
RPC (finish) / two-phase commit

1

Changelog
Changes made in this version not seen in first lecture:

19 November 2019: gRPC IDL example: update to be consistent with
version of gRPC syntax used in assignment
19 November 2019: gRPC IDL example: add missing Empty message
19 November 2019: gRPC client/server examples: use name ‘path’
instead of ‘name’ for field from argument messages to be consistent with
IDL
19 November 2019: gRPC server example: corrected inheritence from
DirectoriesService to DirectoriesServicer
19 November 2019: coordinator state machine (less simplified?): adjust
failure/timeout action in prepare to be ABORTing or resending
PREPARE
19 November 2019: leaking resources?: remove mention of statefulness
which we haven’t covered yet

1

RPC use pseudocode (C-like)
client:

RPCContext context = RPC_GetContext("server name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

2

RPC use pseudocode (C-like)
client:

RPCContext context = RPC_GetContext("server name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

2

RPC use pseudocode (C-like)
client:

RPCContext context = RPC_GetContext("server name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

2

RPC use pseudocode (OO-like)
client:

DirProtocol* remote = DirProtocol::connect("server name");

// mkdir() is the client stub
result = remote−>mkdir("/directory/name");

server:
main() {

DirProtocol::RunServer(new RealDirProtocol, PORT_NUMBER);
}

class RealDirProtocol : public DirProtocol { public:
int mkdir(char *name) {
...

}
};

3

marshalling
RPC system needs to send arguments over the network

and also return values

called marshalling or serialization

can’t just copy the bytes from arguments
pointers (e.g. char*)
different architectures (32 versus 64-bit; endianness)

4

interface description langauge
tool/library needs to know:

what remote procedures exist
what types they take

typically specified by RPC server author in interface description
language

abbreviation: IDL

compiled into stubs and marshalling/unmarshalling code

5

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

6

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

6

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

7

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

7

IDL pseudocode + marshalling example
protocol dirprotocol {

1: int32 mkdir(string);
2: int32 rmdir(string);

}
mkdir("/directory/name") returning 0
client sends: \x01/directory/name\x00
server sends: \x00\x00\x00\x00

8

GRPC examples
will show examples for gRPC

RPC system originally developed at Google

what we’ll use for upcoming assignment

defines interface description language, message format

uses a protocol on top of HTTP/2

note: gRPC makes some choices other RPC systems don’t

9

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

10

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

10

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

10

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

10

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

10

RPC server implementation (method 1)
import dirproto_pb2
import dirproto_pb2_grpc

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def MakeDirectory(self, request, context):
print("MakeDirectory called with path=", request.path)
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return dirproto_pb2.Empty()

11

RPC server implementation (method 2)
import dirproto_pb2, dirproto_pb2_grpc
from dirproto_pb2 import DirectoryList, DirectoryEntry

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def ListDirectory(self, request, context):
try:

result = DirectoryList()
for file_name in os.listdir(request.path)

result.entries.append(DirectoryEntry(name=file_name, ...))
except OSError as err:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return result

12

RPC server implementation (starting)
create server that uses thread pool with
three threads to run procedure calls
server = grpc.server(

futures.ThreadPoolExecutor(max_workers=3)
)
DirectoriesImpl() creates instance of implementaiton class
add_DirectoryServicer_to_server part of generated code
dirproto_pb2_grpc.add_DirectoryServicer_to_server(

DirectoriesImpl()
)
server.add_insecure_port('127.0.0.1:12345')
server.start() # runs server in separate thread

13

RPC client implementation (method 1)
channel = grpc.insecure_channel('127.0.0.1:43534')
stub = dirproto_pb2_grpc.DirectoriesStub(channel)
args = dirproto_pb2.MakeDirectoryArgs(path="/directory/name")
try:
stub.MakeDirectory(args)

except grpc.RpcError as error:
... # handle error

14

RPC client implementation (method 2)
channel = grpc.insecure_channel('127.0.0.1:43534')
stub = dirproto_pb2_grpc.DirectoriesStub(channel)
args = dirproto_pb2.MakeDirectoryArgs(name="/directory/name")
try:
result = stub.ListDirectory(args)
for entry in result.entries:
print(entry.name)

except grpc.RpcError as error:
... # handle error

15

RPC non-transparency
setup is not transparent — what server/port/etc.

