
access control

1



last time
two phase commit

and delayed messages
simplifications in assignment

quorum consensus: not requiring unanimity
goal: use nodes for redundancy, but keep them consistent
keep operating when sufficiently many nodes are around
key idea: always contact overlapping sets of nodes

protection (mechanism) and security

authentication (who) v authorization (can do what)

2



authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

3



authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

3



authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

4



authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

4



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

5



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

5



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

5



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

5



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

6



user IDs
most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

7



POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

8



POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

8



POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

9



id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

10



groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

11



groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

11



access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

12



representing access control matrix
with objects (files, etc.): access control list

list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

13



POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

(see docs for chmod command)

14



POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

15



POSIX ACL syntax
# group students have read+execute permissions
group:students:r−x
# group faculty has read/write/execute permissions
group:faculty:rwx
# user mst3k has read/write/execute permissions
user:mst3k:rwx
# user tj1a has no permissions
user:tj1a:−−−

# POSIX acl rule:
# user take precedence over group entries

16



authorization checking on Unix
checked on system call entry

no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

17



superuser
user ID 0 is special

superuser or root

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

18



how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

19



how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

20



Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

21



aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

22



how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

23



changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

24



sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

25



set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

26



set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

27



uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

28



set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

29



a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

30



a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

30



a very broken setuid program
print_grade.c:
int main(int argc, char **argv) {

char filename[500];
sprintf(filename, "all-grades/%s/%s.txt",

argv[1], getenv("USER"));
int fd = open(filename, O_RDWR);
char buffer[1024];
read(fd, buffer, 1024);
printf("%s: %s\n", argv[1], buffer);

}

HUGE amount of stuff can go wrong

examples?

31



set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

32



a delegation problem
consider printing program marked setuid to access printer

decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

33



a broken solution
if (original user can read file from argument) {

open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

34



a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

time-to-check-to-time-of-use vulnerability

35



TOCTTOU solution
temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

36



practical TOCTTOU races?
can use symlinks maze to make check slower

symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

37



aside: real/effective/saved
POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID

idea: become other user for one operation, then switch back

38



aside: real/effective/saved
POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID
idea: become other user for one operation, then switch back

38



why so many?
two versions of Unix:

System V — used effective user ID + saved set-user-ID

BSD — used effective user ID + real user ID

POSIX commitee solution: keep both

39



aside: confusing setuid functions
setuid — if root, change all uids; otherwise, only effective uid

seteuid — change effective uid
if not root, only to real or saved-set-user ID

setreuid — change real+effective; sometimes saved, too
if not root, only to real or effective or saved-set-user ID

…

more info: Chen et al, “Setuid Demystified”
https://www.usenix.org/conference/
11th-usenix-security-symposium/setuid-demystified

40

https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified
https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified


also group-IDs
processes also have a real/effective/saved-set group-ID

can also have set-group-ID executables

same as set-user-ID, but only changes group

41



some security tasks (1)
helping students collaborate in ad-hoc small groups on shared
server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

42



some security tasks (2)
letting students assignment files to faculty on shared server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

43



some security tasks (3)
running untrusted game program from Internet?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

44



ambient authority
POSIX permissions based on user/group IDs process has

correct user/group ID — can read file
correct user ID — can kill process

permission information “on the side”
separate from how to identify file/process

sometimes called ambient authority

“there’s authorization in the air…”

alternate approach: ability to address = permission to access

45



capabilities
token to identify = permission to access

(typically opaque token)

pro: “what object is this token” check = “can access” check:

simpler?

46



capabilities
token to identify = permission to access

(typically opaque token)

pro: “what object is this token” check = “can access” check:
simpler?

46



some capability list examples
file descriptors

list of open files process has access to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

47



some capability list examples
file descriptors

list of open files process has access to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

47



sharing capabilities
some ways of sharing capabilities:

inherited by spawned programs
file descriptors/page tables do this

send over local socket or pipe
Unix: usually supported for file descriptors!
(look up SCM_RIGHTS — slightly different for Linux v. OS X v.
FreeBSD v. …)

48



Capsicum: practical capabilities for UNIX (1)
Capsicum: research project from Cambridge

adds capabilities to FreeBSD by extending file descriptors

opt-in: can set process to require capabilities to access objects
instead of absolute path, process ID, etc.

capabilities = fds for each directory/file/process/etc.

more permissions on fds than read/write
execute
open files in (for fd representing directory)
kill (for fd reporesenting process)
…

49



Capsicum: practical capabilities for UNIX (2)
capabilities = no global names

no filenames, instead fds for directories
new syscall: openat(directory_fd, "path/in/directory")
new syscall: fexecv(file_fd, argv)

no pids, instead fds for processes
new syscall: pdfork()

50



alternative to per-process tables
file descriptors: different in every process

use special functions to move between processes

alternate idea: same number in every process
one big table

sharing token = copy number without OS help

but how to control access? make numbers hard to guess

example: use random 128-bit numbers

51


	security: authentication v authorization
	access matrix/control list
	protection domains?
	POSIX user IDs
	POSIX groups

	access control lists
	file permissions

	authorizaton on Unix
	where checking happens
	superuser
	/bin/login
	sudo/set-user-ID
	set-user-ID programs are hard to write
	aside: TOCTTOU
	real/effective/saved
	exercises on POSIX model

	capabilities
	ambient authority v. capability idea
	capability concept


