
filesystems 3

1



last time
FAT headers, free space, allocating space

hard disk performance
seek times from physical movement of disk head
queues of requests, scheduled to control seek time
smarts in controller: bad blocks, scheduling

solid state disks
block remapping to hide erasure blocks in flash

xv6 filesystem
inodes contain info about file blocks, type, size, etc. (instead of directory
entries)

2



xv6 filesystem
xv6’s filesystem similar to modern Unix filesytems

better at doing contiguous reads than FAT

better at handling crashes

supports hard links (more on these later)

divides disk into blocks instead of clusters

file block numbers, free blocks, etc. in different tables

4



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

5



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

5



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

5



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];

// Data block addresses
};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

5



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

5



xv6 disk layout

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bl
oc

k
nu

m
be

r

the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map

5



xv6 directory entries
struct dirent {
ushort inum;
char name[DIRSIZ];

};

inum — index into inode array on disk

name — name of file or directory

each directory reference to inode called a hard link
multiple hard links to file allowed!

6



xv6 allocating inodes/blocks
need new inode or data block: linear search

simplest solution: xv6 always takes the first one that’s free

7



xv6 inode: direct and indirect blocks
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs

…

data blocks

…

indirect block of
direct blocks

8



xv6 file sizes
512 byte blocks

2-byte block pointers: 256 block pointers in the indirect block

256 blocks = 131072 bytes of data referenced

12 direct blocks @ 512 bytes each = 6144 bytes

1 indirect block @ 131072 bytes each = 131072 bytes

maximum file size = 6144 + 131072 bytes

9



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

10



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

10



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of timessimilar pointers like xv6 FS — but more indirection

10



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of times

similar pointers like xv6 FS — but more indirection

10



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of times

similar pointers like xv6 FS — but more indirection

10



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

11



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

11



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

11



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer
triple-indirect pointer

11



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer

triple-indirect pointer

11



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer

triple-indirect pointer

11



ext2 indirect blocks
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

12



ext2 indirect blocks
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

12



indirect block advantages
small files: all direct blocks + no extra space beyond inode

larger files — more indirection
file should be large enough to hide extra indirection cost

(log N)-like time to find block for particular offset
no linear search like FAT

13



sparse files
the xv6 filesystem and ext2 allow sparse files

“holes” with no data blocks
#include <stdio.h>
int main(void) {

FILE *fh = fopen("sparse.dat", "w");
fseek(fh, 1024 * 1024, SEEK_SET);
fprintf(fh, "Some data here\n");
fclose(fh);

}

sparse.dat is 1MB file which uses a handful of blocks

most of its block pointers are some NULL (‘no such block’) value
including some direct and indirect ones

14



xv6 inode: sparse file
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs data blocks
data for bytes 512-1024

data for bytes 6656-7168

data for bytes 7680-8192

data for bytes 8192-8704

…

block of
indirect blocks

(none)

(none)
(none)

(none)
(none)

(none)

(none)

(none)

15



hard links
xv6/ext2 directory entries: name, inode number

all non-name information: in the inode itself

each directory entry is called a hard link

a file can have multiple hard links

16



ln
$ echo "Text A." >test.txt
$ ln test.txt new.txt
$ cat new.txt
Text A.
$ echo "Text B." >new.txt
$ cat new.txt
Text B.
$ cat test.txt
Text B.

ln OLD NEW — NEW is the same file as OLD

17



link counts
xv6 and ext2 track number of links

zero — actually delete file

also count open files as a link

trick: create file, open it, delete it

file not really deleted until you close it
…but doesn’t have a name (no hard link in directory)

18



link counts
xv6 and ext2 track number of links

zero — actually delete file

also count open files as a link

trick: create file, open it, delete it
file not really deleted until you close it
…but doesn’t have a name (no hard link in directory)

18



link, unlink
ln OLD NEW calls the POSIX link() function

rm FOO calls the POSIX unlink() function

19



soft or symbolic links
POSIX also supports soft/symbolic links

reference a file by name

special type of file whose data is the name
$ echo "This is a test." >test.txt
$ ln −s test.txt new.txt
$ ls −l new.txt
lrwxrwxrwx 1 charles charles 8 Oct 29 20:49 new.txt −> test.txt
$ cat new.txt
This is a test.
$ rm test.txt
$ cat new.txt
cat: new.txt: No such file or directory
$ echo "New contents." >test.txt
$ cat new.txt
New contents.

20



xv6 FS pros versus FAT
support for reliability — log

more on this later

possibly easier to scan for free blocks
more compact free block map

easier to find location of kth block of file
element of addrs array

file type/size information held with block locations
inode number = everything about open file

21



missing pieces
what’s the log? (more on that later)

other file metadata?
creation times, etc. — xv6 doesn’t have it

not good at taking advantage of HDD architecture

22



exercise
say xv6 filesystem with:

64-byte inodes (12 direct + 1 indirect pointer)
16-byte directory entries
512 byte blocks
2-byte block pointers

how many inodes + blocks (not storing inodes) is used to store a
directory of 200 30KB files?

remember: blocks could include blocks storing data or block pointers or
directory enties

how many inodes + blocks is used to store a directory of 2000 3KB
files?

