
two phase commit (con’t) / networked FS

1



last time
RPC — what’s in IDLs

RPC calling in gRPC

ways RPC is not transparent

distributed transaction problem
two-phase commit idea

coordinator + workers all agree to commit: commit
default outcome: abort
coordinator collects worker responses, distributes outcome
logs to recover from anything failing without changing mind

state machines to represent protocol
2



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

3



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

3



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

4



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

4



some failure cases
worker failure after prepare?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote (must have recorded prepare)

5



TPC: worker fails after prepare (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
guess: message lost or worker broke

6



TPC: worker fails after prepare (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
guess: message lost or worker broke

6



TPC: worker fails after prepare (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
guess: message lost or worker broke

6



TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

recorded agree-to-commit?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

7



TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

recorded agree-to-commit?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

7



TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

recorded agree-to-commit?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

7



TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

8



TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

8



network failure after during voting?
network failure during voting ≈ node failure

same options:
coordinator resends PREPARE
coordinator gives up
worker resends vote

9



TPC: network failure (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

10



worker failure during commit
worker failure during commit?

option 1: worker resends vote (coordinator resends outcome)
option 2?: coordinator resends outcome somehow? (but how would it
know)

NB: coordinator can’t give up

11



TPC: worker failure during commit (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision

12



TPC: worker failure during commit (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision 12



worker failure during commit
worker failure during commit?

option 1: worker resends vote (coordinator resends outcome)
option 2?: coordinator resends outcome somehow? (but how would it
know)

NB: coordinator can’t give up

13



alternate approach: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

14



alternate approach: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

14



coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT

could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

15



coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT
could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

15



two-phase commit assignment
two phase commit assignment

store single value across workers

single coordinator sends messages to/from workers to change values
workers current value can be queried directly

goal: several replicas all have same value or unavailable

…even if failures

16



assignment: RPC
coordinator talks to worker by making RPC calls

workers only talk to coordinator by replying to RPC
example: make ”prepare” call, worker’s ”agree-to-X” is return value

RPC system detects worker being down, network errors, etc.
become Python exception in coordinator

coordinator verifies Commit/Abort received instead of worker asking
again

automatic: Commit/Abort message is RPC call; RPC call fails if problem

17



assignment: failure recovery
to simplify assignment: always return error if you detect failure

assume testing code/user will restart the coordinator+workers

coordinator sends messages to workers on reboot to recover
resend prepare or commit, abort, etc.

18



assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledge/reply is lost
it gets sent, but delayed until after another RPC

19



assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledge/reply is lost
it gets sent, but delayed until after another RPC

19



transaction/sequence numbers
each RPC is a separate connection

potential for RPC sent before restarting coordinator to be received
after

you’ll need to detect reordering

20



note on skeleton code
I included some extra methods (from my reference impl) in the IDL
file in the skeleton earlier

removed from updated version from yesterday

if you started early (while assignment still tentative), might want to
ignore and/or use updated skeleton code

21



assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

22



assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT
coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

22



assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT

COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

23



assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT
COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

23



TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

24



TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

24



TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

24



message reordering and assignment
assignment: you need to worry about reordering

connections prevent reordering, but…
RPC system doesn’t prevent it: can use multiple connections

problem: old request seems to fail, but is actually slow

you repeat old request again

later on slow old request reaches machine → must be ignored!

solution: sequence numbers or transactions ID and/or timestamps
some way to tell “this is old”

25



extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

26



extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

26



quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

27



quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

27



quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

28



quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

28



quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

28



quorums (3)
A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

29



quorums (3)
A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

29



quorums
A B C D E

details very tricky
what about coordinator failures?
how does recovery happen?
what information needs to be logged?
“catching up” nodes that aren’t part of several updates

full details: lookup Raft or Paxos

30



Raft sketch
Raft: quorum consensus algorithm

leader election: agree on leader (≈ coordinator)
elect new leader on leader failure
constraint: can’t be leader if not up-to-date with quorum
enforcement: quorum must elect each leader
nodes only believe in in latest (highest numbered) leader

leader uses other machines (followers) as remote logs

leader ensures quorum logs operations (≈ commits them)

lots of tricky details around failures
e.g. leader starts sending transaction to log + fails

31



quorums for Byzantine failures
just overlap not enough

problem: node can give inconsistent votes
tell A “I agree to commit”, tell B “I do not”

need to confirm consistency of votes with other notes

need supermajority -type quorums
f failures — 3f + 1 nodes

full details: lookup PBFT

32



network filesystems
department machines — your files always there

even though several machines to log into

how? there’s a network file server

filesystem is backed by a remote machine

33



simple network filesystem

user program

kernel

system calls:
open("foo.txt", …)
read(fd,"bar.txt",…)
…

login server

file server
(other machine)remote procedure calls:

open("foo.txt", …)
read(fd, "bar.txt", …)
…

34



system calls to RPC calls?
just turn system calls into RPC calls?

