
1

last time (1)
consistency via careful ordering

avoid writing pointers to bad data
can scan entire filesystem for allocated but unused stuff

consistency via redo logging
write intended operations to log before performing them
write whether committed or not — uncommitted means nothing done
on failure, redo operations in log if committed”

2

last time (2)
handle data loss via redundancy

mirroring — just make two copies
erasure coding — store extra data that allows recovery if K of N parts
lost

multiple versions via copy-on-write snapshots
filesystem maintains array of versions
different versions use one copy of common data
modify one version: copy+modify parts that are changed
extra indirection to minimize what’s needs copying (e.g. split inode array)

3

snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

4

snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

4

inode and copy-on-write

inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

5

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

5

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

5

inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

5

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

6

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

6

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

6

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

6

extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

6

copy-on-write indirection
file update = replace with new version

array of versions of entire filesystem

only copy modified parts
keep reference counts, like for paging assignment

lots of pointers — only change pointers where modifications happen

7

snapshots in practice
ZFS supports this (if turned on)

example: .zfs/snapshots/11.11.18-06 pseudo-directory

contains contents of files at 11 November 2018 6AM

8

mounting filesystems
Unix-like system

root filesystem appears as /

other filesystems appear as directory
e.g. lab machines: my home dir is in filesystem at /net/zf15

directories that are filesystems look like normal directories
/net/zf15/.. is /net (even though in different filesystems)

9

mounts on a dept. machine
/dev/sda1 on / type ext4 (rw,errors=remount−ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
...
/dev/sda3 on /localtmp type ext4 (rw)
...
zfs1:/zf2 on /net/zf2 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf19 on /net/zf19 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
zfs4:/sw on /net/sw type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf14 on /net/zf14 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
...

10

kernel FS abstractions
Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
11

distributed systems
multiple machines working together to perform a single task

called a distributed system

12

some distibuted systems models

client/server

server

client
1

client
2

client
N-1

client
N

…

node
1

node
2 node

3node
4

node
5

node
6

node
7

peer-to-peer

13

client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

14

client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

14

client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

14

layers of servers?
ad

server

database
server

application
server

web
server

web
client

web server is also application server’s client

15

example: Wikipedia architecture

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 16

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png

example: Wikipedia architecture (zoom)

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 17

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png

peer-to-peer
no always-on server everyone knows about

hopefully, no one bottleneck — “scalability”

any machine can contact any other machine
every machine plays an approx. equal role?

set of machines may change over time

18

why distributed?
multiple machine owners collaborating

delegation of responsiblity to other entity
put (part of) service “in the cloud”

combine many cheap machines to replace expensive machine

easier to add incrementally

redundancy — one machine can fail and system still works?

19

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

20

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

20

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

20

mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

20

what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

21

what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

21

extension: conections
connections: two-way channel for messages
extra operations: connect, accept

machine
A

machine
B

B: open connection to A?

Conn = Connect(B)

A: connection to B OK!

Conn = Accept()

B: (A, “2 + 2 = ?”)

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

A: (B, “4”)

Send(Conn, “4”)

“4” = Recv(Conn) 22

connections versus pipes
connections look kinda like two-direction pipes

in fact, in POSIX will have the same API:

each end gets file descriptor representing connection

can use read() and write()

23

connections over mailboxes
real Internet: mailbox-style communication

send packets to particular mailboxes
no gaurentee on order, when received
no relationship between

connections implemented on top of this

full details: take networking (CS/ECE 4457)

quick summary — next slide

24

connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

26

names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

27

hostnames
typically use domain name system (DNS) to find machine names

maps logical names like www.virginia.edu
chosen for humans
hierarchy of names

…to addresses the network can use to move messages
numbers
ranges of numbers assigned to different parts of the network
network routers knows “send this range of numbers goes this way”

28

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

29

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

29

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

29

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

29

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

29

IPv4 addresses
32-bit numbers

typically written like 128.143.67.11
four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0–128.143.255.255
e.g. Google has 216.58.192.0–216.58.223.255 and
74.125.0.0–74.125.255.255 and 35.192.0.0–35.207.255.255

30

IPv4 addresses and routing tables

router
network 1 network 2

network 3

if I receive data for… send it to…
128.143.0.0—128.143.255.255 network 1
192.107.102.0–192.107.102.255 network 1
… …
4.0.0.0–7.255.255.255 network 2
64.8.0.0–64.15.255.255 network 2
… …
anything else network 3

31

selected special IPv4 addresses
127.0.0.0 — 127.255.255.255 — localhost

AKA loopback
the machine we’re on
typically only 127.0.0.1 is used

192.168.0.0–192.168.255.255 and
10.0.0.0–10.255.255.255 and
172.16.0.0–172.31.255.255

“private” IP addresses
not used on the Internet
commonly connected to Internet with network address translation
also 100.64.0.0–100.127.255.255 (but with restrictions)

169.254.0.0-169.254.255.255
link-local addresses — ‘never’ forwarded by routers

32

network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

33

IPv6 addresses
IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses
no need for address translation?

