
Fall 2018 CS 4414-002 Midterm, Page 1 of 8 Computing ID:

Fill out the bottom of this page with your computing ID.
Write your computing ID at the top of each page in case pages get separated.

On my honor as a student I have neither given nor received aid on this exam.

TPEGS FOOTER HERE

Fall 2018 CS 4414-002 Midterm, Page 2 of 8 Computing ID:

1. (6 points) In the traditional Unix’s monolithic kernel operating system design (like used by Linux and
xv6), which of the following typically operations occur in kernel mode? Select all that apply.

© creating a new process when a process calls fork
© checking whether a file exists when a process calls open
© displaying text on the console when a process calls printf
© assigning new memory to a process’s address space when a process calls malloc
© comparing strings when a process calls strcmp
© switching from one process to another

2. (4 points) In a multi-level feedback queue scheduler, programs in the highest priority queue also
. Select all that apply.

© tend to be less compute-intensive than programs at lower priorities
© have longer timeslices than programs at lower priorities
© will be demoted to a lower priority if they stop using the CPU before the end of their timeslice
© will be demoted to a lower priority if they keep using the CPU up until the end of their

timeslice

3. For each of the following statements, indicate whether they are true about
• a first-come first-served scheduler (FCFS)
• a round-robin scheduler (RR)
• a lottery scheduler, like the one required for the scheduler assignment (lottery)
• a shortest job first scheduler without preemption (SJF)
• a shortest remaining time first scheduler with preemption (SRTF)
• a multi-level feedback queue scheduler (MLFQ)
• Linux’s Completely Fair Scheduler (CFS)
• a strict priority scheduler with preemption (prio)

For each question, do not accounting for how users might adjust what threads they run (other than
specifying scheduler parameters, like priorities) based on the scheduler in use.
For each question below, select all that apply.

(a) (5 points) This kind of scheduler is subject to starvation, where some thread will never run, no matter
how long it waits, when there are certain kinds of competing threads, even if the scheduler does not
allow any one thread to run indefinitely.
© FCFS © RR © lottery © SJF © SRTF © MLFQ © CFS © prio

(b) (5 points) This kind of scheduler allows the relative importance of threads to be specified by the user
or system administrator and used in the scheduling decision.
© FCFS © RR © lottery © SJF © SRTF © MLFQ © CFS © prio

(c) (5 points) This kind of scheduler is not actually possible to implement exactly on a typical operating
system, because it requires knowing about the future behavior of programs.
© FCFS © RR © lottery © SJF © SRTF © MLFQ © CFS © prio

Fall 2018 CS 4414-002 Midterm, Page 3 of 8 Computing ID:

4. (20 points) Consider the following incomplete C program that uses the POSIX API: (Assume all ap-
propriate headers are included and ignore minor syntax errors.)

int main(void) {
int fds[2] = {1, 1}; pid_t pid = (pid_t) −1; char c;

_____________; // LOCATION 1
pid = fork();

_____________; // LOCATION 2
if (pid == 0) { /* child: */

_____________; // LOCATION 3
write(fds[1], "Hello!", 6);

} else {

______________; // LOCATION 4

while (_________________ > 0) { // LOCATION 5
printf("%c", c);

}
waitpid(pid, NULL, NULL);

}
return 0;

}

To make this program output “Hello!”, one or more of the following statements need to be inserted
into the blanks marked Location 1 through 5.

A. pipe(fds)
B. dup2(fds[1], STDOUT_FILENO)
C. dup2(fds[0], STDIN_FILENO)
D. close(fds[0])
E. close(fds[1])
F. close(STDIN_FILENO)
G. read(fds[0], &c, 1)
H. read(fds[1], &c, 1)
I. write(fds[1], &c, 1)
J. read(STDOUT_FILENO, &c, 1)

For each line above, write the letters A through J that would be appropriate to place in each
location above. Some lines may be left blank and some letters may be left unused.
pipe(a) takes an array a of two file descriptors and creates a pipe where element 1 of the array is
the write end of the pipe and element 0 is the read end.
dup2(from, to) takes two file descriptors from and to and assigns the file descriptor number to
to reference the same open file that from does.
You may assume fork and waitpid and pipe will not fail, and that write never writes less than
requested when passed an appropriate file descriptor.

Fall 2018 CS 4414-002 Midterm, Page 4 of 8 Computing ID:

5. (8 points) Consider the following C program that uses the pthreads API:

int x = 50;
void child(void *ignored_argument) {

x = x + 10;
printf("[child]␣%d␣", x);
x = x + 10;

}
int main(void) {

pthread_t child_thread;
x = 100;
pthread_create(&child_thread, NULL, child, NULL);
x = x − 1;
pthread_join(child_thread, NULL);
printf("[main]␣%d", x);
return 0;

}

Assume that pthread_create and pthread_join do not fail, that reads and writes to x are
atomic and are executed in each thread in the order specified in the program’s code (not reorderd by
the compiler or processor), and that the program does not crash or fail to compile.
Which of the following outputs are possible? Select all that apply.

© [main] 110 [child] 119
© [child] 110 [main] 109
© [child] 109 [main] 120
© [child] 60 [main] 99
© [child] 110 [main] 119
© [child] 110 [main] 99
© [main] 110 [child] 109
© [child] 109 [main] 119

Fall 2018 CS 4414-002 Midterm, Page 5 of 8 Computing ID:

6. Consider implementing a “synchronized buffer” data structure. This structure has two operations:
• void Put(int value)
• int Get()

Each time a thread calls Put(), it puts a value into a shared buffer and returns after the item has been
retrieved by another thread calling Get(). Each item that it is Put() into the buffer will be retrieved
exactly once (assuming some thread eventually calls Get()).
If a thread calls Get() and an item is not yet available, it first waits until an item is available, then
returns that item.