(or calls to the kernel’s internal fileystem abstraction, e.g. Linux’s Virtual
File System layer)

has some problems:

what state does the server need to store?

what if a client machine crashes?

what if the server crashes?

how fast is this?

35



state for server to store?
open file descriptors?

what file
offset in file

current working directory?

gets pretty expensive across N clients, each with many processes

36



if a client crashes?
well, it hasn’t responded in N minutes, so

can the server delete its open file information yet?

what if its cable is plugged back in and it works again?

37



if the server crashes?
well, first we restart the server/start a new one…

then, what do clients do?

probably need to restart to?

can we do better?

38



NFSv2
NFS (Network File System) version 2

standardized in RFC 1094 (1989)

based on RPC calls

39



NFSv2 RPC calls (subset)
LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

40



NFSv2 RPC calls (subset)
LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure
file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

41



NFSv2 client versus server
clients: file descriptor →server name, file ID, offset

client machine crashes? mapping automatically deleted
“fate sharing”

server: convert file IDs to files on disk
typically find unique number for each file
usually by inode number

server doesn’t get notified unless client is using the file

42



file IDs
device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

43



file IDs
device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

43



file IDs
device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

43



NFSv2 RPC calls (subset)
LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

44



NFSv2 RPC (more operations)
READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

45



NFSv2 RPC (more operations)
READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

45



statefulness
stateful protocol (example: FTP, two-phase commit)

previous things in connection matter
e.g. logged in user
e.g. current working directory
e.g. where to send data connection

stateless protocol (example: HTTP, NFSv2)
each request stands alone
servers remember nothing about clients between messages
e.g. file IDs for each operation instead of file descriptor

46



stateful versus stateless
in client/server protocols:

stateless: more work for client, less for server
client needs to remember/forward any information
can run multiple copies of server without syncing them
can reboot server without restoring any client state

stateful: more work for server, less for client
client sets things at server, doesn’t change anymore
hard to scale server to many clients (store info for each client
rebooting server likely to break active connections

47



performance
before: reading/writing files/directories goes to local memory

lots of work to use memory to cache, read-ahead

so open/read/write/close/rename/readdir/etc. take microseconds
open that file? yes, I have the direntry cached
read from that file? already in my memory

now: take milliseconds+
open that file? let’s ask the server if that’s okay
read from that file? let’s copy it from the server
etc.

48



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

49



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

49



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

49



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

49



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

49



consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

50



consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

50



consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

50



consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

50



typical text editor/word processor
typical word processor:

opening a file:
open file, read it, load into memory, close it

saving a file:
open file, write it from memory, close it

51



two people saving a file?
have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

52



two people saving a file?
have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

52



open to close consistency
a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

53



open to close consistency
a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

53



an alternate compromise
application opens a file, read it a day later, result?

day-old version of file

modification 1: check server/write to server after an amount of time

doesn’t need to be much time to be useful
word processor: typically load/save file in < second

54



AFSv2
Andrew File System version 2

uses a stateful server

also works file at a time — not parts of file
i.e. read/write entire files

but still chooses consistency compromise
still won’t support simulatenous read+write from diff. machines well

stateful: avoids repeated ‘is my file okay?’ queries

55



NFS versus AFS reading/writing
NFS reading: read/write block at a time

AFS reading: always read/write entire file

exercise: pros/cons?
efficient use of network?
what kinds of inconsistency happen?
does it depend on workload?

56



AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: write whole file

last writer wins

57



NFS: last writer wins per block
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
NFS: write NOTES.txt block 0

close NOTES.txt
NFS: write NOTES.txt block 0
NFS: write NOTES.txt block 1

NFS: write NOTES.txt block 1
NFS: write NOTES.txt block 2

NFS: write NOTES.txt block 2
NOTES.txt: 0 from B, 1 from A, 2 from B

58



AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

59



AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

59



AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

59



AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

59



callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

60



callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

60



callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

60



protection/security
protection: mechanisms for controlling access to resources

page tables, preemptive scheduling, encryption, …

security: using protection to prevent misuse
misuse represented by policy
e.g. “don’t expose sensitive info to bad people”

this class: about mechanisms more than policies

goal: provide enough flexibility for many policies

61



adversaries
security is about adversaries

do the worst possible thing

challenge: adversary can be clever…

62



authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

63



authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

63



authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

64



authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

64



backup slides

65



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

66



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

66



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

66



coordinator state machine (simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
or no reply from worker

send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout/failure

resend ABORT if needed

resend COMMIT if needed

66



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: (re)send ABORT to all

if WAIT, could also resend PREPARE (try to get votes again)

if COMMITTED: (re)send COMMIT to all

no vote from worker?
ABORT or resend after timeout

COMMIT/ABORT doesn’t make it to worker
worker can ask to resend after timeout, or
coordinator can ask workers for acknowledgment, resend if none

