r—xp 00000000 08:01
7f60c7a39000-7f60c7a3b00O® rw—p 00000000 00:00
7f60c7a7a000—-7f60c7a7b00O® rw—p 00000000 00:00
7f60c7a7b00O—-7f60Cc7a7c000 r—p 00022000 08:01
7f60c7a7c000-7f60c7a7dOOO® rw—p 00023000 08:01
7f60c7a7do0O—-7f60Cc7a7e000 rw—p 00000000 00:00
7ffc5d2b2000—-7ffc5d2d3000 rw—p 00000000 00:00
7ffc5d3b0000—-7ffc5d3b3000 r—p 00000000 00:00
7ffc5d3b3000—-7ffc5d3b5000 r—xp 00000000 00:00

FEFFFFffff600000—ffffffffff601000 r—xp 00000000 00:00 0

0
96659109
0
0
96659109
96659109
0
0
0
0

at virtual addresses Ox400000-0x40bOOO [-2-19

/1ib/x86_64—Tlinux—gnu/1d—2.19.s

/1ib/x86_64—1inux—gnu/1d—2.19.s
/1ib/x86_64—Llinux—gnu/1ld—2.19.s

[stack]
[vvar]
[vdso]
[vsyscall]

12



Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
0060a000—0060b0GO r—p 00002006 08:01 48328831
0060b000—-0060c000 rw—p 0000b000 08:01 48328831
01974000—-01995000 rw—p 00000000 00:00 O

7f60c718b00OO—-7f60Cc7490000
7f60c7490000—-7f60Cc764€000
7f60c764e000—-7f60c784e000
7f60c784e000—-7f60c7852000
7f60c7852000—-7f60c7854000
7f60c7854000—-7f60c7859000
7f60c7859000—-7f60c787c000
7f60c7a39000—-7f60c7a3bo0o0o
7f60c7a7a000—-7f60c7a7b000O
7f60c7a7b00O0—-7f60c7a7cO00
7f60c7a7c000—-7f60c7a7dooo
7f60c7a7do00O—-7f60Cc7a7e000
7ffc5d2b2000—-7ffc5d2d3000
7ffc5d3b0000—-7ffc5d3b3000
7ffc5d3b3000—-7ffc5d3b5000

r—>p
r—xp
—Pp
—>p
rw—p
rw—p
r—xp
rw—p
rw—p
r—>p
rw—p
rw—p
rw—p
r——>p
r—xp

/bin/cat
/bin/cat
/bin/cat
[heap]

00000000 08:01 77483660 /usr/lib/locale/locale—archive
00000000 08:01 96659129 /1ib/x86_64—1inux— gnu/11bc 2.19

Oolbnr‘f\f\ nNe.-N1 QAAENQ1900 14k oc £ 1anu 1 _2 19
8312; read, not write, execute, private *gig
00000¢ private = copy-on-write (if writeable)

00000 .19.s
00000000 00:00 O

00000000 00:00 O

00022000 08:01 96659109 /1ib/x86_64—1inux—gnu/1ld—2.19.s
00023000 08:01 96659109 /1lib/x86_64—1linux—gnu/1d—2.19.s
00000000 00:00 O

00000000 00:00 O [stack]

00000000 00:00 O [vvar]

00000000 00:00 O [vdso]

ffffffffffeooeeo—ffffffffffe01000 r—xp 00000000 00:00 0 [vsyscall]

12



Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
0060a000—0060b0GO r—p 000020060 08:01 48328831
0060b000—-0060c000 rw—p 0000b000 08:01 48328831
01974000—-01995000 rw—p 00000000 00:00 O

7f60c718b00OO—-7f60Cc7490000
7f60c7490000—-7f60Cc764€000
7f60c764e000—-7f60c784e000
7f60c784e000—-7f60c7852000
7f60c7852000—-7f60c7854000
7f60c7854000—-7f60c7859000
7f60c7859000—-7f60c787c000
7f60c7a39000—-7f60c7a3bo0o0o
7f60c7a7a000—-7f60c7a7b000O
7f60c7a7b00O0—-7f60c7a7cO00
7f60c7a7c000—-7f60c7a7dooo
7f60c7a7do00O—-7f60Cc7a7e000
7ffc5d2b2000—-7ffc5d2d3000
7ffc5d3b0000—-7ffc5d3b3000
7ffc5d3b3000—-7ffc5d3b5000

FEFFFFffff600000—ffffffffff601000 r—xp 00000000 00:00 0

r—>p
r—xp
—Pp
—>p
rw—p
rw—p
r—xp
rw—p
rw—p
r—>p
rw—p
rw—p
rw—p
r——>p
r—xp

/bin/cat
/bin/cat
/bin/cat
[heap]

00000000 08:01 77483660 /usr/lib/locale/locale—archive
00000000 08:01 96659129 /1ib/x86_64—1inux— gnu/11bc 2.19

N01boaon 0001

0AAEQ100

15b Qc £A 1 ni, L —2.19

starting at offset 0 of the file /bin/cat *gig
00000000 00:00 O

00000000 08:01 96659109 /lib/x86_6441inuxggnu/ld——2.19.&
00000000 00:00 O

00000000 00:00 O

00022000 08:01 96659109 /lib/x86_64—linux—gnu/ld—Z.19.&
00023000 08:01 96659109 /1lib/x86_64—1linux—gnu/1d—2.19.s
00000000 00:00 O

00000000 00:00 O [stack]

00000000 00:00 O [vvar]

00000000 00:00 O [vdso]

[vsyscall]

12



Linux maps

$ cat /proc/self/maps

004000000040

b000 r—xp 00000000 08:01 48328831

0060a000—0060b0GO r—p 00002006 08:01 48328831
0060b000—0060c000 rw—p 0000b000 08:01 48328831

01974000—-0199

7f60c718b00O—-7f60c7490000 r—p 00000000 08:01 77483660
7f60c7490000—-7f60c764e000 r—xp 00000000 08:01 96659129
7f60c764e000—7
7f60c784e000—14
7f60c7852000—1
7f60c7854000—1
7f60c7859000—1
7f60c7a39000—7

7f60c7a7a000—7
7f60c7a7b000—7
7f60c7a7c0OO—7
7f60c7a7dooO—

7ffc5d2b2000—

7ffc5d3b000O—
7ffc5d3b3000—

5000 rw—p 00000000 00:00 O

/bin/cat

/bin/cat

/bin/cat

[heap]
Jusr/1lib/locale/locale—archive
/1ib/x86_64—Llinux— gnu/11bc 2.19

inode 48328831

7f60c7a7e000 rw—p 00000000 00:00 O
7ffc5d2d3000 rw—p 00000000 00:00 O
7ffc5d3b3000 r—p 00000000 00:00 O
7ffc5d3b5000 r—xp 00000000 00:00 O

