
Changelog

Changes made in this version not seen in first lecture:
24 Jan 2019: wait: return value for WNOHANG when process not done
is 0, not -1
24 Jan 2019: reading a fixed amount: add check for amount_read = 0

0

POSIX API 2

1

last time

context switch (finish)

POSIX

fork

exec

waitpid

2

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

3

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

4

wait/waitpid

pid_t waitpid(pid_t pid, int *status,
int options)

wait for a child process (with pid=pid) to finish

sets *status to its “status information”

pid=-1 → wait for any child process instead

options? see manual page (command man waitpid)
0 — no options
WNOHANG — return 0 rather than hanging if process not yet done

5

wait/waitpid

pid_t waitpid(pid_t pid, int *status,
int options)

wait for a child process (with pid=pid) to finish

sets *status to its “status information”

pid=-1 → wait for any child process instead

options? see manual page (command man waitpid)
0 — no options
WNOHANG — return 0 rather than hanging if process not yet done

5

exit statuses

int main() {
return 0; /* or exit(0); */

}

6

waitpid example

#include <sys/wait.h>
...
child_pid = fork();
if (child_pid > 0) {

/* Parent process */
int status;
waitpid(child_pid, &status, 0);

} else if (child_pid == 0) {
/* Child process */
...

7

the status

#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main␣returned␣or␣exit␣called␣with␣%d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed␣by␣signal␣%d␣(control-C␣causes␣signal␣%d)\n",

WTERMSIG(status), SIGINT);
} else {

...
}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

8

the status

#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main␣returned␣or␣exit␣called␣with␣%d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed␣by␣signal␣%d␣(control-C␣causes␣signal␣%d)\n",

WTERMSIG(status), SIGINT);
} else {

...
}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

8

aside: signals

signals are a way of communicating between processes

they are also how abnormal termination happens

wait’s status will tell you when and what signal killed a program
constants in signal.h
SIGINT — control-C
SIGTERM — kill command (by default)
SIGSEGV — segmentation fault
SIGBUS — bus error
SIGABRT — abort() library function
…

9

waiting for all children

#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}

10

‘waiting’ without waiting

#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}

11

parent and child processes

every process (but process id 1) has a parent process (getppid())
this is the process that can wait for it
creates tree of processes:

12

parent and child questions…

what if parent process exits before child?
child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()/wait()s for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

13

typical pattern

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

main() {
…

}

14

multiple processes?

while (...) {
pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}

15

multiple processes?

while (...) {
pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}

16

POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

17

shell

allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

upcoming homework — make a simple shell

18

aside: shell forms

POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?

19

some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

20

some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

21

searching for programs

POSIX convention: PATH environment variable
example: /home/cr4bd/bin:/usr/bin:/bin
checked in order

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}

22

some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

23

running in background

$./long_computation >tmp.txt &
[1] 4049
$...
[1]+ Done ./long_computation > tmp.txt
$ cat tmp.txt
the result is ...

& — run a program in “background”

initially output PID (above: 4049)

print out after terminated
one way: use waitpid with option saying “don’t wait”

24

some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

25

shell redirection

./my_program ... <input.txt:
run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo >output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

26

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!

old memory
discarded

27

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!

old memory
discarded

27

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!

old memory
discarded

27

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!

old memory
discarded

27

fork copies open files

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

28

typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}

29

redirecting with exec

standard output/error/input are files
(C stdout/stderr/stdin; C++ cout/cerr/cin)
yes, your terminal is a file
more on this later

after forking, open files to redirect

…and make them be standard output/error/input
typically using dup2()

30

some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

31

shell assignment

implement a simple shell that supports redirection and pipeline

…and prints the exit code of program in the pipeline

simplified parsing: space-seperated:
okay: /bin/ls␣-1␣>␣ tmp.txt
not okay: /bin/ls␣-l␣>tmp.txt
okay: /bin/ls␣-1␣|␣/bin/grep␣ foo␣>␣ tmp.txt
not okay: /bin/ls␣-1␣|/bin/grep␣ foo␣>tmp.txt

32

POSIX: everything is a file

the file: one interface for
devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

33

the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

34

the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

34

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

35

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

35

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

35

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

35

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

35

kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

35

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

36

read/write operations

read()/write(): move data into/out of buffer

block (make process wait) if buffer is empty (read)/full (write)
(default behavior, possibly changeable)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