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

34

selected special IPv6 addresses
::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

35

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

36

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

36

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

36

protocols
protocol = agreement on how to comunicate

sytnax (format of messages, etc.)

semantics (meaning of messages — actions to take, etc.)

37

human protocol: telephone
caller: pick up phone
caller: check for service
caller: dial
caller: wait for ringing

callee: “Hello?”
caller: “Hi, it’s Casey…”

callee: “Hi, so how about …”
caller: “Sure, …”
… …

callee: “Bye!”
caller: “Bye!”
hang up hang up

38

layered protocols
IP: protocol for sending data by IP addresses

mailbox model
limited message size

UDP: send datagrams built on IP
still mailbox model, but with port numbers

TCP: reliable connections built on IP
adds port numbers
adds resending data if error occurs
splits big amounts of data into many messages

HTTP: protocol for sending files, etc. built on TCP

39

other notable protocols (transport layer)
TLS: Transport Layer Security — built on TCP

like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

40

other notable protocols (transport layer)
TLS: Transport Layer Security — built on TCP

like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

40

sockets
socket: POSIX abstraction of network I/O queue

any kind of network
can also be used between processes on same machine

a kind of file descriptor

41

connected sockets
sockets can represent a connection

act like bidirectional pipe
client server

(setup connection / get fds)
write(fd, buffer, size)

read(fd, buffer, size)

write(fd, buffer, size)

read(fd, buffer, size)

42

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 43

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 43

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 43

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

44

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

44

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

44

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

44

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, …)

server:
fd = accept(ss_fd, …)

connection

44

connections in TCP/IP
connection identified by 5-tuple

used to mark messages sent on network
used by OS to lookup “where is the file descriptor?”

(protocol=TCP, local IP addr., local port, remote IP addr., remote port)
how messages are tagged on the network
(other notable protocol value: UDP)

both ends always have an address+port

what is the IP address, port number? set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

45

connections on my desktop
cr4bd@reiss−t3620
: /zf14/cr4bd ; netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 128 . 143 . 67 . 91 : 49202 1 2 8 . 1 4 3 . 6 3 . 3 4 : 2 2 ESTABLISHED
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 8 0 3 128 . 143 . 67 . 236 : 2049 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 50292 1 2 8 . 1 4 3 . 6 7 . 2 2 6 : 2 2 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54722 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 52002 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 7 3 2 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 40664 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54098 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 49302 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 50236 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 2 2 1 7 2 . 2 7 . 9 8 . 2 0 : 4 9 5 6 6 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 51000 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 1 2 7 . 0 . 0 . 1 : 6 3 1 ESTABLISHED
tcp 0 0 1 2 7 . 0 . 0 . 1 : 6 3 1 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 ESTABLISHED

46

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

client/server flow (one connection at a time)

create+configure
server socket

setup pair
of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

client/server flow (one connection at a time)

create+configure
server socket

setup pair
of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

47

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

48

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

48

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

48

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

48

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

48

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

49

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

49

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

49

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

50

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

50

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

50

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

50

connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

51

aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

52

client/server flow (multiple connections)

spawn new process (fork)
or thread per connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

53

reading and writing at once
so far assumption: alternate between reading+writing

sufficient for FTP assignment
how many protocols work

“half-duplex”

don’t have to use sockets this way, but tricky

threads: one reading thread, one writing thread OR

event-loop: use non-blocking I/O and select()/poll()/etc. functions
non-blocking I/O setup with fcntl() function
non-blocking write() fills up buffer as much as possible, then returns
non-blocking read() returns what’s in buffer, never waits for more

54

local/Unix domain sockets
POSIX defines sockets that only work on local machine

example use: apps talking to display manager program
want to display window? connect to special socket file
probably don’t want this to happen from remote machines

equivalent of name+port: socket file
appears as a special file on disk

we will use this in assignment
but you won’t directly write code that uses POSIX API