E A AYSw AW, PN AYATA n_0N1hanQQ _092.-01 QAAEN120 1ah oc £A 1 ani I _2 19
device major number 8 ~219
device minor number 1

2.19.s

more on what this means when we talk about fllesystems b 19 s

ffffffffffeoeeeo—ffffffffff601000 r—xp 00000000 00:00 O [vsyscall]

12



Linux maps

$ cat /proc/self/maps

00400000—0040b000 r—xp 00000000 08:01
0060a000—0060b0GO r—p 00002006 08:01
0060b000—-0060c000 rw—p 0000b000 08:01

01974000—-01995000 rw—p 00000000 00:00 O
7f60c718b00O—-7f60Cc7490000 r—p 00000000

7f60c7490000—-7f60c764e€000 r—xp 00000000

7f60c764e000—7f6psTodinnnn
7f60c784e000—-7f6 as if

7f60c7852000—7f6 int fd

7f60c7854000—7f6

48328831 /bin/cat

48328831 /bin/cat

48328831 /bin/cat

[heap]
08:01 77483660 /usr/lib/locale/locale—archive

08:01 96659129 /1ib/x86_64—Llinux— gnu/11bc 2.19
. _001bhanon 09 .01 QAAEN120 1ah [ YN~ B A L _2 19
—-2.19
= open("/bin/cat", O_RDONLY); —2.19

7f60c7859000—7f6| Mmap (Ox400000, 0x1000, PRO

7f60c7a39000—-7f6
7f60c7a7a000—-7f6

MAP_PRIVATE,

fd, 0xb000);

T_READ | PROT_EXEC, p.19.s

7f60c7a7b000-7f60CTa/cO00
7f60c7a7c000—-7f60c7a7dooo
7f60c7a7do00O—-7f60Cc7a7e000
7ffc5d2b2000—-7ffc5d2d3000
7ffc5d3b0000—-7ffc5d3b3000
7ffc5d3b3000—-7ffc5d3b5000

r—p 00022000 08:01 96659109 b/ x86_64—T(Tnux—gnu/ld—2.19. s«
rw—p 00023000 08:01 96659109 /1ib/x86_64—Llinux—gnu/1ld—2.19.s
rw—p 00000000 00:00 O

rw—p 00000000 00:00 O [stack]

r—p 00000000 00:00 O [vvar]

r—xp 00000000 00:00 O [vdso]

ffffffffffeoeeeo—ffffffffff601000 r—xp 00000000 00:00 O [vsyscall]

13



mapped pages (read only)

V|rtua| pages mapped to file

LI LU U LU UL LU ULy page table (part)

initially — all invalid?
(could also prefill entries...)

file data, cached in memory

file data on disk/SSD

14



mapped pages (read only)

V|rtua| pages mapped to file

LUl LU U LU UL LU ULy page table (part)

read from second page?
page fault

file data, cached in memory

file data on disk/SSD

14



mapped pages (read only)

V|rtua| pages mapped to file

srehiiitiitniihiiilii page table (part)

PF handler: find cached page
update page table, retry

file data, cached in memory

file data on disk/SSD

14



mapped pages (read only)

V|rtua| pages mapped to file

srehiiitiitniihiiilii page table (part)

read from first page?
page fault

file data, cached in memory

file data on disk/SSD

14



mapped pages (read only)

V|rtua| pages mapped to file

srehiiitiitniihiiilii page table (part)

PF handler: no cached page
first read in page

..........

..........

file data, cached in memory

file data on disk/SSD

14



mapped pages (read only)

V|rtua| pages mapped to file

srehiiitiitniihiiilii page table (part)

PF handler: read in page
now point to page

file data, cached in memory

file data on disk/SSD

14



mapped pages (read only)

V|rtua| pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

14



shared mmap

int fd = open("/tmp/somefile.dat", O_RDWR);
mmap (0, 64 * 1024, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

from /proc/PID/maps for this program:

7f93ad877000-7f93ad887000 rw-s Q000000 08:01 1839758 /tmp/somefile.dat

15



mapped pages (read/wrlte shared)

V|rtua| pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

16



mapped pages (read/wrlte shared)

V|rtua| pages mapped to file

ooliiiibiiiiiiliiy page table (part)

write to page?
update cached file data
Y v v data on disk out of date

file data, cached in memory

file data on disk/SSD

16



mapped pages (read/wrlte shared)

V|rtua| pages mapped to file

ooliiiibiiiiiiliiy page table (part)

eventually free memory...
write update to disk

file data, cached in memory

file data on disk/SSD

16



mapped pages (read/wrlte shared)

V|rtua| pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

16



Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
0060a000—0060b0GO r—p 00002006 08:01 48328831
0060b000—-0060c000 rw—p 0000b000 08:01 48328831

01974000—-01995000 rw—p 00000000 00:00 O
7f60c718b00O—-7f60c7490000 r—p 00000000 08:01 77483660 /usr/lib/locale/locale—archive
7f60c7490000—7f60c764€000 r—xp 00000000 08:01 96659129 /1ib/x86_64—1inux— gnu/11bc 2.19

/bin/cat
/bin/cat
/bin/cat
[heap]

7f60c764e000 74‘cn ZOA000 n_0N1hanQQ _092.-01 QAAEN120 1ah oc £A 1 ani L _2 19
7f60c784e000—71 _ _ —-2.19
7760c7842000 71 read /write, copy-on-write (private) mapping 219

7fe0c7854000—74 int fd

= open("/bin/cat", O_RDONLY);

7ﬂmcm5%m&4fmmap(gx6@b@@0, 0x1000,

7f60c7a39000—71
7f60c7a7a000—7f
7f60c7a7b0OO—71

PROT_READ | PROT_WRITE, P19

7f60c7a7c000—-7f60c7a7dooo
7f60c7a7do00O—-7f60Cc7a7e000
7ffc5d2b2000—-7ffc5d2d3000
7ffc5d3b0000—-7ffc5d3b3000
7ffc5d3b3000—-7ffc5d3b5000

MAP_PRIVATE, fd, 0xb000);
- 2.19.s
rw—p 00023000 08:01 96659109 /11b/x86 64—17nux—, gnu/ld 2.19.s
rw—p 00000000 00:00 O
rw—p 00000000 00:00 O [stack]
r—p 00000000 00:00 O [vvar]
r—xp 00000000 00:00 O [vdso]

ffffffffffeoeeeo—ffffffffff601000 r—xp 00000000 00:00 O [vsyscall]

17



mapped pages (copy on- wrlte)