ideal: system just knows where to contact?

errors might happen
what if connection fails?

server and client versions out-of-sync
can’t upgrade at the same time — different machines

performance is very different from local

16

gRPC: returning errors
any RPC can result in an error

both errors from libraries and from RPCs can use same API

Python client: throws a grpc.RpcError exception
no support for custom exceptions types (probably because tricky to make
language-neutral)

C++ client: method return value is a Status object
result of method ‘returned’ by modifying result object passed via pointer
(for historical reasons, Google doesn’t like C++ exceptions)

17

some gRPC errors
method not implemented

e.g. server/client versions disagree
local procedure calls — linker error

deadline exceeded
no response from server after a while — is it just slow?

connection broken due to network problem

18

leaking resources?
stub = ...
remote_file_handle = stub.RemoteOpen(filename)
write_request = RemoteWriteRequest(

file_handle=remote_file_handle,
data="Some text.\n"

)
stub.RemotePrint(write_request)
stub.RemoteClose(remote_file_handle)

what happens if client crashes?

does server still have a file open?

19

on versioning
normal software: multiple versions of library?

extra argument for function
change what function does
…

just link against “correct version”

RPC: server gets upgraded out-of-sync with client

want to upgrade functions without breaking old clients

20

gRPC’s versioning
gRPC: messages have field numbers

renaming fields? doesn’t matter, just number changes

rules allow adding new (optional) fields
get message with extra field — ignore it
get message missing field — default/null value

otherwise, need to make new methods for each change
…and keep the old ones working for a while

21

versioned protocols
alternative approach: version numbers in protocol/messages

server can implement multiple versions

eventually discard old versions:

22

RPC performance
local procedure call: ∼ 1 ns

system call: ∼ 100 ns

network part of remote procedure call
(typical network) > 400 000 ns
(super-fast network) 2 600 ns

23

RPC locally
not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

24

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

25

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

26

network failures: two kinds
messages lost

messages delayed/reordered

27

network failures: message lost?
looks same as machine failing!

detect with acknowledgements

can recover by retrying

can’t distinguish: original message lost or acknowledgment lost

can’t distinguish: machine crashed or network down/slow for a while

28

dealing with network message lost

machine A machine B
append to file A

machine A machine B

append to file A

does A need to retry appending? can’t tell

29

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

30

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

30

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

30

handling failures: try 2

machine
A

machine
B

append to file A

yup, done!append to file A (if you haven’t)

yup, done!

retry (in an idempotent way) until we get an acknowledgement
basically the best we can do, but when to give up?

31

network failures: message reordered?
can detect with sequence numbers

connection protocols do this

RPC abstraction — generally doesn’t
potentially receive ‘stale’ RPC call

can’t distinguish: message lost or just delayed and not received yet

32

handling reordering

machine
A

machine
B

part 1: “hello ”
part 2: “world!”

got part 1+2

33

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

34

two models of machine failure
fail-stop

failing machines stop responding/don’t get messages
or one always detects they’re broken and can ignore them

Byzantine failures

failing machines do the worst possible thing

35

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

36

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

36

distributed transaction problem
distributed transaction

two machines both agree to do something or not do something

even if a machine fails

primary goal: consistent state

secondary goal: do it if nothing breaks

37

distributed transaction example
course database across many machines

machine A and B: student records

machine C: course records

want to make sure machines agree to add students to course

no confusion about student is in course even if failures
“consistency”

okay to say “no” — if possible, can retry later

38

naive distributed transaction? (1)
machine A and B: student records; machine C: course records

any machine can be queried directly for info (e.g. by SIS web interface)

proposed add student to course procedure:

execute code on A or B where student is stored

tell C: add student to course

wait for response from C (if course full, return error)

locally: add student to course

what inconsistencies can be seen if no failures?

