
filesystem reliability

1



last time
inodes

(double-, triple-)indirect blocks

sparse files

hard and symbolic links

block groups for locality

extents and fragments

non-binary trees on disk

2



note on FAT assignment
you will need to use refernces

note: cluster 0 of FAT often not sector 0 of disk
references in assignment give actual correlation

also, see for format of FAT entries, etc.

3



filesystem reliability
a crash happens — what’s the state of my filesystem?

4



hard disk atomicity
interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive stores checksum for each sector

write interrupted? — checksum mismatch
hard drive returns read error

5



reliability issues
is the data there?

can we find the file, etc.?

is the filesystem in a consistent state?
do we know what blocks are free?

6



recall: FAT: file creation (1)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

7



recall: FAT: file creation (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

8



exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed

exercise: what happens if only 1, 2 complete?
everything but 3?

9



exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed
exercise: what happens if only 1, 2 complete?
everything but 3?

9



exercise: FAT ordering
(creating a file that needs new cluster of direntries)
1. FAT entry for extra directory cluster
2. FAT entry for new file clusters
3. file clusters
4. file’s directory entry (in new directory cluster)

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4
B. 4, 3, 1, 2
C. 1, 3, 4, 2
D. 3, 4, 2, 1
E. 3, 1, 4, 2

10



exercise: xv6 FS ordering
(creating a file that neeeds new block of direntries)
1. free block map for new directory block
2. free block map for new file block
3. directory inode
4. new file inode
5. new directory entry for file (in new directory block)
6. file data blocks

what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4, 5, 6
B. 6, 5, 4, 3, 2, 1
C. 1, 2, 6, 5, 4, 3
D. 2, 6, 4, 1, 5, 3
E. 3, 4, 1, 2, 5, 6

ignoring journalling for now — we’ll talk about it later
11



inode-based FS: careful ordering
mark blocks as allocated before referring to them from directories

write data blocks before writing pointers to them from inodes

write inodes before directory entries pointing to it

remove inode from directory before marking inode as free
or decreasing link count, if there’s another hard link

idea: better to waste space than point to bad data

12



recovery with careful ordering
avoiding data loss → can ‘fix’ inconsistencies

programs like fsck (filesystem check), chkdsk (check disk)
run manually or periodically or after abnormal shutdown

13



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

14



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation
general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

14



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

14



inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?

1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

15



inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?

1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

15



inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?

1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

16



inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?

1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

16



fsck
Unix typically has an fsck utility

Windows equivalent: chkdsk

checks for filesystem consistency
is a data block marked as used that no inodes uses?
is a data block referred to by two different inodes?
is a inode marked as used that no directory references?
is the link count for each inode = number of directories referencing it?
…

assuming careful ordering, can fix errors after a crash without loss

maybe can fix other errors, too

17



fsck costs
my desktop’s filesystem:
2.4M used inodes; 379.9M of 472.4M used blocks

recall: check for data block marked as used that no inode uses:
read blocks containing all of the 2.4M used inodes
add each block pointer to a list of used blocks
if they have indirect block pointers, read those blocks, too
get list of all used blocks (via direct or indirect pointers)
compare list of used blocks to actual free block bitmap

pretty expensive and slow

18



running fsck automatically
common to have “clean” bit in superblock

last thing written (to set) on shutdown

first thing written (to clear) on startup

on boot: if clean bit clear, run fsck first

19



ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

20



ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

20



beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

21



beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

21



concept: transaction
transaction: bunch of updates that happen all at once

implementation trick: one update means transaction “commits”
update done — whole transaction happened
update not done — whole transaction did not happen

22



redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

23



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

23



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

24



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

24



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

24



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

24



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

24



idempotency
logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode number X with new value
as long as last committed inode value in log is right…

bad example: allocate new inode with particular contents

good example: overwrite data block with new value

bad example: append data to last used block of file

25



redo logging summary
write intended operation to the log

before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

26



redo logging and filesystems
filesystems that do redo logging are called journalling filesystems

27



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



the xv6 journal

number of blocks = N= 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

28



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

29



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

29



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

30



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

31



limiting log size
once transaction is written to real data, can discard

sometimes called “garbage collecting” the log

may sometimes need to block to free up log space
perform logged updates before adding more to log

hope: usually log cleanup happens “in the background”

32



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

33



lots of writing? (1)
entire log can be written sequentially

ideal for hard disk performance
also pretty good for SSDs

multiple updates can be done in any order
can reorder to minimize seek time/rotational latency/etc.
can interleave updates that make up multiple transactions

no waiting for ‘real’ updates
application can proceed while updates are happening
files will be updated even if system crashes

often better for performance!

34



lots of writing? (2)
updating 1000 files?

with redo logging — 2 big seeks
write all updates to log in order
write all updates to file/inode/directory data in order

careful ordering — lots of seeks?
write to free block map
seek + write to inode
seek + write to directory entry
repeat 1000x

maybe could also combine file updates with careful ordering??
but sure starts to get complicated to track order requirements
redo logging is probably simpler?

