
devices / filesystems (start)

1



last time
practical LRU approximations

second chance
SEQ: active/inactive list
CLOCK algorithms generally (scanning accessed bits)

being proactive
writeback in advance
readahead
maintaining little list of pre-evicted pages

recall: buffers in the kernel

device files

2



ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

3



devices as files
talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

4



example device files from a Linux desktop
/dev/snd/pcmC0D0p — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

5



devices: extra operations?
read/write/mmap not enough?

audio output device — set format of audio? headphones plugged in?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control) — device driver-specific interface
tcsetattr (for terminal settings)
fcntl
…

also possibly extra device files for same device:
/dev/snd/controlC0 to configure audio settings for
/dev/snd/pcmC0D0p, /dev/snd/pcmC0D10p, …

6



Linux example: file operations
(selected subset — table of pointers to functions)
struct file_operations {

...
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,x

size_t, loff_t *);
...
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
...
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);
...
int (*release) (struct inode *, struct file *);
...

};

7



special case: block devices
devices like disks often have a different interface

unlike normal file interface, works in terms of ‘blocks’
block size usually equal to page size

for working with page cache
read/write page at a time

8



Linux example: block device operations
struct block_device_operations {

int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *,

sector_t, struct page *, bool);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
...

};

read/write a page for a sector number (= block number)

9



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

10



device driver flow thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

10



device driver flow thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

10



xv6: device files (1)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

inode = represents file on disk

pointed to by struct file referenced by fd

11



xv6: device files (2)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

array of types of devices
special type of file on disk has index into array

“device number”
created via mknod() system call

similar scheme used on real Unix/Linux
two numbers: major + minor device number

12



xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console

13



xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console

13



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

14



xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){

if(myproc()−>killed){
...
return −1;

}
sleep(&input.r, &cons.lock);

}
...

}
release(&cons.lock)
...

}

if at end of buffer
r = reading location, w = writing location

put thread to sleep

15



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

16



xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)

17



xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)

17



xv6: console top half
wait for buffer to fill

no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat

18



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

19



xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

20



xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

20



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

21



xv6: console interrupt reading
kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)

22



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

23



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

23



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

23



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

23



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

23



bus adaptors

processor
interrupt
controller

memory bus

other processors… actual memory

other devices
or

other bus adaptors

bus adaptor

other devices

device controller
status
read?
write?…

control registers buffers/queues

external hardware?

different bus

24



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

25



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

25



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

25



device as magic memory (2)
example: display controller

write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface

write to buffers

write “send now” signal to magic memory location — send data

read from “status” location, buffers to receive

26



what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

27



what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

27



what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

27



aside: I/O space
x86 has a “I/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically — and sometimes still: separate I/O bus

more recent processors/devices usually use memory addresses
no need for more instructions, buses
always have layers of bus adaptors to handle compatibility issues
other reasons to have devices and memory close (later)

28



xv6 keyboard access
two control registers:

KBSTATP: status register (I/O address 0x64)
KBDATAP: data buffer (I/O address 0x60)

// inb() runs 'in' instruction: read from I/O address
st = inb(KBSTATP);
// KBS_DIB: bit indicates data in buffer
if ((st & KBS_DIB) == 0)
return −1;

data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */

29



programmed I/O
“programmed I/O”: write to or read from device controller buffers
directly

OS runs loop to transfer data to or from device controller

might still be triggered by interrupt
new data in buffer to read?
device processed data previously written to buffer?

30



direct memory access (DMA)

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller

external hardware?

observation: devices can read/write memory

can have device copy data to/from memory

31



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

32



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

32



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

32



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

32



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

32



direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller

33



direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller

33



OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?

i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

34



OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?
i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

34



OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?
i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

34



exercise
system is running two applications

A: reading from network
B: doing tons of computation

timeline:
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

exercise 1: how many kernel/user mode switches?

exercise 2: how many context switches?

35



how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?1 2 3 4? 5? 6? 7? 8?

36



how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?

1 2 3 4? 5? 6? 7? 8?

36



how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?

1 2 3 4? 5? 6? 7? 8?