5 5 5 5 5 5 5 5 V|rtua| pages mapped to file
ii _______ i '''''' J< page table (part)

reads like before

file data, cached in memory

file data on disk/SSD

18



mapped pages (copy on- wrlte)

ii i '''''' J< page table (part)
write to second page?

protection fault
'R v v page table entry says read-only

file data, cached in memory

file data on disk/SSD

18



mapped pages (copy on- wrlte)

virtual pages mapped to file

o '-;'f-:;;é:f;;; -‘.‘-‘i_:_;;i;; _'-'_'i:;:;:-;i;;-_-,. e e (o

fault handler:
make copy, update page table

file data, cached in memory

file data on disk/SSD

18



mapped pages (copy on- wrlte)

_____

5 5 V|rtua| pages mapped to file
i '''''' J< page table (part)

copies of file data, modified

file data, cached in memory

file data on disk/SSD

18



Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
0060a000—0060b0GO r—p 00002006 08:01 48328831
0060b000—-0060c000 rw—p 0000b000 08:01 48328831

01974000—-01995000 rw—p 00000000 00:00 O

7f60c718b0OO—-7f60CcT7490000
7f60c7490000—-7f60Cc764€000
7f60c764e000—-7f60c784e000
7f60c784e000—-7f60c7852000
7f60c7852000—-7f60c7854000
7f60c7854000—-7f60c7859000
7f60c7859000—-7f60c787c000
7f60c7a39000—-7f60c7a3bo0o0o
7f60c7a7a000—-7f60c7a7b000O
7f60c7a7b00O0—-7f60c7a7cO00
7f60c7a7c000—-7f60c7a7dooo
7f60c7a7do00O—-7f60Cc7a7e000
7ffc5d2b2000—-7ffc5d2d3000
7ffc5d3b0000—-7ffc5d3b3000
7ffc5d3b3000—-7ffc5d3b5000

r—p
r—xp
—P
r—p
rw—p
rw—p
r—xp
rw—p
rw—p
r—>p
rw—p
rw—p
rw—p
—>p
r—xp

00000000
00000000
001be000
001be00O
001c2000
00000000
00000000
00000000
00000000
00022000
00023000
00000000
00000000
00000000
00000000

:01
01

/bin/cat

/bin/cat

/bin/cat

[heap]
77483660 /usr/lib/locale/locale—archive
96659129 /1ib/x86_64—Linux— gnu/11bc 2.19

QAAEN120 1ah oc £A 1 ani 1 _2 19
heap — no corresponding file |~2-19
just read/write memory L

. .S
0
0
96659109 /1ib/x86_64—linux—gnu/1d—2.19.s.

96659109 /1ib/x86_64—Llinux—gnu/1ld—2.19.s
0

0 [stack]
0 [vvar]
0 [vdso]

ffffffffffeooeeo—ffffffffffe01000 r—xp 00000000 00:00 0 [vsyscall]

19



mapped pages (no backmg flle)

data in memory

swapped out data (if any)

20



mapped pages (no backmg flle)

data in memory

swapped out data (if any)

20



mapped pages (no backmg file)

. virtual pages w/o backing file

access new page
page fault handler
allocates on demand

data in memory

swapped out data (if any)

20



mapped pages (no backmg file)

V|rtual pages w/o backing file

e R L

data in memory

swapped out data (if any)

20



mapped pages (no backmg file)

. virtual pages w/o backing file

save page to disk
temporarily

data in memory

...........

uuuuuuuuuuu

swapped out data (if any)

20



mapped pages (no backmg file)

V|rtual pages w/o backing file

>y page table (part)

data in memory

swapped out data (if any)

20



Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
00602000—-0060bOOO r—p 00002000 08:01 48328831
0060b000—0060c000 rw—p 0000b000 08:01 48328831
01974000—-01995000 rw—p 00000000 00:00 O
7f60c718b00O-7f60c7490000 r—p 00000000 08:01
7f60c7490000—-7f60c764€000 r—xp 00000000 08:01
7f60c764€000—-7f60c784e000 ——p 001be@OO 08:01
7f60c784e000—-7f60c7852000 r—p 001be@OO 08:01
7f60c7852000—7f60c7854000 rw—p 001c2000 08:01
7f60c7854000—-7f60c7859000 rw—p 00000000 00:00
7f60c7859000—-7f60c787c000 r—xp 00000000 08:01
7f60c7a39000-7f60c7a3b00O® rw—p 00000000 00:00
7f60c7a7a000—-7f60c7a7b00O® rw—p 00000000 00:00
7f60c7a7b00O—-7f60Cc7a7c000 r—p 00022000 08:01
7f60c7a7c000-7f60c7a7dOOO® rw—p 00023000 08:01
7f60c7a7do0O—-7f60Cc7a7e000 rw—p 00000000 00:00
7ffc5d2b2000—-7ffc5d2d3000 rw—p 00000000 00:00
7ffc5d3b0000—-7ffc5d3b3000 r—p 00000000 00:00
7ffc5d3b3000—-7ffc5d3b5000 r—xp 00000000 00:00

FEFFFFffff600000—ffffffffff601000 r—xp 00000000 00:00 0

77483660
96659129
96659129
96659129
96659129
0
96659109
0
0
96659109
96659109
0
0
0
0

/bin/cat

/bin/cat

/bin/cat

[heap]
Jusr/1lib/locale/locale—archive
/1ib/x86_64—Llinux—gnu/libc—2.19
/1ib/x86_64—1inux—gnu/libc—2.19
/1ib/x86_64—Llinux—gnu/libc—2.19
/1ib/x86_64—T1inux—gnu/libc—2.19

/1ib/x86_64—Tlinux—gnu/1d—2.19.s
/1ib/x86_64—1inux—gnu/1d—2.19.s
/1ib/x86_64—Llinux—gnu/1ld—2.19.s
[stack]

[vvar]

[vdso]
[vsyscall]

21



swappmg W|th copy on- wrlte

5 5 5 5 5 5 5 5 V|rtua| pages mapped to file
Solpiuloly il t ii _______ i '''''' J< page table (part)

copies of file data, modified

file data, cached in memory

file data
on disk/SSD




swappmg W|th copy on- wrlte

V|rtua| pages mapped to file

free up space by removing
cached copies of file

copies of file data, modified

file data, cached in memory

file data
on disk/SSD

22



swappmg W|th copy on- wrlte

V|rtua| pages mapped to file

........ i iiiiii --| need to free up more space?

can move copied data to disk

copies of file data, modified

file data, cached in memory

..........

: “swapped out’
: modified data

file data :
on disk/SSD :

22



swappmg W|th copy on- wrlte

..........