35



lots of writing? (2)
updating 1000 files?

with redo logging — 2 big seeks
write all updates to log in order
write all updates to file/inode/directory data in order

careful ordering — lots of seeks?
write to free block map
seek + write to inode
seek + write to directory entry
repeat 1000x

maybe could also combine file updates with careful ordering??
but sure starts to get complicated to track order requirements
redo logging is probably simpler?

35



degrees of consistency
not all journalling filesystem use redo logging for everything

some use it only for metadata operations

some use it for both metadata and user data

only metadata: avoids lots of duplicate writing

metadata+user data: integrity of user data guaranteed

36



multiple copies
FAT: multiple copies of file allocation table and header

in inode-based filesystems: often multiple copies of superblocks

if part of disk’s data is lost, have an extra copy
always update both copies
hope: disk failure to small group of sectors

hope: enough to recover most files on disk failure
extra copy of metadata that is important for all files
but won’t recover specific files/directories whose data was lost

37



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

38



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

38



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

38



beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

39



erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

40



snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

41



snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

41



inode and copy-on-write

inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

42



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

42



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

42



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

42



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

43



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

43



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

43



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

43



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

43



copy-on-write indirection
file update = replace with new version

array of versions of entire filesystem

only copy modified parts
keep reference counts, like for paging assignment

lots of pointers — only change pointers where modifications happen

44



snapshots in practice
ZFS supports this (if turned on)

example: .zfs/snapshots/11.11.18-06 pseudo-directory

contains contents of files at 11 November 2018 6AM

45



46



backup/if time slides

47



copy-on-write and logging
copy-on-write is a nice solution to duplicate writes

before (data journalling)
write new data to journal
copy new data to real location

after (copy-on-write)
write new data to new location
update pointer to point to new locatoin

useful even without snapshots
but maybe not keeping file data in best place?

48



aside: fsync
filesystem can order things carefully

filesystem can make sure data on disk before proceeding

what if I, non-OS programmer want to do that?

POSIX mechanism: fsync
“please actually write this file to disk now — I’ll wait”

some stories of broken implementations of fsync
nasty problem — how do you test it???

some varying interpretations
some only send to disk, but don’t wait for disk to finish writing
does not gaurenteeing updating file’s directory entry

49



changing file atomically?
often applications want to update a file all at once

on Unix, one way to do this:

create a new file with a hard-to-guess name in the same directory

rename the new file to replace the old file
overwrites that directory entry

no one will ever read partially written file

50



changing file atomically?
often applications want to update a file all at once

on Unix, one way to do this:

create a new file with a hard-to-guess name in the same directory

rename the new file to replace the old file
overwrites that directory entry

no one will ever read partially written file

50



log-structured filesystems
logging is a great access pattern for hard drives and SSDs

sequential
right for SSDs — write everything once before writing again

how about designing a filesystem around it!

idea: log-structured filesystems

51



log-structured filesystem

image: Rosenblum and Ousterhout, “The Design and Implementatoin of a Log Structures Filesystem” 52



log-structured filesystem ideas
write inodes + data + free map + etc. to log instead of disk

problem: scanning log to find latest version of inode?

periodically write inode maps to log
computed latest location of inodes

searching limited to last inode map

53



log-structured FS garbage collection
challenge: what happens when log gets to the end of the disk?

want to start from beginning of disk again…

either: copy data to free space or ‘thread’ log around used space:

image: Rosenblum and Ousterhout, “The Design and Implementatoin of a Log Structures Filesystem” 54



log-structured filesystems in practice
the kind of ideas you’d use to implement an SSD

used for some filesystems that work directly with Flash chips

55



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

56



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

56



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

56



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕ B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

57



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕ B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

57



RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕ B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?

57



RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

58



RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

58



RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?

58



RAID 5 parity
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

59



RAID 5 parity
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

59



more general schemes
RAID 6: tolerate loss of any two disks

can generalize to 3 or more failures
justification: takes days/weeks to replace data on missing disk
…giving time for more disks to fail

probably more in CS 4434?

but none of this addresses consistency

60



RAID-like redundancy
usually appears to filesystem as ‘more reliable disk’

hardware or software layers to implement extra copies/parity

some filesystems (e.g. ZFS) implement this themselves
more flexibility — e.g. change redundancy file-by-file
ZFS combines with its own checksums — don’t trust disks!

61



RAID: missing piece
what about losing data while blocks being updated

very tricky/failure-prone part of RAID implementations

62


	redundancy/reliability
	FAT update ordering and crashes
	xv6 FS update ordering and crashes
	ordering rules
	aside: ordering and disk performance

	write-ahead logging
	idea: beyond ordering
	redo logging
	the xv6 FS journal
	redo logging overhead/GC

	redundancy
	mirroring disks
	erasure coding (extremely briefly)

	snapshots and copy-on-write
	copy-on-write and redo logging
	aside: on fsync
	aside: atomic rename trick

	log-based filesystems
	RAID / erasure coding
	RAID: missing detail