what inconsistencies can be seen if failures?
39

the centralized solution
one solution: a new machine D decides what to do

for machines A-C just which store records

machine D maintains a redo log for all machines

write to machine D’s log

tell machine A-C to do operation

treats them as just data storage

40

problems with centralized solution
limited scaling — log-machine only so big/fast

combined responsibility — all data put together
maybe reason for different machines was to separate data by type
example: different organizations manage each type of data
example: different regulatory requirements for each type of data

41

decentralized solution properties
each machine handles only its own data

no sending machine to central place

machines involved in transaction if and only if have relevant data
change only to courses? don’t tell student machines
change to course + student A? don’t tell machine with student B

make progress as long as relevant machines don’t fail
losing one of K student machines? still runs for 1 of K students

hope: scales to tens/hundreds of machines
typical transaction: 1 to 3 machines?

42

decentralized solution properties
each machine handles only its own data

no sending machine to central place

machines involved in transaction if and only if have relevant data
change only to courses? don’t tell student machines
change to course + student A? don’t tell machine with student B

make progress as long as relevant machines don’t fail
losing one of K student machines? still runs for 1 of K students

hope: scales to tens/hundreds of machines
typical transaction: 1 to 3 machines?

42

two-phase commit
will look at solution that satisfies these propties

known as two-phase commit

name from two steps: figure out what to do, then do it

43

persisting past failures
will still use presistent log on each machine

idea: machine remembers what it was doing on failure

doesn’t store data of other machines

…just some identifier/contact info for the transaction

44

two-phase commit: roles
elect one machine to be coordinator

other machines are workers
common implementation: one physical machine runs both
coordinator+one of the workers

abort if anyone decides to abort

coordinator collects workers’ vote: will they abort?

coordinator makes final decision

45

two-phase commit: no take-backs
once worker agrees not to abort, they can’t change their mind

once coordinator makes decision, it is final

both cases: need to remember decision in log
fail-stop → assume log will be there

46

two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress
no inconsistency
if aborting instead

must abort
if any node can’t do itsafe to abort

if in doubt

47

two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress

no inconsistency
if aborting instead

must abort
if any node can’t do itsafe to abort

if in doubt

47

two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress

no inconsistency
if aborting instead

must abort
if any node can’t do itsafe to abort

if in doubt

47

two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress
no inconsistency
if aborting instead

must abort
if any node can’t do it

safe to abort
if in doubt

47

two-phase commit: voting

worker worker worker … coordinator
chooses:

commit commit commit … → commit

commit abort commit … → abort

commit commit unknown? … → abort or wait for
missing vote

if nothing wrong,
make progress
no inconsistency
if aborting instead

must abort
if any node can’t do it

safe to abort
if in doubt

47

two-phase commit: phases
phase 1: preparing

workers tell coordinator their votes: agree to commit/abort

phase 2: finishing

coordinator gathers votes, decides and tells everyone the outcome

48

preparing
agree to commit

promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!

to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added b/c of other machines)

49

preparing
agree to commit

promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added b/c of other machines)

49

coordinator decision
coordinator can’t take back global decision

must record in presistent log to ensure not forgotten

coordinator fails without logged decision? collect votes again

50

coordinator decision
coordinator can’t take back global decision

must record in presistent log to ensure not forgotten

coordinator fails without logged decision? collect votes again

50

finishing
coordinator says commit → commit transaction

worker applies transcation (e.g. record student is in class)

coordinator (or anyone) says abort → abort transaction
worker never ever applies transaction
still want to do operation? make a new transaction

unsure which? option 1: ask coordinator
e.g. worker policy: keep asking if no outcome

unsure which? option 2: make sure coordinator resends outcome
e.g. coordinator keeps sending outcome until it gets “yes, I got it” reply