55

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

56

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

56

Unix-domain sockets on my laptop
cr4bd@reiss−lenovo :~$ netstat −−unix −a
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I−Node Path
unix 2 [] DGRAM 40077 /run/user/1000/systemd/notify
unix 2 [ACC] SEQPACKET LISTENING 844 /run/udev/control
unix 2 [ACC] STREAM LISTENING 40080 /run/user/1000/systemd/private
unix 2 [ACC] STREAM LISTENING 40084 /run/user/1000/gnupg/S .gpg−agent
unix 2 [ACC] STREAM LISTENING 37867 /run/user/1000/gnupg/S .dirmngr
unix 2 [ACC] STREAM LISTENING 37868 /run/user/1000/bus
unix 2 [ACC] STREAM LISTENING 37869 /run/user/1000/gnupg/S .gpg−agent .browser
unix 2 [ACC] STREAM LISTENING 37870 /run/user/1000/gnupg/S .gpg−agent .extra
unix 2 [ACC] STREAM LISTENING 60556115 /var/run/cups/cups .sock
unix 2 [ACC] STREAM LISTENING 37871 /run/user/1000/gnupg/S .gpg−agent .ssh
unix 2 [ACC] STREAM LISTENING 37874 /run/user/1000/keyring/control
unix 2 [ACC] STREAM LISTENING 49772163 /run/user/1000/pulse/cli
unix 2 [ACC] STREAM LISTENING 49772158 /run/user/1000/pulse/native
unix 2 [ACC] STREAM LISTENING 59062776 /run/user/1000/speech−dispatcher/speechd .sock
unix 2 [ACC] STREAM LISTENING 32980 @/tmp/ .X11−unix/X0
unix 2 [ACC] STREAM LISTENING 60557382 /run/cups/cups .sock
. . .

57

remote procedure calls
goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

58

transparency
common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

59

stubs
typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

60

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

61

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

61

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

61

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

61

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

61

RPC use pseudocode (C-like)
client:

RPCContext context = RPC_GetContext("server name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

62

RPC use pseudocode (C-like)
client:

RPCContext context = RPC_GetContext("server name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

62

RPC use pseudocode (C-like)
client:

RPCContext context = RPC_GetContext("server name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

62

RPC use pseudocode (OO-like)
client:

DirProtocol* remote = DirProtocol::connect("server name");

// mkdir() is the client stub
result = remote−>mkdir("/directory/name");

server:
main() {

DirProtocol::RunServer(new RealDirProtocol, PORT_NUMBER);
}

class RealDirProtocol : public DirProtocol { public:
int mkdir(char *name) {
...

}
};

63

backup slides

64

sockaddr_in
/* from 'man 7 ip' */
struct sockaddr_in {

sa_family_t sin_family; /* address family: always AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address. */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

trick: multiple versions of address struct
each have “type” information in same spot

OS/library checks before using

65

sockaddr_in
/* from 'man 7 ip' */
struct sockaddr_in {

sa_family_t sin_family; /* address family: always AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address. */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

trick: multiple versions of address struct
each have “type” information in same spot

OS/library checks before using

65

sockaddr_in
/* from 'man 7 ip' */
struct sockaddr_in {

sa_family_t sin_family; /* address family: always AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address. */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

trick: multiple versions of address struct
each have “type” information in same spot

OS/library checks before using

65

sockaddr_in6
/* from 'man 7 ipv6' */
struct sockaddr_in6 {

sa_family_t sin6_family; /* always AF_INET6 */
in_port_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */

};

struct in6_addr {
unsigned char s6_addr[16]; /* IPv6 address */

};

66

sockaddr_in6
/* from 'man 7 ipv6' */
struct sockaddr_in6 {

sa_family_t sin6_family; /* always AF_INET6 */
in_port_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */

};

struct in6_addr {
unsigned char s6_addr[16]; /* IPv6 address */

};

66

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

67

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

67

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

67

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

67

connection setup: old lookup function
/* example hostname, portnum= "www.cs.virginia.edu", 443*/
const char *hostname; int portnum;
...
struct hostent *server_ip;
server_ip = gethostbyname(hostname);

if (server_ip == NULL) { /* handle error */ }

struct sockaddr_in addr;
addr.s_addr = *(struct in_addr*) server_ip−>h_addr_list[0];
addr.sin_port = htons(portnum);
sock_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock_fd, &addr, sizeof(addr));
...