67



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: (re)send ABORT to all

if WAIT, could also resend PREPARE (try to get votes again)

if COMMITTED: (re)send COMMIT to all

no vote from worker?
ABORT or resend after timeout

COMMIT/ABORT doesn’t make it to worker
worker can ask to resend after timeout, or
coordinator can ask workers for acknowledgment, resend if none

67



coordinator failure recovery
duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: (re)send ABORT to all

if WAIT, could also resend PREPARE (try to get votes again)
if COMMITTED: (re)send COMMIT to all

no vote from worker?
ABORT or resend after timeout

COMMIT/ABORT doesn’t make it to worker
worker can ask to resend after timeout, or
coordinator can ask workers for acknowledgment, resend if none

67



coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
ABORT
(or resend PREPARE) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

68



coordinator state machine (less simplified?)
INIT

WAITING

ABORTED COMMITTED

send PREPARE to all

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

failure/timeout:
ABORT
(or resend PREPARE) vote:

store + tally

vote/failure/timeout:
resend ABORT

vote/failure/timeout:
resend COMMIT

68



worker state machine (simplified)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT

69



worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

70



worker state machine (less simplified?)
INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT
recv PREPARE
(re)send AGREE-TO-ABORT

recv PREPARE
resend AGREE-TO-COMMIT

70



worker failure recovery
worker crashes? log indicating last state

if INIT: wait for PREPARE (resent)?
if AGREE-TO-COMMIT or ABORTED: resend
AGREE-TO-COMMIT/ABORT
if COMMITTED: redo operation

message doesn’t make it to coordinator
resend after timeout or during reboot on recovery

71



state machine missing details
really want to specify result of/action for every message!

worker recv ABORT in ABORTED: do nothing
worker recv ABORT in INIT: go to ABORTED
worker recv PREPARE in COMMITTED: ignore?
…

want to discard finished transactions eventually
…need to not get confused by delayed messages

allows programmatic verifying properties of state machine
what happens if machine fails at each possible time?
what happens if each subset of messages is lost?
…

72



supporting offline operation
so far: assuming constant contact with server

someone else writes file: we find out

we finish editing file: can tell server right away

good for an office
my work desktop can almost always talk to server

not so great for mobile cases
spotty airport/café wifi, no cell reception, …

73



basic offline operation idea
when offline: work on cached data only

writeback whole file only

problem: more opportunity for overlapping accesses to same file

74



recall: AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

worse problem with delayed writes for disconnected operation

75



recall: AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

worse problem with delayed writes for disconnected operation
75



Coda FS: conflict resolution
Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates
avoid problem of last writer wins

and then…ask user? regenerate file? …?

76



Coda FS: conflict resolution
Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates
avoid problem of last writer wins

and then…ask user? regenerate file? …?

76



Coda FS: what to cache
idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

77



Coda FS: what to cache
idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

77



version ID?
not a version number?

actually a version vector

version number for each machine that modified file
number for each server, client

allows use of multiple servers
if servers get desync’d, use version vector to detect
then do, uh, something to fix any conflicting writes

78



file locking
so, your program doesn’t like conflicting writes

what can you do?

if offline operation, probably not much…

otherwise file locking

except it often doesn’t work on NFS, etc.

79



advisory file locking with fcntl
int fd = open(...);
struct flock lock_info = {

.l_type = F_WRLCK, // write lock; RDLOCK also available
// range of bytes to lock:
.l_whence = SEEK_SET, l_start = 0, l_len = ...

};
/* set lock, waiting if needed */
int rv = fcntl(fd, F_SETLKW, &lock_info);
if (rv == −1) { /* handle error */ }
/* now have a lock on the file */

/* unlock --- could also close() */
lock_info.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &lock_info);

80



advisory locks
fcntl is an advisory lock

doesn’t stop others from accessing the file…

unless they always try to get a lock first

81



POSIX file locks are horrible
actually two locking APIs: fcntl() and flock()

fcntl: not inherited by fork

fcntl: closing any fd for file release lock
even if you dup2’d it!

fcntl: maybe sometimes works over NFS?

flock: less likely to work over NFS, etc.

82



fcntl and NFS
seems to require extra state at the server

typical implementation: separate lock server

not a stateless protocol

83



lockfiles
use a separate lockfile instead of “real” locks

e.g. convention: use NOTES.txt.lock as lock file

lock: create a lockfile with link() or open() with O_EXCL
can’t lock: link()/open() will fail “file already exists”
for current NFSv3: should be single RPC calls that always contact server
some (old, I hope?) systems: link() atomic, open() O_EXCL not

unlock: remove the lockfile
annoyance: what if program crashes, file not removed?

84


	two phase commit con't
	two-phase commit examples
	worker retrying
	two-phase commit assignment
	two-phase commit and reordering

	briefly: distributed consensus
	network filesystems
	idea: shared, remote FS
	problem: state
	stateless NFS
	on statefulness
	problem: caching
	problems with caching
	close-to-open consistency or timing
	AFS: callbacks

	protection v security
	security: authentication v authorization
	backup slides
	two-phase commit state machine
	Coda: disconnected operation
	file locking


