
filesystems 2 / HDDs and SSDs

1

Changelog
Changes made in this version not seen in first lecture:

6 November: sector numbers: low sector numbers probably near faster
outside of disk not center

1

last time
device driver top/bottom halfs

“top half” — called from program request, checks buffer and waits
“bottom half” — caled via interrupt, fills buffer and wakes

devices as magic memory
devices talk to memory: direct memory access (DMA)

instead of reading or writing on-controller buffer

filesystem problems: finding files, space for files, …

disk interface: read/write whole sectors
FAT

file allocation table: linked list of clusters
directories = files containing list of names + start clusters

3

start locations?
really want filenames

stored in directories!

in FAT: directory is a file, but its data is list of:

(name, starting location, other data about file)

4

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

5

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

5

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

5

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

5

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

6

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

6

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

6

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

6

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

6

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

6

aside: FAT date encoding
seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

7

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

8

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

8

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

8

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

8

nested directories
foo/bar/baz/file.txt

read root directory entries to find foo

read foo’s directory entries to find bar

read bar’s directory entries to find baz

read baz’s directory entries to find file.txt

9

the root directory?
but where is the first directory?

10

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

11

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

11

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

11

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

11

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

11

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT
backup FAT

root directory
starts here

reserved sectors

11

filesystem header
fixed location near beginning of disk

determines size of clusters, etc.

tells where to find FAT, root directory, etc.

12

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation tablenumber of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

13

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation tablenumber of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

13

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation table

number of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

13

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation table

number of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

13

FAT: creating a file
add a directory entry

choose clusters to store file data (how???)

update FAT to link clusters together

14

FAT: creating a file
add a directory entry

choose clusters to store file data (how???)

update FAT to link clusters together

14

FAT: free clusters
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 21
0 (free) 22
-1 (end) 23
0 (free) 24
35 25
48 26
0 (free) 27
… …

file allocation table

15

FAT: writing file data
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

16

FAT: replacing unused directory entry
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
unused entry“new.txt”, cluster 21, size …
…

directory’s data

17

FAT: extending directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

directory’s data (first cluster)

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

directory’s data (new second cluster)

18

FAT: deleting files
reset FAT entries for file clusters to free (0)

write “unused” character in filename for directory entry
maybe rewrite directory if that’ll save space?

19

exercise
say FAT filesystem with:

4-byte FAT entries
32-byte directory entries
2048-byte clusters

how many FAT entries+clusters (outside of the FAT) is used to
store a directory of 200 30KB files?

count clusters for both directory entries and the file data

how many FAT entries+clusters is used to store a directory of 2000
3KB files?

20

FAT pros and cons?

21

hard drive operation/performance

22

why hard drives?
what filesystems were designed for

currently most cost-effective way to have a lot of online storage

solid state drives (SSDs) imitate hard drive interfaces

23

hard drives

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

-1

-2

-3

-4

-5

-6

-7

-8

plattersstack of flat discs
(only top visible)

spins when operating

headsread/write
magnetic signals

on platter surfaces

arm
rotates to position heads

over spinning platters

hard drive image: Wikimedia Commons / Evan-Amos 24

sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

25

sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

25

sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

25

sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

25

sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

25

disk latency components
queue time — how long read waits in line?

depends on number of reads at a time, scheduling strategy

disk controller/etc. processing time

seek time — head to cylinder

rotational latency — platter rotate to sector

transfer time

26

cylinders and latency
cylinders closer to edge of disk are faster (maybe)

less rotational latency

27

sector numbers
historically: OS knew cylinder/head/track location

now: opaque sector numbers
more flexible for hard drive makers
same interface for SSDs, etc.

typical pattern: low sector numbers = probably closer to edge
(faster)

typical pattern: adjacent sector numbers = adjacent on disk

actual mapping: decided by disk controller

28

OS to disk interface
disk takes read/write requests

sector number(s)
location of data for sector
modern disk controllers: typically direct memory access

can have queue of pending requests

disk processes them in some order
OS can say “write X before Y”

29

hard disks are unreliable
Google study (2007), heavily utilized cheap disks

1.7% to 8.6% annualized failure rate
varies with age
≈ chance a disk fails each year
disk fails = needs to be replaced

9% of working disks had reallocated sectors

30

bad sectors
modern disk controllers do sector remapping

part of physical disk becomes bad — use a different one
disk uses error detecting code to tell data is bad
similar idea to storing + checking hash of data

this is expected behavior

maintain mapping (special part of disk, probably)

31

queuing requests
recall: multiple active requests

queue of reads/writes
in disk controller and/or OS

disk is faster for adjacent/close-by reads/writes
less seek time/rotational latency

32

disk scheduling
schedule I/O to the disk

schedule = decide what read/write to do next
by OS: what to request from disk next?
by controller: which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests

33

disk scheduling
schedule I/O to the disk

schedule = decide what read/write to do next
by OS: what to request from disk next?
by controller: which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests

33

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

34

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

34

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

34

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

34

disk scheduling
schedule I/O to the disk

schedule = decide what read/write to do next
by OS: what to request from disk next?
by controller: which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests

35

one idea: SCAN
time = disk I/O request

disk head

inside of disk

outside of disk
36

another idea: C-SCAN (C=circular)
time = disk I/O request

disk head

inside of disk

outside of disk

scan in single direction
maybe more fair than SCAN
(doesn’t favor middle of disk)

maybe disk has fast way of ‘resetting’ head to outside?

