
virtual memory 3

1

last time
mmap: mapping files into program memory

shared (modify file) or copy-on-write (do not modify file)

process memory as a list of regions setup with mmap

page cache: memory as cache for (files, program data)
cache because everything has place on disk/SSD
hit: managed by CPU with page table
miss: managed by OS

minimizing page cache misses: Belady’s MIN

practical algorithms from working set assumption: LRU-like

accessed and dirty bits

2

on exam regrades (1)
yes, I wish we proofread the exam more carefully

and, yes, I’m still trying to get better at foreclosing unexpected (to me)
interpretations of questions

in some cases we accepted additional answers that weren’t on the
key

e.g. multiple system calls to read file

if you wrote comments regrading your interpretation of a question
and think they weren’t read or read carefully, please submit a
regrade

3

on exam regrades (2)
on the monitor question:

it was pointed out to me that the key we graded with had a condition
that caused pending non-videos to wait more often than necessary
non-videos should have waited only when a pending video and 4
non-videos running
…can’t just omit the pending condition: otherwise new non-video
downloads can go in between when the video download is signalled and
when it wakes up from the signal
I believed I’ve scan through all the Q7s to find cases where we marked
the fully correct answer wrong;

4

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

5

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

5

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

5

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

6

second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

6

second chance example: exercise (1)
A B C D — — — B A

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

exercise: What does this access to A replace? (D, B, or C?)
what is at end of list after? (PP 1, 2, or 3?)

7

second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

8

second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

8

second chance example (2)
A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

9

second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

10

second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

10

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

11

tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

12

tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

13

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

14

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

14

non-lazy writeback
what happens when a computer loses power

how much data can you lose?

if we never run out of memory…all of it?
no changed data written back

solution: track or scan for dirty pages and writeback

example goals:
lose no more than 90 seconds of data
force writeback at file close
…

15

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

16

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

16

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

17

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

17

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

17

CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: don’t consider pages active until the second access

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

18

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages
initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

19

default Linux page replacement summary

Figure: https://linux-mm.org/PageReplacementDesign 20

https://linux-mm.org/PageReplacementDesign

default Linux page replacement summary
identify inactive pages — guess: not going to be accessed soon

file pages which haven’t been accessed more than once, or
any pages which haven’t been accessed recently

some minimum threshold of inactive pages
add to inactive list in background
detecting references — scan referenced bits
(I thought Linux marked as invalid — but wrong: not on x86)
detect enough references — move to active

oldest inactive page still not used → evict that one
otherwise: give it a second chance

21

being proactive
previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?

22

readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

23

readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

23

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
when to start reads?
how much to readahead?
what state to keep?

24

Linux readahead heuristics — how much
how much to readahead?

Linux heuristic: count number of cached pages from before

guess we should read about that many more
(plus minimum/maximum to avoid extremes)

goal: readahead more when applications are using file more

goal: don’t readahead as much with low memory

25

Linux readahead heuristics — when
track “readahead windows” — pages read because of guess:

|<−−−−− async_size −−−−−−−−−|
|−−−−−−−−−−−−−−−−−−− size −−−−−−−−−−−−−−−−−−−−>|
|==================#===========================|
^start ^page marked with PG_readahead

when async_size pages left, read next chunk

marked page = detect reads to this page
one option: make page temporary invalid

idea: keep up with application, but not too far ahead

ASCII art figure: comments of Linux readahead code 26

thrashing
what if there’s just not enough space?

for program data, files currently being accessed

always reading things from disk

causes performance collapse — disk is really slow

known as thrashing

27

‘fair’ page replacement
so far: page replacement about least recently used

what about sharing fairly between users?

28

sharing fairly?
process A

4MB of stack+code, 16MB of heap
shared cached 24MB file X

process B
4MB of stack+code, 16MB of heap
shared cached 24MB file X

process C
4MB of stack+code, 4MB of heap
cached 32MB file Y

process D+E
4MB of stack+code (each), 70MB of heap (each)
but all heap + most of code is shared copy-on-write

29

accounting pages
shared pages make it difficult to count memory usage

Linux cgroups accounting (mostly): last touch
count shared file pages for the process that last ‘used’ them
…as detected by page fault for page

30

Linux cgroup limits
Linux “control groups” of processes

can set memory limits for group of proceses:

low limit: don’t ‘steal’ pages when group uses less than this
always take pages someone is using (unless no choice)

high limit: never let group use more than this
replace pages from this group before anything else

…

31

Linux cgroups
Linux mechanism: seperate processes into groups:

webserver webapp …
cgroup website

bash (shell) ls …

cgroup login

can set memory and CPU and …shares for each group

32

Linux cgroup memory limits

m
em

or
y
us
ag
e

low limit

high limit

max

0 GB

memory capacity
actively deallocate pages cgroup is using

if other processes need memory,
take from this group

do not take from this group
for other groups
(even if pages not recently used)

33

page cache/replacement summary
program memory + files — swapped to disk, cached in memory
mostly, assume working set model

keep (hopefully) small active set in memory
least recently used variants

special cases for non-LRU-friendly patterns (e.g. scans)
maybe more we haven’t discussed?

being proactive (writeback when idle, readahead, pool of pre-evicted
pages)
handling non-miss-rate goals

fair replacement: limit active memory per user?
probably more we haven’t discussed here? optimizing throughput? fair
throughput between users?

34

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

35

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

35

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

35

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

35

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

35

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

recall: layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

37

ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

38

devices as files
talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

39

example device files from a Linux desktop
/dev/snd/pcmC0D0p — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

40

devices: extra operations?
read/write/mmap not enough?

audio output device — set format of audio? headphones plugged in?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control) — device driver-specific interface
tcsetattr (for terminal settings)
fcntl
…

also possibly extra device files for same device:
/dev/snd/controlC0 to configure audio settings for
/dev/snd/pcmC0D0p, /dev/snd/pcmC0D10p, …

41

42

backup slides

43

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

44

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

44

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

44

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

44

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

44

POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

45

the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

46

the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

46

	implementing LRU-like page replacement
	approximating LRU: second-chance
	approximating LRU: SEQ
	approximating LRU: CLOCK

	faster allocation: dirty writeback and free lists
	non-LRU patterns
	read once patterns
	readahead

	thrashing
	`fair' page replacement
	page cache/replacement summary
	device driver interfaces
	review: everything is a file

	devices as files
	backup slides
	swapping timeline
	everything is a file (full)