23



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

24



Fast File System
the Berkeley Fast File System (FFS) ‘solved’ some of these
problems

McKusick et al, “A Fast File System for UNIX” https:
//people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
avoids long seek times, wasting space for tiny files

Linux’s ext2 filesystem based on FFS

some other notable newer solutions (beyond what FFS/ext2 do)
better handling of very large files
avoiding linear directory searches

25

https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf


xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

26



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

27



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

27



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

27



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

27



allocation within block groups
In-use block

Expected typical arrangement.

Start of
Block Group

Free block

Small files fill holes near start of block group.

Start of
Block Group

Write a two block file

Large files fill holes near start of block group and then write 
most data to sequential range blocks.

Write a large file
Start of

Block Group

Anderson and Dahlin, Operating Systems: Principles and Practice 2nd edition, Figure 13.14 28



FFS block groups
making a subdirectory: new block group

for inode + data (entries) in different

writing a file: same block group as directory, first free block
intuition: non-small files get contiguous groups at end of block
FFS keeps disk deliberately underutilized (e.g. 10% free) to ensure this

can wait until dirty file data flushed from cache to allocate blocks
makes it easier to allocate contiguous ranges of blocks

29



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

30



empirical file sizes

Roselli et al, “A Comparison of Filesystem Workloads”, in FAST 2000 31



typical file sizes
most files are small

sometimes 50+% less than 1kbyte
often 80-95% less than 10kbyte

doens’t mean large files are unimportant
still take up most of the space
biggest performance problems

32



fragments
FFS: a file’s last block can be a fragment — only part of a block

each block split into approx. 4 fragments
each fragment has its own index

extra field in inode indicates that last block is fragment

allows one block to store data for several small files

33



non-FFS changes
now some techniques beyond FFS

some of these supported by current filesystems, like
Microsoft’s NTFS
Linux’s ext4 (successor to ext2)

34



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

35



extents
large file? lists of many thousands of blocks is awkward

…and requires multiple reads from disk to get

solution: store extents: (start disk block, size)
replaces or supplements block list

Linux’s ext4 and Windows’s NTFS both use this

36



allocating extents
challenge: finding contiguous sets of free blocks

FFS’s strategy “first in block group” doesn’t work well
first several blocks likely to be ‘holes’ from deleted files

NTFS: scan block map for “best fit”
look for big enough chunk of free blocks
choose smallest among all the candidates

don’t find any? okay: use more than one extent

37



efficient seeking with extents
suppose a file has long list of extents

how to seek to byte X?

solution: store a (search) tree
ext4: each node stores key=minimum file index it covers
ext4: each node stores extent value=(start data block+size)
ext4: each node has pointer (disk block) to its children

38



efficient seeking with extents
suppose a file has long list of extents

how to seek to byte X?

solution: store a (search) tree
ext4: each node stores key=minimum file index it covers
ext4: each node stores extent value=(start data block+size)
ext4: each node has pointer (disk block) to its children

38



non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees

39



non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees

39



non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees

39



using trees on disk
linear search to find extent at offset X

store index by offset of extent within file

linear search to find file in directory?
index by filename

both problems — solved with non-binary tree on disk

40



filesystem reliability
a crash happens — what’s the state of my filesystem?

41



hard disk atomicity
interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive stores checksum for each sector

write interrupted? — checksum mismatch
hard drive returns read error

42



reliability issues
is the data there?

can we find the file, etc.?

is the filesystem in a consistent state?
do we know what blocks are free?

43



backup slides

44



erasure coding with xor
storing 2 bits xy using 3

choose x, y, z = x⊕ y

recover x: x = y ⊕ z

recover y: y = x⊕ z

recover z: y = x⊕ y

45



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

46



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

46



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

46



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

47



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

47



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

47



RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

48



RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

48



RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

48



RAID 5 parity
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

49



RAID 5 parity
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

49



more general schemes
RAID 6: tolerate loss of any two disks

can generalize to 3 or more failures
justification: takes days/weeks to replace data on missing disk
…giving time for more disks to fail

probably more in CS 4434?

but none of this addresses consistency

50



RAID-like redundancy
usually appears to filesystem as ‘more reliable disk’

hardware or software layers to implement extra copies/parity

some filesystems (e.g. ZFS) implement this themselves
more flexibility — e.g. change redundancy file-by-file
ZFS combines with its own checksums — don’t trust disks!

51



RAID: missing piece
what about losing data while blocks being updated

very tricky/failure-prone part of RAID implementations

52


	inodes / Unix FS, con't
	sparse files
	soft and hard links
	xv6 versus FAT

	xv6 space exercise
	xv6 filesystem performance problems
	block groups
	file sizes
	empirical file sizes
	fragments

	things FFS doesn't do
	extents
	trees on disk

	introduction to reliability / careful ordering
	backup slides
	erasure coding with xor
	RAID / erasure coding
	RAID: missing detail