: ‘swapped out’
: modified data

file data :
on disk/SSD :

22



swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, ...) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD

only need keep ‘currently active’ pages in physical memory

23



swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, ...) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD

only need keep ‘currently active’ pages in physical memory

swapping &~ mmap with “default” files to use

23



HDD/SDDs are slow

HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

24



HDD/SDDs are slow

HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

24



HDD/SDDs are slow

HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

24



the page cache
memory is a cache for disk

files, program memory has a place on disk

running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage

possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

25



the page cache
memory is a cache for disk

files, program memory has a place on disk

running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage

possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

25



memory as a cache for disk
“cache block” = physical page

fully associative
any virtual address/file part can be stored in any physical page

replacement is managed by the OS

normal cache hits happen without OS
common case that needs to be fast

26



page cache components [text]

mapping: virtual address or file+offset — physical page
handle cache hits

find backing location based on virtual address/file+offset
handle cache misses

track information about each physical page
handle page allocation
handle cache eviction

27



page cache components

virtual address

(used by program) D OS datastructure

OS datastructure? page table

- S

hysical page
disk location phy pag

V\ (if cached)
OS datastructure OS datastructure
file + offset page usage
(for read()/write()) (recently used? etc.)

29



page cache components

virtual address
(used by program)

o~

page table
\\
cache hit hysical page
disk location OS lookup for read()/write() P y Pag
_ (if cached)
CPU lookup in page table

/

OS datastructure

file + offset /

(for read()/write())

30



virtual addr/file offset to physical page

virtual address
(used by program)

for cache hit on memory access

. — page table
structure determined by hardware! Pag

N

physical page

kernel data structure (if cached)
for cache hit on read/write
(or page fault for mmap’d memory) /

multiple designs; one idea: balanced tree =

OS datastructure

file + offset
(for read()/write())

31



virtual addr/file offset to physical page

virtual address
(used by program)

for cache hit on memory access
structure determined by hardware!

page table

N

physical page

kernel data structure (if cached)
for cache hit on read/write
(or page fault for mmap’d memory) /

multiple designs; one idea: balanced tree =

OS datastructure

file + offset
(for read()/write())

31



virtual addr/file offset to physical page

virtual address
(used by program)

for cache hit on memory access

. — page table
structure determined by hardware! Pag

N

physical page

kernel data structure (if cached)
for cache hit on read/write
(or page fault for mmap’d memory) /
multiple designs; one idea: balanced tree [

P & OS datastructure

file + offset
(for read()/write())

31



Linux: forward mapping

process control block (task_struct)

S\ T

open file info mmap region info
(struct fi le) (vm_area_struct)

Y

file on disk info
(struct inode)

Y

cached physical pages for file
(address_space)

A

page table

32



Linux: forward mapping

process control block (task_struct)

.............. .
/ \ page table

open file info mmap region info
(struct fi le) (vm_area_struct)

Y

file on disk info
(struct inode)

Y

cached physical pages for file
(address_space)

A




Linux: forward mapping

process control

block (task_struct)

R
.
R
-

read()/write()

o*
o*
.

page table

=

open file info
(struct file)

A

mmap region info
(vm_area_struct)

Y

file on disk info
(struct inode)

Y
cached physical pages for file
(address_space)

34



Linux: forward mapping

process control block (task_struct)

page table
A

open file info

mmap region info

(struct file)

Y

file on disk info
(struct inode)

Y

(vm_area_struct) [

cached physical pages for file
(address_space)

used to fil
(for mmap)

35



minor and major faults

minor page fault

page is already in page cache
just fill in page table entry

major page fault
page not cached, need to allocate

36



Linux: reporting minor/major faults

$ /usr/bin/time --verbose some-command
Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0

Major (requiring I/0) page faults: 0

Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423

Involuntary context switches: 53

Swaps: 0

Exit status: 0

37



Linux: forward mapping

process control block (task_struct)

S\ T

open file info mmap region info
(struct fi le) (vm_area_struct)

Y

file on disk info
(struct inode)

Y

cached physical pages for file
(address_space)

A

page table

38



Linux: tracking files in_memory

process control block (task_struct)

Y

open file info (struct file)

Lo ;

file on disk info (struct 1inode)

Y

o address_space
}; cached physical pages for file
mmap() virtual addresses for file

struct file {

struct inode *f_dinode;

struct inode {

struct address_space i_data;

struct address_space {

struct radix_tree_root 1_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mapp-
struct rb_root_cached i_mmap; /* tree of private and :

39



Linux: tracking files in_memory

process control block (task_struct)

Y

open file info (struct file)

Lo ;

file on disk info (struct 1inode)

Y

o address_space
}; cached physical pages for file
mmap() virtual addresses for file

struct file {

struct inode *f_dinode;

struct inode {

struct address_space i_data;

struct address_space {

struct radix_tree_root 1i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mapp-
struct rb_root_cached i_mmap; /* tree of private and :

39



mapped pages (read/wrlte shared)

file data, cached in memory

file data on disk/SSD

40



page cache components

virtual address

/ (used by program)

OS datastructure? page table

i o

......... hysical page
disk location == ... 7 ~ P (}i/f cachepd)g
cache miss: OS looks up location on disk /
OS datastructure OS datastructure

\ file + offset

(for read()/write())

41



virtual address/file offset — location on disk

virtual address
(used by program)

OS datastructure

/

disk location

N

OS datastructure

file + offset
(for read()/write())

physical page
(if cached)

42



virtual address/file offset — location on disk

virtual address
(used by program)

OS datastructure

/

disk location

N

OS datastructure based on filesystem — later topic

physical page
(if cached)

file + offset
(for read()/write())

42



virtual address/file offset — location on disk

virtual address
(used by program)

(Linux)
OS datastructure part of file: track mmap ‘regions’

/ swapped out non-file: trick: unused PTEs

hysical page
disk location phy pag

\ (if cached)

OS datastructure based on filesystem — later topic

file + offset
(for read()/write())

42



virtual address/file offset — location on disk

virtual address
(used by program)

(Linux)
OS datastructure part of file: track mmap ‘regions’

/ swapped out non-file: trick: unused PTEs

hysical page
disk location phy pag

\ (if cached)

OS datastructure based on filesystem — later topic

file + offset
(for read()/write())