(a) (30 points) Suppose we implement this data structure with mutexes and condition variables with the
following incomplete code, where code to fill in is marked with a blank and a commented letter:
int current_value;
bool current_value_used = false; bool current_value_received = false;
pthread_mutex_t lock;
pthread_cond_t put_ready; pthread_cond_t put_done; pthread_cond_t get_ready;

void Put(int value) {
pthread_mutex_lock(&lock);

while (current_value_used) {
pthread_cond_wait(&put_ready, &lock);

}
current_value = value;
current_value_used = true;
current_value_received = false;
pthread_cond_signal(&get_ready);

while (/* A */ __) {
pthread_cond_wait(&put_done, &lock);

}

/* B */ __;

/* C */ __;
pthread_mutex_unlock(&lock);

}

int Get() {
pthread_mutex_lock(&lock);

while (/* D */ __) {
pthread_cond_wait(&get_ready, &lock);

}

int result = current_value;
current_value_received = true;

/* E */ __;
pthread_mutex_unlock(&lock);
return result;

}

Fill in each of the blanks (A, B, C, D, E) above. You may assume that there is code elsewhere
that will correctly initialize the mutexes and condition variables.

Fall 2018 CS 4414-002 Midterm, Page 6 of 8 Computing ID:

(b) Suppose we implement this synchronized buffer data structure with semaphores with the following
code:

int current_value;
sem_t put_gate;
sem_t get_gate;

void Put(int value) {
sem_wait(&put_gate); // wait = down or P operation
current_value = value;
sem_post(&get_gate); // post = up or V operation

}

int Get() {
sem_wait(&get_gate);
int result = current_value;
sem_post(&put_gate);
return result;

}

What should the initial values of the counting semaphores put_gate and get_gate be?
i. (5 points) put_gate:

ii. (5 points) get_gate:

7. (7 points) Suppose a multiprocessor system uses a cache coherency mechanism where:
• each processor has its own cache
• memory and these caches are all connected via a shared bus
• each block in the caches are Invalid or Modified (value is dirty and held by exactly one processor’s

cache) or Shared (value is not dirty and potentilly held by another processor’s cache)
Which of the following operations require a procesor to send a message on the shared bus? Select all
that apply.

© writing to a value which it currently has cached in the Modified state
© reading from a value which it currently does not have cached
© completing an atomic exchange operation on a value it currently has cached in the Modified

state
© completing an atomic exchange operation on a value it currently has cached in the Shared

state
© writing to a value which it currently does not have cached
© writing to a value which it currently has cached in the Shared state
© reading from a value which it currently has cached in the Shared state

Fall 2018 CS 4414-002 Midterm, Page 7 of 8 Computing ID:

8. Consider the following C++ code for a flight reservation system. The makeReservation function
simulatenously tries to simulatenously reserve a seat (decrementing from a count of available seats)
on several flights and returns true if it is successful; otherwise, if not enough seats were available, it
returns false. Unfortunately, it has few bugs.
struct Flight { string name; int remainingSeats; pthread_mutex_t lock; };
bool makeReservation(vector<Flight*> flights) {

for (int i = 0; i < flights.size(); ++i) {
pthread_mutex_lock(&flights[i]->lock);
if (flights[i]->remainingSeats == 0) {

pthread_mutex_unlock(&flights[i]->lock);
return false;

}
}
for (int i = 0; i < flights.size(); ++i) {

flights[i]->remainingSeats -= 1;
pthread_mutex_unlock(&flights[i]->lock);

}
return true;

}

(a) (10 points) When one of the flights does not have any seats left, the above makeReservation function
can result in the program hanging later on — even if the program only has one thread. Explain briefly
(at most one sentence) or give an example of how this could happen.

(b) (8 points) Even when all flights have enough seats left, the above makeReservation function can
result in the program hanging if it is called in a particular way from multiple thread. Describe two
simulatenous calls that would cause this. You may use shorthand like makeReservation([A, B,
C]) to represent a call to makeReservation with a vector of flights A, B, and C.

(c) (8 points) What is a way the hang described in the previous question (8(b)) be corrected? Explain
briefly (at most one sentence).

Fall 2018 CS 4414-002 Midterm, Page 8 of 8 Computing ID:

9. Consider a system which, like x86, which has:
• 32-bit virtual addresses
• a 2-level page table
• 20-bit virtual page numbers
• 4096 (212) byte pages
• 4-byte page table entries
• 4096 byte page tables at each level

On this system, the first 10 bits of a virtual page numberare used to look up the page table entry in
the first level page table and the second 10 bits of are used to look up entries in the second level page
table.

(a) (6 points) If the first-level page table entry, located at physical byte address 0x8010, for virtual address
0x1020123 specifies that the second-level page table is located at physical byte address 0x4000, then
at what physical byte address is the second-level page table entry for this virtual address?

(b) (4 points) Suppose the second-level page table entry for virtual address 0x4444 is marked as not
present (also known as ‘invalid’). Suppose the OS wants to make reads and writes to this address work
in spite of this. What could the OS do from its fault handler when a page fault occurs from the program
trying to write to address 0x4448 as part of a pushq (push 8 bytes on the stack) instruction? Suppose
that the OS determines that writes to this address should go to physical memory address 0x8448.

© update physical address 0x8448 location from the kernel, then return from the fault handler
© update the program’s saved stack pointer to contain 0x8450, then return from the fault

handler
© update the second-level page table entry to reference the page containing 0x8448, then

return from the fault handler
© update the second-level page table entry to reference the page containing 0x8448, then

restart the faulting program from the beginning of main