51

finishing
coordinator says commit → commit transaction

worker applies transcation (e.g. record student is in class)

coordinator (or anyone) says abort → abort transaction
worker never ever applies transaction
still want to do operation? make a new transaction

unsure which? option 1: ask coordinator
e.g. worker policy: keep asking if no outcome

unsure which? option 2: make sure coordinator resends outcome
e.g. coordinator keeps sending outcome until it gets “yes, I got it” reply

51

two-phase commit: blocking
agree to commit “add student to class”?

can’t allow conflicting actions…

adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

52

two-phase commit: blocking
agree to commit “add student to class”?

can’t allow conflicting actions…
adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

52

waiting forever?
if machine goes away at wrong time, might never decide what
happens

solution in practice: manual intervention

mitigation (1): coordinator aborts if still possible
requires coordinator not to go away
handles workers failing before decision made

mitigation (2): workers share outcomes without coordinator
possibly handles coordinator failing (if all workers still working fine)
other worker can say “coordinator said ABORT/COMMIT” (even if
coordinator now down)
if any worker agreed to abort, don’t need coordinator

53

waiting forever?
if machine goes away at wrong time, might never decide what
happens

solution in practice: manual intervention

mitigation (1): coordinator aborts if still possible
requires coordinator not to go away
handles workers failing before decision made

mitigation (2): workers share outcomes without coordinator
possibly handles coordinator failing (if all workers still working fine)
other worker can say “coordinator said ABORT/COMMIT” (even if
coordinator now down)
if any worker agreed to abort, don’t need coordinator

53

two-phase commit: roles
typical two-phase commit implementation

several workers

one coordinator
might be same machine as a worker

54

two-phase-commit messages
coordiantor → worker: PREPARE

“will you agree to do this action?”
on failure: can ask multiple times!

worker → coordinator:
AGREE-TO-COMMIT or AGREE-TO-ABORT

worker records decision in log (before sending)

coordinator → worker: COMMIT or ABORT
I counted the votes and the result is commit/abort
only commit if all votes were commit

55

reasoning about protocols: state machines
very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

56

reasoning about protocols: state machines
very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

56

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

57

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

57

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

57

coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

57

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: (re)send ABORT to all

if WAIT, could also resend PREPARE (try to get votes again)

if COMMITTED: (re)send COMMIT to all

no vote from worker?
ABORT or resend after timeout

COMMIT/ABORT doesn’t make it to worker
worker can ask to resend after timeout, or
coordinator can ask workers for acknowledgment, resend if none

58

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: (re)send ABORT to all

if WAIT, could also resend PREPARE (try to get votes again)

if COMMITTED: (re)send COMMIT to all

no vote from worker?
ABORT or resend after timeout

COMMIT/ABORT doesn’t make it to worker
worker can ask to resend after timeout, or
coordinator can ask workers for acknowledgment, resend if none

58

coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: (re)send ABORT to all

if WAIT, could also resend PREPARE (try to get votes again)
if COMMITTED: (re)send COMMIT to all

no vote from worker?
ABORT or resend after timeout

COMMIT/ABORT doesn’t make it to worker
worker can ask to resend after timeout, or
coordinator can ask workers for acknowledgment, resend if none

58

coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
ABORT
(or resend PREPARE) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

59

coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
ABORT
(or resend PREPARE) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

59

worker state machine (simplified)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT

60

worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

61

worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

61

worker failure recovery
worker crashes? log indicating last state

if INIT: wait for PREPARE (resent)?
if AGREE-TO-COMMIT or ABORTED: resend
AGREE-TO-COMMIT/ABORT
if COMMITTED: redo operation

message doesn’t make it to coordinator
resend after timeout or during reboot on recovery

62

state machine missing details
really want to specify result of/action for every message!

worker recv ABORT in ABORTED: do nothing
worker recv ABORT in INIT: go to ABORTED
worker recv PREPARE in COMMITTED: ignore?
…

want to discard finished transactions eventually
…need to not get confused by delayed messages

allows programmatic verifying properties of state machine
what happens if machine fails at each possible time?
what happens if each subset of messages is lost?
…