43



recall: Linux maps

$ cat /proc/self/maps

00400000—-0040b000 r—xp 00000000 08:01 48328831
00602000—-0060bOOO r—p 00002000 08:01 48328831
0060b000—0060c000 rw—p 0000b000 08:01 48328831
01974000—-01995000 rw—p 00000000 00:00 O
7f60c718b00O-7f60c7490000 r—p 00000000 08:01
7f60c7490000—-7f60c764€000 r—xp 00000000 08:01
7f60c764€000—-7f60c784e000 ——p 001be@OO 08:01
7f60c784e000—-7f60c7852000 r—p 001be@OO 08:01
7f60c7852000—7f60c7854000 rw—p 001c2000 08:01
7f60c7854000—-7f60c7859000 rw—p 00000000 00:00
7f60c7859000—-7f60c787c000 r—xp 00000000 08:01
7f60c7a39000-7f60c7a3b00O® rw—p 00000000 00:00
7f60c7a7a000—-7f60c7a7b00O® rw—p 00000000 00:00
7f60c7a7b00O—-7f60Cc7a7c000 r—p 00022000 08:01
7f60c7a7c000-7f60c7a7dOOO® rw—p 00023000 08:01
7f60c7a7do0O—-7f60Cc7a7e000 rw—p 00000000 00:00
7ffc5d2b2000—-7ffc5d2d3000 rw—p 00000000 00:00
7ffc5d3b0000—-7ffc5d3b3000 r—p 00000000 00:00
7ffc5d3b3000—-7ffc5d3b5000 r—xp 00000000 00:00

FEFFFFffff600000—ffffffffff601000 r—xp 00000000 00:00 0

77483660
96659129
96659129
96659129
96659129
0
96659109
0
0
96659109
96659109
0
0
0
0

/bin/cat

/bin/cat

/bin/cat

[heap]
Jusr/1lib/locale/locale—archive
/1ib/x86_64—Llinux—gnu/libc—2.19
/1ib/x86_64—1inux—gnu/libc—2.19
/1ib/x86_64—Llinux—gnu/libc—2.19
/1ib/x86_64—T1inux—gnu/libc—2.19

/1ib/x86_64—Tlinux—gnu/1d—2.19.s
/1ib/x86_64—1inux—gnu/1d—2.19.s
/1ib/x86_64—Llinux—gnu/1ld—2.19.s
[stack]

[vvar]

[vdso]
[vsyscall]

44



Linux: tracking memory regions

stru

J

ct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;

ﬁéérot_t vm_page_prot;
unsigned long vm_flags;
éé;uct anon_vma *anon_vma;
dﬁéigned long vm_pgoff;
struct file * vm_file;

randomize_layout;

Our start address within vm_r
The first byte after our end
within vm_mm. */

Access permissions of this VI
Flags, see mm.h. */

Serialized by page_table_loc!
Offset (within vm_file) in Ps

units */
File we map to (can be NULL).

45



Linux: tracking memory regions

stru

J

ct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;

ﬁéérot_t vm_page_prot;
unsigned long vm_flags;
éé;uct anon_vma *anon_vma;
dﬁéigned long vm_pgoff;
struct file * vm_file;

randomize_layout;

process control block (task_struct)

Y

sorted list of mmap's

/! (vm_area_structs) [within vm_
/A er our end

within Vi _mm. */
open files (struct file)

f this VI

7* Flags, Eee mm.h. */
/* Serialized by page_table_loc!
/* Offset (within vm_file) in Ps

units */
/* File we map to (can be NULL).

45



Linux: tracking memory regions

stru

J

ct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;

pgprot_t vm_page_prot;
unsigned long vm_flags;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

/

/*

/*
/*

struct anon_vma *anon_vma; Vad

unsigned long vm_pgoff;
struct file * vm_file;

randomize_layout;

/*
/*

UOT _Start guaress wcoccorrcrr VI_T
The first byte after our end
within vm_mm. */

Access permissions of this VI
Flags, see mm.h. */

Serialized by page_table_loc!
Offset (within vm_file) in Ps

units */
File we map to (can be NULL).

45



Linux: tracking memory regions

stru

J

ct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;

ﬁéérot_t vim_page_prot;
unsigned long vm_flags;
éé;uct anon_vma *anon_vma;
dﬁéigned long vm_pgoff;
struct file * vm_file;

randomize_layout;

permissions (read/write/execute)

/*
/*

/*
/*
/*
/*
/*

Our start address within vm_r
The first byte after our end
within vm_mm. */

Access permissions of this VI
Flags, see mm.h. */

Serialized by page_table_loc!
Offset (within vm_file) in Ps

units */
File we map to (can be NULL).

45



Linux: tracking memory regions

stru

J

flags: private or shared? ..
private = copy-on-write
ct vm_area_struct { . shared = make changes to underlying file

unsigned long vm_start;
unsigned long vm_end;

ﬁéérot_t vm_page_prot;
unsigned long vm_flags;
éé;uct anon_vma *anon_vma;
dﬁéigned long vm_pgoff;
struct file * vm_file;

randomize_layout;

/

/*
/*
/*
/*
/*
/*

OUUOT Stadrt agaaress wcocCrrcrr vim_r
The first byte after our end
within vm_mm. */

Access permissions of this VI
Flags, see mm.h. */

Serialized by page_table_loc!
Offset (within vm_file) in Ps

units */
File we map to (can be NULL).

45



virtual address/file offset — location on disk

virtual address
(used by program)

(Linux)
OS datastructure part of file: track mmap ‘regions’

/ swapped out non-file: trick: unused PTEs

hysical page
disk location phy pag

\ (if cached)

OS datastructure based on filesystem — later topic

file + offset
(for read()/write())

46



Linux: tracking swapped out pages
need to lookup location on disk
potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

P P PW U|R PTE:

Address of 4KB page frame lgnored |G|A|D|A|C T f171 4KB
T D S|W page

PTE:

lgnored 0 not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

47



page cache components

virtual address
(used by program)

OS datastructure?

/

disk location

page table

N

\ allocating a physical page

choose page that's not being used much

physical page
(if cached)

7

OS datastructure |

file + offset
(for read()/write())

OS datastructure

page usage
(recently used? etc.)

48



tracking physical pages: finding free pages
Linux has list of “least recently used” pages:
struct page {

é‘.c;*uct list_head 1lru; /* list_head ~ next/prev pointer */
s

how we're going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, ..)

49



page cache components

virtual address
(used by program)

OS datastructure?

N

| T physical page
disk location (if cached)

I: might need to evict used page | oo e
requires removing pointers to it| 77 pranibintais

file + offset page usage
(for read()/write()) (recently used? etc.)
50




page cache components

virtual address —
(used by program) OS datastructure

OS datastructure?

page table

\
/

...............

--------------
-------
s e
s .
e .
......
.

physical page
\ (if cached)

[ need reverse mappings to find /

. OS datastructure

pointers to remove

disk location “

file + offset page usage
(for read()/write()) (recently used? etc.)
50



tracking physical pages: finding mappings
want to evict a page? remove from page tables, etc.

need to track where every page is used!