37

another idea: C-SCAN (C=circular)
time = disk I/O request

disk head

inside of disk

outside of disk

scan in single direction
maybe more fair than SCAN
(doesn’t favor middle of disk)

maybe disk has fast way of ‘resetting’ head to outside?

37

another idea: C-SCAN (C=circular)
time = disk I/O request

disk head

inside of disk

outside of disk

scan in single direction
maybe more fair than SCAN
(doesn’t favor middle of disk)

maybe disk has fast way of ‘resetting’ head to outside?

37

some disk scheduling algorithms (text)
SSTF : take request with shortest seek time next

subject to starvation — stuck on one side of disk
could also take into account rotational latency — yields SPTF

shortest positioning time first

SCAN/elevator : move disk head towards center, then away
let requests pile up between passes
limits starvation; good overall throughput

C-SCAN: take next request closer to center of disk (if any)
variant of scan that moves head in one direction
avoids bias towards center of disk

38

caching in the controller
controller often has a DRAM cache

can hold things controller thinks OS might read
e.g. sectors ‘near’ recently read sectors
helps hide sector remapping costs?

can hold data waiting to be written
makes writes a lot faster
problem for reliability

39

disk performance and filesystems
filesystem can…

do contiguous or nearby reads/writes
bunch of consecutive sectors much faster to read
nearby sectors have lower seek/rotational delay

start a lot of reads/writes at once
avoid reading something to find out what to read next
array of sectors better than linked list

40

solid state disk architecture
controller

(includes CPU)

RAM

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

41

flash
no moving parts

no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
after that, flash starts failing

42

SSDs: flash as disk
SSDs: implement hard disk interface for NAND flash

read/write sectors at a time
sectors much smaller than erasure blocks
sectors sometimes smaller than flash ‘pages’
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out

43

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

44

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

44

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

44

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

44

block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260 187
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

44

block remapping
controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose

45

SSD performance
reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)

46

extra SSD operations
SSDs sometimes implement non-HDD operations

on operation: TRIM

way for OS to mark sectors as unused/erase them

SSD can remove sectors from block map
more efficient than zeroing blocks
frees up more space for writing new blocks

47

aside: future storage
emerging non-volatile memories…

slower than DRAM (“normal memory”)

faster than SSDs

read/write interface like DRAM but persistent

capacities similar to/larger than DRAM

48

xv6 filesystem
xv6’s filesystem similar to modern Unix filesytems

better at doing contiguous reads than FAT

better at handling crashes

supports hard links (more on these later)

divides disk into blocks instead of clusters

file block numbers, free blocks, etc. in different tables

49

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

50

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

50

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

50

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

50

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

50

xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

50

xv6 directory entries
struct dirent {
ushort inum;
char name[DIRSIZ];

};

inum — index into inode array on disk

name — name of file or directory

each directory reference to inode called a hard link
multiple hard links to file allowed!

51

xv6 allocating inodes/blocks
need new inode or data block: linear search

simplest solution: xv6 always takes the first one that’s free

52

xv6 inode: direct and indirect blocks
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs

…

data blocks

…

indirect block of
direct blocks

53

xv6 file sizes
512 byte blocks

2-byte block pointers: 256 block pointers in the indirect block

256 blocks = 131072 bytes of data referenced

12 direct blocks @ 512 bytes each = 6144 bytes

1 indirect block @ 131072 bytes each = 131072 bytes

maximum file size

54

backup slides

55

error correcting codes
disk store 0s/1s magnetically

very, very, very small and fragile

magnetic signals can fade over time/be damaged/interfere/etc.

but use error detecting+correcting codes
details? CS/ECE 4434 covers this

error detecting — can tell OS “don’t have data”
result: data corruption is very rare
data loss much more common

error correcting codes — extra copies to fix problems
only works if not too many bits damaged

56

	FAT, continued
	directories are files
	header for the disk
	allocating files
	deleting files

	exercise
	pros and mostly cons of FAT
	aside: why HDDs?
	sectors, platters, cylinders, etc.
	seek time, rotational latency, transfer time
	OS to disk interface
	error correcting codes, bad blocks
	queuing, hardware and software
	caching in the controller
	disk performance and filesystems

	SSD operation and performance
	generally
	block remapping
	performance
	TRIM

	misc. storage media
	xv6 filesystem
	inodes, direct, indirect blocks

	backup slides

