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Changelog

Changes made in this version not seen in first lecture:
31 Jan 2019: update process states to have transitions in both diretions
between ready/running
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last time

shells

file descriptors

open, read, write, close

kernel and other buffering

dup2 and start pipes
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homework notes

late submission of HW1
had trouble submitting late due to submission system? email me
joined the class very late? email me

shell homework: two errors in tests; one in instructions
one flakey test for background processes (timing dependent)
one erroneous test
instructions referred to Makefile target that wasn’t included
corrected version of instructions, tests
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pipes

special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines
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pipe()

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);
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pipe() and blocking

BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?
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pipe example (1)

int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out
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pipe and pipelines

ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
close(pipe_fd[0]); close(pipe_fd[1]);
/* wait for processes, etc. */ 8



example execution
parent

pipe() — fds 3 [read], 4 [write]

child 1

4→ stdout

close 3,4

exec ls

child 2

3→ stdin

close 3,4

exec grep
close 3,4
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exercise

pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */
close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit();

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read␣%d␣bytes\n", count);

}

The child is trying to send the character A to the parent.
But the above code outputs read 0 bytes instead of read 1
bytes.
What happened?
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exercise solution

pipe() is after fork — two pipes, one in child, one in parent
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exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit();

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 12
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partial reads

read returning 0 always means end-of-file
by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough
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Unix API summary

spawn and wait for program: fork (copy), then
in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1
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xv6: process table

struct {
struct spinlock lock;
struct proc proc[NPROC]

} ptable;

fixed size array of all processes

lock to keep more than one thing from accessing it at once
rule: don’t change a process’s state (RUNNING, etc.) without
‘acquiring’ lock
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xv6: allocating a struct proc

acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == UNUSED)

goto found;

release(&ptable.lock);

just search for PCB with “UNUSED” state

not found? fork fails

if found — allocate memory, etc.
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xv6: creating the first process

// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable
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threads versus processes

for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space
open files
current working directory
…
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xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 19
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single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process
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thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for
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alternative view: queues

ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threadsready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?
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on queues in xv6

xv6 doesn’t represent queues explicitly
no queue class/struct

ready queue: process list ignoring non-RUNNABLE entries

I/O queues: process list where SLEEPING, chan = I/O device

real OSs: typically separate list of processes
maybe sorted?
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scheduling

scheduling = removing process/thread to remove from queue

mostly for the ready queue (pre-CPU)
remove a process and start running it
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example other scheduling problems

batch job scheduling

e.g. what to run on my supercomputer?

jobs that run for a long time (tens of seconds to days)

can’t easily ‘context switch’ (save job to disk??)

I/O scheduling

what order to read/write things to/from network, hard disk, etc.
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this lecture

main target: CPU scheduling

…on a system where programs do a lot of I/O

…and other programs use the CPU when they do

…with only a single CPU

many ideas port to other scheduling problems
especially simpler/less specialized policies
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scheduling policy

scheduling policy = what to remove from queue
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the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…(but acquiring the process table lock
disables interrupts again)

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens
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the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler
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the xv6 scheduler: on process start

void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}

p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);

scheduler()

scheduler switched with process table locked
need to unlock before running user code
(so other cores, interrupts can use table or
run scheduler)
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the xv6 scheduler: going from/to scheduler

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state
and before running scheduler loop

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler
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the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop
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the xv6 scheduler: SLEEPING to RUNNABLE

static void
wakeup1(void *chan)
{
struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == SLEEPING && p−>chan == chan)

p−>state = RUNNABLE;
}
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the scheduling policy problem

what RUNNABLE program should we run?

xv6 answer: whatever’s next in list

best answer?
well, what do you care about?
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some simplifying assumptions

welcome to 1970:

one program per user

one thread per program

programs are independent
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recall: scheduling queues

ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues
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CPU and I/O bursts
…

compute
start read
(from file/keyboard/…)

wait for I/O

compute on read data
start read
wait for I/O

compute on read data
start write
wait for I/O

…

program alternates between computing
and waiting for I/O

examples:
shell: wait for keypresses
drawing program: wait for mouse presses/etc.
web browser: wait for remote web server
…
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CPU bursts and interactivity (one c. 1966 shared system)

shows compute time
from command entered
until next command prompt

from G. E. Bryan, “JOSS: 20,000 hours at a console—a statistical approach” in Proc. AFIPS 1967 FJCC 38



CPU bursts and interactivity (one c. 1990 desktop)

shows CPU time
from RUNNING
until not RUNNABLE
anymore

from Curran and Stumm, “A Comparison of basic CPU Scheduling Algoirithms for Multiprocessor Unix” 39



CPU bursts

observation: applications alternate between I/O and CPU
especially interactive applications
but also, e.g., reading and writing from disk

typically short “CPU bursts” (milliseconds) followed by short “IO
bursts” (milliseconds)
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scheduling CPU bursts

our typical view: ready queue, bunch of CPU bursts to run

to start: just look at running what’s currently in ready queue best
same problem as ‘run bunch of programs to completion’?

later: account for I/O after CPU burst
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an historical note

historically applications were less likely to keep all data in memory

historically computers shared between more users

meant more applications alternating I/O and CPU

context many scheduling policies were developed in
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