68

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69

aside: send/recv
sockets have some alternate read/write-like functions:

recv, recvfrom, recvmsg
send, sendmsg

have some additional options we won’t need in this class

70

incomplete writes
write might write less than requested

error after writing some data
if blocking disabled with fcntl(), buffer full

read might read less than requested
error after reading some data
not enough data got there in time

71

handling incomplete writes
bool write_fully(int fd, const char *buffer, ssize_t count) {

const char *ptr = buffer;
const char *end = buffer + count;
while (ptr != end) {

ssize_t written = write(fd, (void*) ptr, end − ptr);
if (written == −1) {

return false;
}
ptr += written;

}
return true;

}

72

on filling buffers
char buffer[SIZE];
ssize_t buffer_used = 0;

int fill_buffer(int fd) {
ssize_t amount = read(

fd, buffer + buffer_used, SIZE − buffer_used
);
if (amount == 0) {

/* handle EOF */ ???
} else if (amount == −1) {

return −1;
} else {

buffer_used += amount;
}

}

73

reading lines
(note: code below is not tested)

int read_line(int fd, const char *p_line, size_t *p_size) {
const char *newline;
while (1) {

newline = memchr(buffer, '\n', buffer_used);
if (newline != NULL || buffer_used == SIZE) break;
fill_buffer();

}
memcpy(p_line, buffer, newline − buffer);
*p_size = newline − buffer;
memmove(newline, buffer, buffer + SIZE − newline);
buffer_end −= (newline − buffer);

}

74

aside: getting addresses
on a socket fd: getsockname = local addresss

sockaddr_in or sockaddr_in6
IPv4/6 address + port

on a socket fd: getpeername = remote address

75

addresses to string
can access numbers/arrays in sockaddr_in/in6 directly

another option: getnameinfo
supports getting W.X.Y.Z form or looking up a hostname

76

example echo client/server
handle reporting errors from incomplete writes

handle avoiding SIGPIPE
OS kills program trying to write to closed socket/pipe

set the SO_REUSEADDR “socket option”
default: OS reserves port number for a while after server exits
this allows keeps it unreserved
allows us to bind() immediately after closing server

client handles reading until a newline
but doesn’t check for reading multiple lines at once

77

example echo client/server
handle reporting errors from incomplete writes

handle avoiding SIGPIPE
OS kills program trying to write to closed socket/pipe

set the SO_REUSEADDR “socket option”
default: OS reserves port number for a while after server exits
this allows keeps it unreserved
allows us to bind() immediately after closing server

client handles reading until a newline
but doesn’t check for reading multiple lines at once

77

FTP protocol (simplified)

client server

(connect to server)

220 Service Ready <CR><LF>

USER example<CR><LF>
331 User name ok, need password.<CR><LF>

PASS examplePassword<CR><LF>
230 User logged in<CR><LF>

TYPE I<CR><LF>
200 Command OK<CR><LF>
RETR example.txt<CR><LF>

150 File status okay<CR><LF>
server sends file transfer file via new connection

226 Closing data connection, file transfer successful.<CR><LF>

78

notable things about FTP
FTP is stateful — previous commands change future ones

logging in for whole connection
change current directory
set image file type (binary, not text)

FTP uses separate connections for transferring data
PASV: client connects separately to server
PORT: client specifies where server connects
(+ very rarely used default: connect back to port 20)

status codes for every command

79

kernel FS abstractions
Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
80

linux VFS operations
superblock: write_inodez, sync_fs, …

inode: create, link, unlink, mkdir, open …
most just for inodes which are directories

dentry: compare, delete …
more commonly argument to inode operation
can be created for non-yet-existing files

file: read, write, …

81

linux VFS operations example
struct inode_operations {

struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
...
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*rmdir) (struct inode *,struct dentry *);
int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
int (*rename) (struct inode *, struct dentry *,

struct inode *, struct dentry *, unsigned int);
...
int (*update_time)(struct inode *, struct timespec64 *, int);
int (*atomic_open)(struct inode *, struct dentry *,

struct file *, unsigned open_flag,
umode_t create_mode);

..
}

82

FS abstractions and awkward FSes
example: inode object for FAT?

fake it: point to directory entry?

83

	snapshots and copy-on-write
	mounts
	distributed systems/networks intro
	introduction, models, goals

	communication models
	names and addresses
	protocols / TCP / UDP

	sockets
	introduction / read-write flow
	connection setup outline
	server flow (simple)
	connection setup code: client
	connection setup code: server
	server flow (multiple connections)
	simultaneous read/write
	local sockets

	remote procedure calls
	RPC concept and stubs
	RPC data flow
	pseudocode using an RPC library

	backup slides
	sockaddr struct
	client: manual connection setup
	gethostbyname
	server: manual connection setup
	send/recv
	incomplete reads/writes
	getting addresses from sockets
	socket examples on webiste

	a protocol: FTP
	VFS