36



how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2

37



how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2

37



IOMMUs
typically, direct memory access requires using physical addresses

devices don’t have page tables
need contiguous physical addresses (multiple pages if buffer >page size)
devices that messes up can overwrite arbitrary memory

recent systems have an IO Memory Management Unit
“pagetables for devices”
allows non-contiguous buffers
enforces protection — broken device can’t write wrong memory location
helpful for virtual machines

38



devices summary
device controllers connected via memory bus

usually assigned physical memory addresses
sometimes separate “I/O addresses” (special load/store instructions)

controller looks like “magic memory” to OS
load/store from device controller registers like memory
setting/reading control registers can trigger device operations

two options for data transfer
programmed I/O: OS reads from/writes to buffer within device controller
direct memory access (DMA): device controller reads/writes normal
memory

39



filesystems

40



hard drive interfaces
hard drives and solid state disks are divided into sectors

historically 512 bytes (larger on recent disks)

disk commands:
read from sector i to sector j
write from sector i to sector j this data

typically want to read/write more than sector— 4K+ at a time

41



filesystems
filesystems: store hierarchy of directories on disk

disk is a flat list of sectors of data
home

aaron

cs2150 cs4970 mail

lab1 lab2 proj1

proj.hcoll.h coll.cpp

(figure adapted from Bloomfield’s CS 2150 slides) 42



filesystem problems
given a file (identified how?), where is its data?

which sectors? parts of sectors?

given a directory (identified how?), what files are in it?

given a file/directory, where is its metadata?
owner, modification date, permissions, size, …

making a new file: where to put it?

making a file/directory bigger: where does new data go?

43



the FAT filesystem
FAT: File Allocation Table

probably simplest widely used filesystem (family)

named for important data structure: file allocation table

44



FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25

45



FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25
45



FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

46



FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

46



FAT: the file allocation table
big array on disk, one entry per cluster

each entry contains a number — usually “next cluster”
cluster num. entry value
0 4
1 7
2 5
3 1434… …
1000 4503
1001 1523… …

47



FAT: reading a file (1)
get (from elsewhere) first cluster of data

linked list of cluster numbers

next pointers? file allocation table entry for cluster
special value for NULL (-1 in this example; maybe different in real FAT)

cluster
num.

entry value
… …
10 14
11 23
12 54
13 -1 (end mark)
14 15
15 13
… …

file starting at cluster 10 contains data in:
cluster 10, then 14, then 15, then 13

48



FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

49



FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

49



FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

49



FAT: reading files
to read a file given it’s start location

read the starting cluster X

get the next cluster Y from FAT entry X

read the next cluster

get the next cluster from FAT entry Y

…

until you see an end marker

50



start locations?
really want filenames

stored in directories!

in FAT: directory is a file, but its data is list of:

(name, starting location, other data about file)

51



finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

52



finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

52



finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

52



finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

52



FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

53



FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

53



FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

53



FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

53



FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

53



FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

53



aside: FAT date encoding
seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

54



FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

55



FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

55



FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

55



FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

55



nested directories
foo/bar/baz/file.txt

read root directory entries to find foo

read foo’s directory entries to find bar

read bar’s directory entries to find baz

read baz’s directory entries to find file.txt

56



the root directory?
but where is the first directory?

57



backup slides

58



ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

59



devices as files
talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

60



example device files from a Linux desktop
/dev/snd/pcmC0D0p — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

61



devices: extra operations?
read/write/mmap not enough?

audio output device — set format of audio? headphones plugged in?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control) — device driver-specific interface
tcsetattr (for terminal settings)
fcntl
…

also possibly extra device files for same device:
/dev/snd/controlC0 to configure audio settings for
/dev/snd/pcmC0D0p, /dev/snd/pcmC0D10p, …

62


	devices as files
	Linux device driver interface
	device driver flow chart
	example top/bottom half

	device interfaces generally
	direct-memory access
	exercise
	IOMMUs

	devices summary
	[begin filesystem section]
	disk sectors
	filesystem problems
	the FAT filesystem
	intro and file allocation table
	reading a file
	directories are files

	backup slides
	devices as files