63

TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

64

TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

64

TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

65

TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

65

some failure cases
worker failure after prepare?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote (must have recorded prepare)

66

TPC: worker fails after prepare (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
guess: message lost or worker broke

67

TPC: worker fails after prepare (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
guess: message lost or worker broke

67

TPC: worker fails after prepare (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
guess: message lost or worker broke

67

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

recorded agree-to-commit?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

68

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

recorded agree-to-commit?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

68

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

recorded agree-to-commit?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

68

TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

69

TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

69

network failure after during voting?
network failure during voting ≈ node failure

same options:
coordinator resends PREPARE
coordinator gives up
worker resends vote

70

TPC: network failure (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

71

worker failure during commit
worker failure during commit?

option 1: worker resends vote (coordinator resends outcome)
option 2?: coordinator resends outcome somehow? (but how would it
know)

NB: coordinator can’t give up

72

TPC: worker failure during commit (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision

73

TPC: worker failure during commit (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision 73

backup slides

74

remote procedure calls
goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

75

transparency
common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

76

stubs
typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

77

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

78

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

78

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

78

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

78

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

78

RPC server implementation (method 1)
class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>path() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

79

RPC server implementation (method 1)
class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>path() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

79

RPC server implementation (method 1)
class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>path() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

79

RPC server implementation (method 1)
class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>path() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

79

RPC server implementation (method 2)
class DirectoriesImpl : public Directories::Service {
public:

Status ListDirectory(ServerContext *context,
const ListDirArgs* args,
DirectoryList *result) {

...
for (...) {

result−>add_entry(...);
}
return Status::OK;

}
...

};

80

RPC server implementation (method 2)
class DirectoriesImpl : public Directories::Service {
public:

Status ListDirectory(ServerContext *context,
const ListDirArgs* args,
DirectoryList *result) {

...
for (...) {

result−>add_entry(...);
}
return Status::OK;

}
...

};

80

RPC server implementation (method 2)
class DirectoriesImpl : public Directories::Service {
public:

Status ListDirectory(ServerContext *context,
const ListDirArgs* args,
DirectoryList *result) {

...
for (...) {

result−>add_entry(...);
}
return Status::OK;

}
...

};

80

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC server implementation (starting)
DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

81

RPC client implementation (method 1)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

82

RPC client implementation (method 1)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

82

RPC client implementation (method 1)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

82

RPC client implementation (method 1)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

82

RPC client implementation (method 1)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

82

RPC client implementation (method 2)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; ListDirectoryArgs args; DirectoryList list;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &list);
if (!status.ok()) { /* handle error */ }
for (int i = 0; i < list.entries_size(); ++i) {

cout << list.entries(i).name() << endl;
}

83

RPC client implementation (method 2)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; ListDirectoryArgs args; DirectoryList list;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &list);
if (!status.ok()) { /* handle error */ }
for (int i = 0; i < list.entries_size(); ++i) {

cout << list.entries(i).name() << endl;
}

83

RPC client implementation (method 2)
unique_ptr<Channel> channel(

grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; ListDirectoryArgs args; DirectoryList list;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &list);
if (!status.ok()) { /* handle error */ }
for (int i = 0; i < list.entries_size(); ++i) {

cout << list.entries(i).name() << endl;
}

83

	remote procedure calls
	pseudocode using an RPC library
	marshalling
	GRPC example
	non-transparency: errors and versioning and performance
	RPC locally

	failure
	failure models
	distributed transaction
	naive solution?
	naive centralized solution

	two-phase commit
	solution properties/sketch
	still using log
	roles
	no take backs
	voting
	two-phase commit: messages
	aside: state machines
	two-phase commit state machine
	two-phase commit examples

	backup sides
	RPC concept and stubs
	RPC data flow
	C++ server example
	C++ client example