51



Linux: reverse mapping (file pages)

.

process control block (task_struct)

open file info
(struct file)

y

file on disk info
(struct -dinode)

Y

\

page table

mmap region info
(vm_area_struct)

A

(address_space)

cached physical pages for file

——

given page number
find references to that page
(e.g. to remove/change them)

per-physical page info
(struct page)

<+—— page number

52



Linux: reverse mapping (non-file pages)

process control block (task_struct)

mmap region info
(vm_area_struct)

A

\

page table

linked list of mmap regions
(anon_vma)

/

per-physical page info

given non-file page

(heap, copied-on-write copy of file, etc.)
find references to that page

(may be multiple because of fork, etc.)

(struct page) [ Page number

53



list of allocations per page

naive solution: seperate list for each page?
a lot of overhead (many tens of bytes per 4K page?)

but, trick: many pages ‘copied’ at the same time (e.g. fork)

idea: share list between all pages
initially: list one of mmap region
on fork: add to existing list; create a new one

54



Linux: tracking memory regions

stru

J

ct vm_area_struct {
unsigned long vm_start;
unsigned long vm_end;

ﬁéérot_t vm_page_prot;
unsigned long vm_flags;
éé;uct anon_vma *anon_vma;
dﬁéigned long vm_pgoff;
struct file * vm_file;

randomize_layout;

for finding other
uses of non-file pages
e.g. two copies after fork

OOr SCtdr Cc gadaress wccocrrcrr Vim_T
The first byte after our end
within vm_mm. */

Access permissions of this VI
Flags, see mm.h. */

Serialized by page_table_loc!
Offset (within vm_file) in Ps

units */
File we map to (can be NULL).

55



page replacement
step 1: evict a page to free a physical page

step 2: load new, more important in its place

56



evicting a page

find a ‘victim’' page to evict

remove victim page from page table, etc.

every page table it is referenced by
every list of file pages

if needed, save victim page to disk

57



page cache components

virtual address
(used by program)

OS datastructure?

/

disk location

N

OS datastructure

file + offset
(for read()/write())

‘\

OS datastructure

page table

N

physical page
(if cached)

7

OS datastructure

page usage
(recently used? etc.)

58



page replacement goals

hit rate: minimize number of misses
throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

59



max hit rate ~ max throughput

optimizing hit rate almost optimizes throughput, but..

60



max hit rate ~ max throughput
optimizing hit rate almost optimizes throughput, but..

cache miss costs are variable

creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?

60



being proactive?

can avoid misses by “reading ahead”

guess what's needed — read in ahead of time
wrong guesses can have costs besides more cache misses

we will get back to this later

for now — only access/evict on demand

61



optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady's MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

62



optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady's MIN
replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but..

62



Belady’'s MIN

referenced (virtual) pages:

time

Eggz# AlB|c| AlB
1 | A

2 B

3 C




Belady’'s MIN

referenced (virtual) pages:
time >

phys.
page#ABCABDADBCB
1 A
2 B
3 C D

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

63



Belady’'s MIN

referenced (virtual) pages:

time

Eggz# AlB|c| AlB
1 | A

2 B

3 C




Belady’'s MIN

referenced (virtual) pages:
time

.
EZZZ'#ABCABDADBCB
1 | A C
2 B
3 C D

A next accessed in oo time units

B next accessed in 1 time units

D next accessed in oo time units
choose to replace A or D (equally good)

63



Belady’'s MIN

referenced (virtual) pages:

time

Eggz# AlB|c| AlB
1 | A

2 B

3 C




Belady’'s MIN exercise

referenced (virtual) pages:

time

EZ;Z#ABCDBBACAD
1 A
2 B
3 C

exercise: What does this access to D replace? (A, B, or C?)

64



predicting the future?

can't really..

look for common patterns

65



the working set model
one common pattern: working sets

at any time, program is using a subset of its memory
set of running functions
their local variables, (parts of) global data structure

subset called its working set

rest of memory is inactive

..until program switches to different working set

66



working sets and running many programs
give each program its working set

..and, to run as much as possible, not much more
inactive — won't be used

67



working sets and running many programs
give each program its working set

..and, to run as much as possible, not much more
inactive — won't be used

replacement policy: identify working sets ~ recently used data

replace anything that's not in in it

67



cache size versus miss

blackscholes bodytrack canneal dedup
0o 20m nam 2o
_ a0 Wws1 . Wws1
£ Laon Wws1 . o Lo
3 pam ws2
k] ws2 .. ws2 Lo ws2
L. o \
oaon e
SRS HIRANATER AL SNTE SN IRANAYRGABRNT R R
SRESREERER RRRLLELE FLEH RRELEEHFEH
facesim fluidanimate freqmine
oo ws1
£ e ws1
g o ws2 Wws1
H 20m ws2
R Wws2
’ \1
oo
oo |
mNTe S NERRNITEREEANT TUTTIHEARARTREITRLY ANTERRERRNATRAE
TRTRRSRERERY NURRREERGRE SHREREEE
streamcluster swaptions vips
F sond S soa%
£ ws1
2 20m
T
Z WS2 o ws1
2 v( /
2am
o s
S T H R TEREEEE ERE
EEEREH EELEHHEEH
Cache Size (KB) Cache Size (KB) Cache Size (KB)
Figure 3: Miss rates versus cache size. Data assumes a shared 4-way associative cache with 64 byte lines. WS1 and WS2 refer to

important working sets which we analyze in more detail in Table 2. Cache requirements of PARSEC benchmark programs can reach

hundreds of megabytes.

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications”



estimating working sets

working set ~ what's been used recently
except when program switching working sets

so, what a program recently used ~ working set

can use this idea to estimate working set (from list of memory
accesses)

69



estimating working sets

working set ~ what's been used recently
except when program switching working sets

so, what a program recently used ~ working set

can use this idea to estimate working set (from list of memory
accesses)

69



practically optimizing for hit-rate
recall?: locality assumption
temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

70



practically optimizing for hit-rate
recall?: locality assumption
temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

70



least recently used (the good case)

referenced (virtual) pages:

time

EZZ:#ABCABDADB
1 | A

2 B

3 C




least recently used (the good case)

referenced (virtual) pages:

time

EZZ:#ABCABDADB
1 | A

2 B

3 C D

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

71



least recently used (the good case)

referenced (virtual) pages:

time

EZZ:#ABCABDADB
1 | A

2 B

3 C D




least recently used (the good case)

referenced (virtual) pages:
time

>
s Talelclale|olalole]c]s
pagesr
1 A C
2 B A last accessed in 3 time units ago
B last accessed in 1 time unit ago
3 C D D last accessed in 2 time units ago

choose to replace A

71



least recently used (the good case)

referenced (virtual) pages:

time

EZZZ'#ABCABDADB
1 | A

2 B

3 C D




least recently used (the worst case)

time

EZ;# AlBI|C AlB D| A
1 | A
2 B A D
3 C B A

72



least recently used (the worst case)

time

Eggz# AlB|lc|D|/A|B|C| DA

1 A D C

2 B A D

3 C B A
8 replacements with LRU
versus 3 replacements with MIN:

1 A

2 B C




least recently used (exercise) (1)

