
Scheduling 3 / Threading 0

1



last time

scheduling metrics: turnaround/wait time, throughput, fairness

simple scheduling policies: FCFS, RR

optimizing for turnaround tinme: SJF/SRTF

approximating SRTF: MFQ

2



cheating multi-level feedback queuing

algorithm: don’t use entire time quantum? priority increases

getting all the CPU:

while (true) {
useCpuForALittleLessThanMinimumTimeQuantum();
yieldCpu();

}

3



multi-level feedback queuing and fairness

suppose we are running several programs:
A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

4



multi-level feedback queuing and fairness

suppose we are running several programs:
A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

4



providing fairness

an additional heuristic: avoid starvation

track processes that haven’t run much recently

…and run them earlier than they “should” be

conflicts with SJF/SRTF goal

…but typically done by multi-level feedback queue implementations

5



other heuristics?

MFQ assumption: past CPU burst ≈ next one

could have other models of CPU bursts
based on length of time since last runnable?
fit to some statistical distribution?
based on what I/O devices are open?

lots of possible scheduling heuristics…

6



policy versus mechanism

MFQ: example of implementing SJF-like policy with priority
mechanism

common theme: one mechanism (e.g. priority) supporting many
policies

7



fair scheduling

what is the fairest scheduling we can do?

intuition: every thread has an equal chance to be chosen

8



random scheduling algorithm

“fair” scheduling algorithm: choose uniformly at random

good for “fairness”

bad for response time

bad for predictability

9



aside: measuring fairness

one way: max-min fairness

choose schedule that maximizes the minimum resources (CPU time)
given to any thread

most fair least fair

10



proportional share

maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

11



proportional share

maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

11



lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner

12



simulating priority with lottery

A (high priority)
1M tickets

B (medium priority)
1K tickets

C (low priority)
1 tickets

very close to strict priority

…or to SJF if priorities are set right

13



simulating priority with lottery

A (high priority)
1M tickets

B (medium priority)
1K tickets

C (low priority)
1 tickets

very close to strict priority

…or to SJF if priorities are set right

13



lottery scheduling assignment

assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how long processes run (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

14



lottery scheduling assignment

assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how long processes run (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

14



is lottery scheduling actually good?

seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if processes don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…

15



exercise

process A: 1 ticket, always runnable

process B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

16



exercise

process A: 1 ticket, always runnable

process B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

approx. 7%

16



A runs w/in 10 times…
0 times 34%
1 time 39%
2 time 19%
3 time 6%
4 time 1%
5+ time <1%

(binomial distribution…)

17



lottery scheduler and interactivity

suppose two processes A, B, each have same # of tickets
process A is CPU-bound
process B does lots of I/O

lottery scheduler: run equally when both can run
result: B runs less than A

50% when both runnable
0% of the time when only A runnable (waiting on I/O)

is this fair? depends who you ask

one idea: B should get more tickets for waiting

18



lottery scheduler and interactivity

suppose two processes A, B, each have same # of tickets
process A is CPU-bound
process B does lots of I/O

lottery scheduler: run equally when both can run
result: B runs less than A

50% when both runnable
0% of the time when only A runnable (waiting on I/O)

is this fair? depends who you ask

one idea: B should get more tickets for waiting 18



recall: proportional share randomness

lottery scheduler: variance was a problem
consistent over the long-term
inconsistent over the short-term

want something more like weighted round-robin
run one, then the other
but run some things more often (depending on weight/# tickets)

19



deterministic proportional share scheduler

Linux’s scheduler is a deterministic proportional share scheduler

…with a different solution to interactivity problem

20



Linux’s Completely Fair Scheduler (CFS)

Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

21



Linux’s Completely Fair Scheduler (CFS)

Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

22



CFS: tracking runtime

each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

23



CFS: tracking runtime

each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

23



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

24



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

24



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

24



what about threads waiting for I/O, …?

should be advantage for processes not using the CPU as much
haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

25



what about threads waiting for I/O, …?

should be advantage for processes not using the CPU as much
haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

25



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

26



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

26



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

26



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.00 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.00 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.00 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.00 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.00 ms

0 ms 1 ms 2 ms 3 ms

26



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

27



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

27



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

27



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 50.00 ms
C: 50.95 ms

C

A(sleeping): 1.50 ms
B: 51.00 ms
C: 50.95 ms

A

A(now ready): 50.00 ms
B: 51.00 ms
C: 51.70 ms

A’s virtual time
adjusted to avoid

giving too much advantage

B

A(sleeping): 50.75 ms
B: 51.00 ms
C: 51.70 ms

C

A(sleeping): 50.75 ms
B: 52.00 ms
C: 51.70 ms

0 ms 1 ms 2 ms 3 ms

27



handling proportional sharing

solution: multiply used time by weight

e.g. 1 ms of CPU time costs process 2 ms of virtual time

higher weight =⇒ process less favored to run

28



CFS quantum lengths goals

first priority: constrain minimum quantum length (default: 0.75ms)
avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

29



CFS quantum lengths goals

first priority: constrain minimum quantum length (default: 0.75ms)
avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