37

layering

application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

38

filesystem abstraction

regular files — named collection of bytes
also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

39

open

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

40

open

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

path = filename
e.g. "/foo/bar/file.txt"

file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

41

open: file descriptors

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files

42

implementing file descriptors in xv6 (1)

struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

ofile[0] = file descriptor 0

pointer — can be shared between proceses
not part of deep copy fork does

null pointers — no file open with that number

43

implementing file descriptors in xv6 (2)

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

needs kept up-to-date (example: on fork)

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

44

implementing file descriptors in xv6 (2)

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

needs kept up-to-date (example: on fork)

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

44

implementing file descriptors in xv6 (2)

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

needs kept up-to-date (example: on fork)

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

44

implementing file descriptors in xv6 (2)

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

needs kept up-to-date (example: on fork)

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

44

implementing file descriptors in xv6 (2)

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

needs kept up-to-date (example: on fork)

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

44

special file descriptors

file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

45

special file descriptors

file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

45

open: flags

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
flags: bitwise or of:

O_RDWR, O_RDONLY, or O_WRONLY
read/write, read-only, write-only

O_APPEND
append to end of file

O_TRUNC
truncate (set length to 0) file if it already exists

O_CREAT
create a new file if one doesn’t exist
(default: file must already exist)

O_EXCL
fail if file already exists (be first to create it)

man 2 open
46

open: mode

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

mode: permissions of newly created file
like numbers provided to chmod command
filtered by a “umask”

simple advice: always use 0666
= readable/writeable by everyone, except where umask prohibits
(typical umask: prohibit other/group writing)

47

close

int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors that refer to same “open file
description”
(e.g. in fork()ed child)

returns 0 on success, -1 on error (e.g. ran out of disk space while
trying to save file)

48

reassigning file descriptors

redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

49

reassigning and file table

struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

redirect stdout: want: ofile[1] = ofile[opened-fd];
(plus increment reference count, so nothing is deleted early)

but can’t access ofile from userspace

so syscall: dup2(opened-fd, 1);

50

reassigning file descriptors

redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused
51

dup2 example

redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This␣will␣be␣sent␣to␣output.txt.\n");
52

dup

int dup(int oldfd)
copy oldfd to a newly chosen file descriptor

almost same as dup2(oldfd, new-fd-number)

53

read/write

ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

54

read’ing one byte at a time

string s;
ssize_t amount_read;
char c;
while ((amount_read = read(STDIN_FILENO, &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}

55

read/write

ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

56

read’ing a fixed amount

ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0); 57

partial reads

on regular file: read reads what you request

but otherwise: gives you what’s known to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

58

partial reads

on regular file: read reads what you request

but otherwise: gives you what’s known to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

58

write example

/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello,␣World!\n", 14);

59

write example (with error checking)

const char *ptr = "Hello,␣World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
}

60

partial writes

usually only happen on error or interruption
or if used another call to request “non-blocking”
(interruption: via signal)

more typical: write waits until it completes
until remaining part fits in buffer in kernel?

61

stdio and iostreams

what about cout, printf, etc.?

…implemented in terms of read, write, open, close

adds buffering in the process — faster
read/write typically system calls
running system call for approx. each character is slow!
in addition to buffering that occurs in the kernel

more convenient
formatted I/O, partial reads/writes handled by library, etc.

more portable
stdio.h and iostreams defined by the C and C++ standards

62

mixing stdio/iostream and raw read/write

don’t do it (unless you’re very careful)

cin/scanf read some extra characters into a buffer?
you call read — they disappear!

cout/printf has output waiting in a buffer?
you call write — out-of-order output!

(if you need to: some stdio calls specify that they clear out buffers)

63

pipes

special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines

64

pipe()

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);

65

pipe() and blocking

BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?

66

pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

67

pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

67

pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

67

pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

67

pipe and pipelines

ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
/* wait for processes, etc. */

68

	wait
	parent and child
	summary diagram
	shells
	shells, the concept
	I/O redirection: syntax, method preview
	pipelines
	assignment preview

	files in POSIX, part 1
	Unix: everything is a file
	kernel buffering
	layers of file interfaces
	open
	interlude: file descriptors
	open flags
	close
	dup2, dup; redirection revisited
	read, write

	stdio.h versus system calls
	pipelines
	pipe
	pipe and pipelines