A

B

A

D

C

B

D

B

C

73



least recently used (exercise) (2)

A|lB A/ D|C|B|D|B|C
1 |AJAA]A
2 B|B|B
3 D

74



pure LRU implementation

implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:

remove page from linked list, then
add page to head of list

whenever a page needs to replaced:

remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

75



pure LRU implementation

implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:

remove page from linked lift, then

add| need to run code on every access
mechanism: make every access page fault

wheneve " . :
which will make everything really slow
rem —s ,

evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

75



page fault for every access?

want every access to page fault? make every page invalid
..but want access to happen eventually

..which requires marking page as valid

..which makes future accesses not fault

76



page fault for every access?

want every access to page fault? make every page invalid

..but want access to happen eventually

..which requires marking page as valid

..which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

..then reset pages as invalid

76



page fault for every access?

want every access to page fault? make every page invalid

..but want access to happen eventually

..which requires marking page as valid

..which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

..then reset pages as invalid

okay, so | took something really slow and made it slower

76



so, what’s practical

probably won't implement LRU — too slow

what can we practically do?

7



tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?"

78



tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?"

ways to detect accesses:

mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78



tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?"

ways to detect accesses:

mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78



tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?"

ways to detect accesses:

mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

78



recording accesses
goal: “check is this physical page still being used?”
software support: temporarily mark page table invalid

use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

79



temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx

page table for program 1 OS page info
VPN present? |writable? |- PPN
0x00000 |0 == p—
0x00001 0] -—= Jp— PPN last kn?own
access/
0x00123 (0] 0] . Ox4442

0x04442 |(never)

80



temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx .- (OS exception’s handler)

mov ©x123300, %ecx :oops! page fault

processor does lookup

page table for program 1 OS page info
VPN present? |writable? |- PPN :
0x00000 |0 - |- - :
Ox00001 0 - Jp— PPN last kn?own
. access/
—P0x00123 |0 0 OX4442 e

0x04442 |(never)




temporarily invalid PTE (software support)

program 1

mov 0x123456,
mov 0x123789,

mov 0x123300,

%ecx
%ecx

%ecx

page table for program 1

(OS exception’s handler) -

|

VPN present? |writable? |- PPN
0x00000 |0 - p—
0x00001 |0 - p—
0x00123 |1 ) Ox4442

the kernel

update page infoé +

mark present

OS page info
PPN last kn?own
access’
0Ox04442 at time X [«ereesuess

80



temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx
processor does lookup
no page fault, not recorded in OS info

page table for program 1 OS page info
VPN present? |writable? [~ PPN
Ox00000 0 —-——- JE—
0x00001 |0 -—= Jp— PPN last kn?own
access?
_>OX00123 1 0] . 0Ox4442

0x04442 [at time X |-

80



temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx
processor does lookup
no page fault, not recorded in OS info

page table for program 1 OS page info
VPN present? |writable? [~ PPN
Ox00000 0 —-——- JE—
0x00001 |0 -—= Jp— PPN last kn?own
access?
_>OX00123 1 0] . 0Ox4442

0x04442 [at time X |-

80



temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx
OS clears present bit

to check for next access
page table for program 1 OS page info
VPN present? |writable? [~ PPN
Ox00000 (0] - —
Ox00001 0 —-——— JRp— PPN last kn?own
access
0x00123 1 0 0x4442 |¢—

0x04442 |at time X |-




temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx
OS clears present bit

to check for next access
page table for program 1 OS page info
VPN present? |writable? [~ PPN
Ox00000 (0] - —
Ox00001 0 —-——— JRp— PPN last kn?own
access
0x00123 0 0 0x4442 |¢—

0x04442 |at time X |-




temporarily invalid PTE (software support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx  .---:p-(OS exception’s handler)

mov 0x123300, %ecx  :oops! page fault

processor does lookup

page table for program 1 OS page info
VPN present? |writable? |- PPN :
0x00000 |0 — |- —— :
0x00001 |0 -— - - : |pPN last known
. access/
—p-0x00123 |0 0 0x4442 |.i

0x04442 |at time X |-




temporarily invalid PTE (software support)

program 1

mov 0x123456,
mov 0x123789,

mov 0x123300,

%ecx
%ecx

%ecx

page table for program 1

the kernel

(OS exception's handler) --:-

|

VPN present? |writable? |- PPN
0x00000 |0 - p—
0x00001 |0 - p—
0x00123 |1 ) Ox4442

update page info: i

mark present

OS page info
PPN last kn?own
access’
0x04442 at time Y |@rsesdsn=s

80



accessed bit usage (hardware support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx

page table for program 1

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - -——= e J—
Ox00001 0 - - . R

0x00123 1 0 0 - 0x4442




accessed bit usage (hardware support)

program 1

mov 0x123456, %ecx

mov 0x123789, %ecx

mov 0x123300, %ecx

page table for program 1

processor does lookup
sets accessed bit to 1

the kernel

(OS exception’s handler)

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - - —__
Ox00001 (0] - - p—

81



accessed bit usage (hardware support)

program 1

mov 0x123456, %ecx

mov 0x123789, %ecx

mov 0x123300, %ecx

page table for program 1

processor does lookup
sets accessed bit to 1

the kernel

(OS exception’s handler)

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - - —__
Ox00001 (0] - - p—

81



accessed bit usage (hardware support)

program 1
mov 0x123456, %ecx

mov 0x123789, %ecx

mov 0x123300, %ecx

processor does lookup
keeps access bit set to 1
page table for program 1

the kernel

(OS exception’s handler)

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - - —__
Ox00001 (0] - - p—

81



accessed bit usage (hardware support)

program 1
mov 0x123456, %ecx

mov 0x123789, %ecx

mov 0x123300, %ecx

processor does lookup
keeps access bit set to 1
page table for program 1

the kernel

(OS exception’s handler)

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - - —__
Ox00001 (0] - - p—

81



accessed bit usage (hardware support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx

OS reads + records +
page table for program 1 clears access bit

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - -——= J—
Ox00001 0 - - R

0x00123 1 1 0 0x4442 <




accessed bit usage (hardware support)

program 1 the kernel
mov 0x123456, %ecx
mov 0x123789, %ecx (OS exception’s handler)

mov 0x123300, %ecx

OS reads + records +
page table for program 1 clears access bit

VPN present? |accessed? |writable? |- PPN
Ox00000 0] - -——= J—
Ox00001 0 - - R

0x00123 1 0 0 0x4442 <




accessed bit usage (hardware support)

program 1

mov 0x123456, %ecx
mov 0x123789, %ecx

mov 0x123300, %ecx
processor does lookup

sets accessed bit to 1 (again)

page table for program 1

the kernel

(OS exception’s handler)

