
Changelog

Changes made in this version not seen in first lecture:
24 Jan 2019: wait: return value for WNOHANG when process not done
is 0, not -1
24 Jan 2019: reading a fixed amount: add check for amount_read = 0
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POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill
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wait/waitpid

pid_t waitpid(pid_t pid, int *status,
int options)

wait for a child process (with pid=pid) to finish

sets *status to its “status information”

pid=-1 → wait for any child process instead

options? see manual page (command man waitpid)
0 — no options
WNOHANG — return 0 rather than hanging if process not yet done
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exit statuses

int main() {
return 0; /* or exit(0); */

}
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waitpid example

#include <sys/wait.h>
...
child_pid = fork();
if (child_pid > 0) {

/* Parent process */
int status;
waitpid(child_pid, &status, 0);

} else if (child_pid == 0) {
/* Child process */
...
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the status

#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main␣returned␣or␣exit␣called␣with␣%d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed␣by␣signal␣%d␣(control-C␣causes␣signal␣%d)\n",

WTERMSIG(status), SIGINT);
} else {

...
}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

8



the status

#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main␣returned␣or␣exit␣called␣with␣%d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed␣by␣signal␣%d␣(control-C␣causes␣signal␣%d)\n",

WTERMSIG(status), SIGINT);
} else {

...
}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

8



aside: signals

signals are a way of communicating between processes

they are also how abnormal termination happens

wait’s status will tell you when and what signal killed a program
constants in signal.h
SIGINT — control-C
SIGTERM — kill command (by default)
SIGSEGV — segmentation fault
SIGBUS — bus error
SIGABRT — abort() library function
…
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waiting for all children

#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}
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‘waiting’ without waiting

#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}
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parent and child processes

every process (but process id 1) has a parent process (getppid())
this is the process that can wait for it
creates tree of processes:
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parent and child questions…

what if parent process exits before child?
child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()/wait()s for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails
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typical pattern

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

main() {
…

}

14



multiple processes?

while (...) {
pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}
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multiple processes?

while (...) {
pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}
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POSIX process management

essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill
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shell

allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

upcoming homework — make a simple shell
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aside: shell forms

POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?
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some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter
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searching for programs

POSIX convention: PATH environment variable
example: /home/cr4bd/bin:/usr/bin:/bin
checked in order

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}
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running in background

$ ./long_computation >tmp.txt &
[1] 4049
$ ...
[1]+ Done ./long_computation > tmp.txt
$ cat tmp.txt
the result is ...

& — run a program in “background”

initially output PID (above: 4049)

print out after terminated
one way: use waitpid with option saying “don’t wait”
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shell redirection

./my_program ... <input.txt:
run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo >output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)
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exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!

old memory
discarded
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fork copies open files

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy
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typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}
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redirecting with exec

standard output/error/input are files
(C stdout/stderr/stdin; C++ cout/cerr/cin)
yes, your terminal is a file
more on this later

after forking, open files to redirect

…and make them be standard output/error/input
typically using dup2()
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some POSIX command-line features

searching for programs (not in assignment)
ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter
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shell assignment

implement a simple shell that supports redirection and pipeline

…and prints the exit code of program in the pipeline

simplified parsing: space-seperated:
okay: /bin/ls␣-1␣>␣ tmp.txt
not okay: /bin/ls␣-l␣>tmp.txt
okay: /bin/ls␣-1␣|␣/bin/grep␣ foo␣>␣ tmp.txt
not okay: /bin/ls␣-1␣|/bin/grep␣ foo␣>tmp.txt
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POSIX: everything is a file

the file: one interface for
devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()
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the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close
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kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3
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kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk
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read/write operations

read()/write(): move data into/out of buffer

block (make process wait) if buffer is empty (read)/full (write)
(default behavior, possibly changeable)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed
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layering

application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers
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filesystem abstraction

regular files — named collection of bytes
also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories
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open

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);
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open

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

path = filename
e.g. "/foo/bar/file.txt"

file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

41



open: file descriptors

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files
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implementing file descriptors in xv6 (1)

struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

ofile[0] = file descriptor 0

pointer — can be shared between proceses
not part of deep copy fork does

null pointers — no file open with that number
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implementing file descriptors in xv6 (2)

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

needs kept up-to-date (example: on fork)

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)
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special file descriptors

file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later
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open: flags

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
flags: bitwise or of:

O_RDWR, O_RDONLY, or O_WRONLY
read/write, read-only, write-only

O_APPEND
append to end of file

O_TRUNC
truncate (set length to 0) file if it already exists

O_CREAT
create a new file if one doesn’t exist
(default: file must already exist)

O_EXCL
fail if file already exists (be first to create it)

man 2 open
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open: mode

int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

mode: permissions of newly created file
like numbers provided to chmod command
filtered by a “umask”

simple advice: always use 0666
= readable/writeable by everyone, except where umask prohibits
(typical umask: prohibit other/group writing)
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close

int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors that refer to same “open file
description”
(e.g. in fork()ed child)

returns 0 on success, -1 on error (e.g. ran out of disk space while
trying to save file)

48



reassigning file descriptors

redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused
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reassigning and file table

struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

redirect stdout: want: ofile[1] = ofile[opened-fd];
(plus increment reference count, so nothing is deleted early)

but can’t access ofile from userspace

so syscall: dup2(opened-fd, 1);
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reassigning file descriptors

redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused
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dup2 example

redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This␣will␣be␣sent␣to␣output.txt.\n");
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dup

int dup(int oldfd)
copy oldfd to a newly chosen file descriptor

almost same as dup2(oldfd, new-fd-number)
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read/write

ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

54



read’ing one byte at a time

string s;
ssize_t amount_read;
char c;
while ((amount_read = read(STDIN_FILENO, &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}

55



read/write

ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)
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read’ing a fixed amount

ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0); 57



partial reads

on regular file: read reads what you request

but otherwise: gives you what’s known to be available

reading from network — what’s been received

reading from keyboard — what’s been typed
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write example

/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello,␣World!\n", 14);

59



write example (with error checking)

const char *ptr = "Hello,␣World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
}
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partial writes

usually only happen on error or interruption
or if used another call to request “non-blocking”
(interruption: via signal)

more typical: write waits until it completes
until remaining part fits in buffer in kernel?
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stdio and iostreams

what about cout, printf, etc.?

…implemented in terms of read, write, open, close

adds buffering in the process — faster
read/write typically system calls
running system call for approx. each character is slow!
in addition to buffering that occurs in the kernel

more convenient
formatted I/O, partial reads/writes handled by library, etc.

more portable
stdio.h and iostreams defined by the C and C++ standards
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mixing stdio/iostream and raw read/write

don’t do it (unless you’re very careful)

cin/scanf read some extra characters into a buffer?
you call read — they disappear!

cout/printf has output waiting in a buffer?
you call write — out-of-order output!

(if you need to: some stdio calls specify that they clear out buffers)
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pipes

special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines
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pipe()

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);
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pipe() and blocking

BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?
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pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out
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pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
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} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out
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pipe example (1)
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pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out
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pipe and pipelines

ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
/* wait for processes, etc. */
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