29



CFS: avoiding excessive context switching

conflicting goals:

schedule newly ready tasks immediately
(assuming less virtual time than current task)

avoid excessive context switches

CFS rule:
if virtual time of new task < current virtual time by threshold

default threshold: 1 ms

(otherwise, wait until quantum is done)

30



other CFS parts

dealing with multiple CPUs

handling groups of related tasks

special ‘idle’ or ‘batch’ task settings

…

31



CFS versus others

very similar to stride scheduling
presented as a deterministic version of lottery scheduling
Waldspurger and Weihl, “Stride Scheduling: Deterministic
Proportional-Share Resource Management” (1995, same authors as
lottery scheduling)

very similar to weighted fair queuing
used to schedule network traffic
Demers, Keshav, and Shenker, “Analysis and Simulation of a Fair
Queuing Algorithm” (1989)

32



a note on multiprocessors

what about multicore?

extra considerations:

want two processors to schedule without waiting for each other

want to keep process on same processor (better for cache)

what process to preempt when three+ choices?

33



real-time

so far: “best effort” scheduling
best possible (by some metrics) given some work

alternate model: need gaurnetees

deadlines imposed by real-world
process audio with 1ms delay
computer-controlled cutting machines (stop motor at right time)
car brake+engine control computer
…

34



real time example: CPU + deadlines

CPU needed

ready deadline

CPU needed

ready deadline

CPU needed

ready deadline

35



example with RR

ready deadline

ready deadline

ready deadline

missed deadline!

36



earliest deadline first
ready deadline

ready deadline

ready deadline

37



impossible deadlines
ready deadline

ready deadline

ready deadline

no way to meet all deadlines!

38



admission control

given worst-case runtimes, start times, deadlines, scheduling
algorithm,…

figure out whether it’s possible to gaurentee meeting deadlines
details on how — not this course (probably)

if not, then
change something so they can?
don’t ship that device?
tell someone at least?

39



earliest deadline first and…

earliest deadline first does not (even when deadlines met)
minimize response time
maximize throughput
maximize fairness

exercise: give an example

40



which scheduler should I choose?

I care about…
CPU throughput: first-come first-serve

average response time: SRTF approximation

I/O throughput: SRTF approximation

fairness — long-term CPU usage: something like Linux CFS

fairness — wait time: something like RR

deadlines — earliest deadline first

favoring certain users: strict priority

41



threads versus processes

for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space
open files
current working directory
…

42



xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 43



xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 43



single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process

44



thread versus process state

thread state — kept in thread control block
registers (including program counter)
other information?

process state — kept in process control block
address space (memory layout)
open files
process id
…

45



Linux idea: task_struct

Linux model: single “task” structure = thread

pointers to address space, open file list, etc.

pointers can be shared — if same process

fork()-like system call “clone”: choose what to share
clone(CLONE_FILES, ...) — new process sharing open files
clone(CLONE_VM, ...) — new process sharing address spaces

advantage: no special logic for threads (mostly)

46



Linux idea: task_struct

Linux model: single “task” structure = thread

pointers to address space, open file list, etc.

pointers can be shared — if same process

fork()-like system call “clone”: choose what to share
clone(CLONE_FILES, ...) — new process sharing open files
clone(CLONE_VM, ...) — new process sharing address spaces

advantage: no special logic for threads (mostly)

46



aside: alternate threading models

we’ll talk about kernel threads

OS scheduler deals directly with threads

alternate idea: library code handles threading

kernel doesn’t know about threads w/in process

hierarchy of schedulers: one for processes, one within each process

not currently common model — awkward with multicore

47



why threads?

concurrency: different things happening at once
one thread per user of web server?
one thread per page in web browser?
one thread to play audio, one to read keyboard, …?
…

parallelism: do same thing with more resources
multiple processors to speed-up simulation (life assignment)

48



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread laterfunction to run — thread starts here, terminate if function returnsthread attributes (extra settings) and function argument

49



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread later

function to run — thread starts here, terminate if function returnsthread attributes (extra settings) and function argument

49



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread later

function to run — thread starts here, terminate if function returns

thread attributes (extra settings) and function argument

49



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread laterfunction to run — thread starts here, terminate if function returns

thread attributes (extra settings) and function argument

49



a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

50



a race

returning from main exits the entire process (all threads)

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

51



fixing the race (version 1)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
return 0;

}

52



fixing the race (version 2; not recommended)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
pthread_exit(NULL);

}

53



pthread_join, pthread_exit

pthread_join: wait for thread, returns its return value
like waitpid, but for a thread
return value is pointer to anything

pthread_exit: exit current thread, returning a value
like exit or returning from main, but for a single thread
same effect as returning from function passed to pthread_create

54


	MFQ problems: cheating, starvation
	aside: heuristics
	fairness goals: proportional share
	lottery scheduling
	motivating Linux's scheduler
	Linux's completely fair scheduler

	a note on mutliple processors
	(if time) real-time scheduling
	which scheduler should I use?
	recall: threads versus processes
	basic pthreads API
	pthread create and join