VPN present? |accessed? |writable? |-

Ox00000 0 - -

0x00001 0 - -

—P-0x00123 1 0 0

0x4442

81



accessed bit usage (hardware support)

program 1

mov 0x123456, %ecx
mov 0x123789, %ecx

mov 0x123300, %ecx
processor does lookup

sets accessed bit to 1 (again)

page table for program 1

the kernel

(OS exception’s handler)

VPN present? |accessed? |writable? |-

Ox00000 0 - -

0x00001 0 - -

——P0x00123 1 1 0

0x4442

81



accessed bits: multiple processes

page table for program 1

VPN present? |accessed? |writable? |- PPN
Ox00000 0 -== - p—
Ox00001 0] -== - p—
0x00123 1 0 0 0x4442
page table for program 2
VPN present? |accessed? |writable? |- PPN
Ox00000 0 -== -—= p—
Ox00001 0 -== -——= p—
Ox00483 1 1 0 0x4442

OS needs to clear+checkall

82



dirty bits
“was this part of the mmap'd file changed?”

“is the old swapped copy still up to date?”
software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

83



x86-32 accessed and dirty bit

P P Pw U|R PTE:
Address of 4KB page frame lgnored | G| A} D|A[|C T f1r1 4KB
T D S|w page
1
PTE:
Ignored 0 not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

A: acccessed — processor sets to 1 when PTE used

used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write




85



backup slides

86



aside: Zipf model

working set model makes sense for programs

but not the only use of caches

example: Wikipedia — most popular articles

87



Wikipedia page views for 1 hour

# Views
=
o
w
1

[y

(=)
N
L

101 <

100 4

100 10! 102 103 104 10° 106
Rank

NOTE: log-log-scale
88



Zipf distribution
Zipf distribution: straight line on log-log graph of rank v. count

a few items a much more popular than others
most caching benefit here

long tail: lots of items accessed a very small number of times
more cache less efficient — but does something
not like working set model, where there's just not more

89



good caching strategy for Zipf
keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

90



good caching strategy for Zipf
keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia's caches do?

90



alternative policies for Zipf

least frequently used
very simple policy
if pure Zipf distribution — what you want
practical problem: what about changes in popularity?

least frequently used + adjustments for ‘recentness’

more?

91



models of reuse

working set /locality

active things are likely to be active soon
what's popular changes over time
want: something like least-recently used

Zipf distribution
some things are just popular always
want: something like least-frequently used

other models?
when X is loaded, Y is always needed?
want: identify pairs of related values, load/discard together
some things are only used once
want: identify these, do not cache

92



the page cache
memory is a cache for disk

files, program memory has a place on disk

running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage

possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

93



the page cache
memory is a cache for disk

files, program memory has a place on disk

running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage

possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

93



memory as a cache for disk
“cache block” = physical page

fully associative
any virtual address/file part can be stored in any physical page

replacement is managed by the OS

normal cache hits happen without OS
common case that needs to be fast

94



Linux: physical page — file — PTE
Linux tracking where file pages are in page tables:
struct page {

struct address_space *mapping;
pgoff_t 1index; /* Our offset within mapping. */

s

struct address_space {

é%éuct rb_root_cached i_mmap; /* tree of private and sharc
13
tree of mappings lets us find vm_area_structs and PTEs

rather complicated look up (but writing ot disk is already slow)

96



detecting accesses

non-mmap file reads/writes — modify read () /write()

otherwise, two options:...

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

97



detecting accesses

non-mmap file reads/writes — modify read () /write()

otherwise, two options:...

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

97



detecting accesses

non-mmap file reads/writes — modify read () /write()

otherwise, two options:...

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

97



x86-32 accessed and dirty bit

P P Pw U|R PTE:
Address of 4KB page frame lgnored | G| A} D|A[|C T f1r1 4KB
T D S|w page
1
PTE:
Ignored 0 not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

A: acccessed — processor sets to 1 when PTE used

used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write




multiple mappings?

page can have many page table entries

file mmap’d in many processes (e.g. 10 instances of emacs.exe)
copy-on-write pages after fork
address in kernel memory + address in user memory?

want to check all the accessed bits

99



aside: detecting write accesses
for updating mmap files/swap want to detect writes
same options as detect accesses in general:

software-only: temporarily set page table entry read-only
page fault handler records write 4 sets as writeable

hardware assisted: hardware sets dirty bit in page table
OS scans dirty bits later

100



working set model and phases
what happens when a program changes what it's doing?

e.g. finish parsing input, now process it

phase change — discard one working set, gain another

phase changes likely to have spike of cache misses
whatever was cached, not what's being accessed anymore
maybe along with change in kind of instructions being run

101



evidence of phases (gzip)

0.8

ul2
x 108

energy
x10°

=] co

o ! = oM

e i l.l

i = I | - —
T

LH ,1,,#,,-1
|

i
x10%

oo
(=N
1.1

dl1
x 108
BEE b e
pealinlinley
31

Do
=)
5F
deT £

0

15 M M M M F

o g4
e
= ke

0 \ T

0 50 100

(a) Me. of instructions (billions)

Sherwood et al, “Discovering and Exploiting Program Phases” 102



ev

dence of phases (gcc)

@ 3 A
2 o
CRON
0 At PR e R S
6_
5‘:0_ 44
%x 2
0_
o 200
=2 300
~ = 200
100
0
4
2 3
=2 2
B
0
150
B 2100
&% 50
0
2
15
K2 1
B 05
e
10 20 30 40
(b) No. of instructions (billions)

Sherwood et al, “Discovering and Exploiting Program Phases”

103



estimating working sets

working set ~ what's been used recently
assuming not in phase change..

so, what a program recently used ~ working set

can use this idea to estimate working set (from list of memory
accesses)

104



using working set estimates

one idea: split memory into part of working set or not

105



using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

105



using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

105



	copy-on-write
	mmap
	mmap interface
	Linux: /proc/PID/maps
	read-only mmaps
	shared mmaps
	copy-on-write mmaps
	unbacked maps and swapping (simple)
	copy-on-write maps and swapping

	generalizing mmap: swapping
	memory as a cache for disk
	page cache components
	forward mappings: cache hits

	handling evictions
	on page replacement choices
	page replacement policy goals
	Belady's MIN
	the working set model
	LRU
	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	accessed/dirty bit

	Backup slides
	aside: Zipf model
	cache model summary
	memory as a cache for disk
	linux maps example
	Linux reverse page map (code)
	accessed/dirty bit (text version)
	working set and phases


