
Threading 1

1

last time

proportional share scheduling — lottery

Linux’s completely fair scheduling
virtual time
heuristics for bonus for not wanting the CPU
heuristics for adjusting time quantum

real-time and earliest deadline first scheduling

started threads

a threading race

2

lottery scheduler assignment

track “ticks” process runs
= number of times scheduled
simplification: don’t care if process uses less than timeslice

new system call: getprocesesinfo
copy info from process table into user space

new system call: settickets
set number of tickets for current process
should be inherited by fork

scheduler: choose pseudorandom weighted by tickets
caution! no floating point

3

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread laterfunction to run — thread starts here, terminate if function returnsthread attributes (extra settings) and function argument

4

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread later

function to run — thread starts here, terminate if function returnsthread attributes (extra settings) and function argument

4

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread later

function to run — thread starts here, terminate if function returns

thread attributes (extra settings) and function argument

4

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

run ComputePi and PrintClassList at the same time

also run “more code”

thread identifier — used to perform operations on thread laterfunction to run — thread starts here, terminate if function returns

thread attributes (extra settings) and function argument

4

a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

5

a race

returning from main exits the entire process (all threads)

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

6

fixing the race (version 1)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
return 0;

}

7

fixing the race (version 2; not recommended)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In␣the␣thread\n");
return NULL;

}
int main() {

printf("About␣to␣start␣thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done␣starting␣thread\n");
pthread_exit(NULL);

}

8

pthread_join, pthread_exit

pthread_join: wait for thread, returns its return value
like waitpid, but for a thread
return value is pointer to anything

pthread_exit: exit current thread, returning a value
like exit or returning from main, but for a single thread
same effect as returning from function passed to pthread_create

9

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = 500 * thread_id;
int end = start + 500;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(2);
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
}

10

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = 500 * thread_id;
int end = start + 500;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(2);
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
}

10

passing thread IDs (2)

DataType items[1000];
int num_threads;
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads − 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
...

}
11

passing thread IDs (2)

DataType items[1000];
int num_threads;
void *thread_function(void *argument) {

int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads − 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);
}
...

}
void run_threads() {

vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void*) i);

}
...

}
11

passing data structures

class ThreadInfo {
public:

...
};

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;
...
delete info;

}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void *) new ThreadInfo(...));

}
...

} 12

passing data structures

class ThreadInfo {
public:

...
};

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;
...
delete info;

}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {

pthread_create(&threads[i], NULL,
thread_function, (void *) new ThreadInfo(...));

}
...

} 12

what’s wrong with this?

/* omitted: headers, using statements */
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, get_string, NULL);
string *string_ptr;
pthread_join(the_thread, &string_ptr);
cout << "string␣is␣" << *string_ptr;

}

13

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

14

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

14

thread resources

to create a thread, allocate:

new stack (how big???)

thread control block

pthreads: by default need to join thread to deallocate everything

thread kept around to allow collecting return value

15

pthread_detach

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL, show_progress, NULL);
pthread_detach(show_progress_thread);

}
int main() {

spawn_show_progress_thread();
do_other_stuff();
...

}

detach = don’t care about return value, etc.system will deallocate when thread terminates
16

starting threads detached

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs, show_progress, NULL);
pthread_attr_destroy(&attrs);

}

17

setting stack sizes

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, NULL, show_progress, NULL);

}

18

sum example (to global)
int values[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += values[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

values, results: global variables — shared

19

sum example (to global)
int values[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += values[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

values, results: global variables — shared

19

sum example (to main stack, global values)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

20

sum example (to main stack, global values)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

20

sum example (to main stack, global values)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

20

sum example (to main stack, global values)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

20

program memory (to main stack, global
values)

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack info array

second thread stack my_info

third thread stack my_info

Heap / other dynamic
Code / Data values (global)

21

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

22

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

22

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

22

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

22

program memory (to main stack)

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack info array values (stack? heap?)

second thread stack my_info

third thread stack my_info

Heap / other dynamic
Code / Data

23

sum example (on heap)

struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *values) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

24

sum example (on heap)

struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *values) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

24

sum example (on heap)

struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}
ThreadInfo *start_sum_all(int *values) {

ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}
void finish_sum_all(ThreadInfo *info) {

for (int i = 0; i < 2; ++i)
pthread_join(info[i].thread, NULL);

int result = info[0].result + info[1].result;
delete[] info;
return result;

}

24

program memory (on heap)

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic info array values (stack? heap?)

my_info

my_info

Code / Data

25

a note on error checking

from pthread_create manpage:

special constants for return value

same pattern for many other pthreads functions

will often omit error checking in slides for brevity
26

error checking pthread_create

int error = pthread_create(...);
if (error != 0) {

/* print some error message */
}

27

the correctness problem

schedulers introduce non-determinism
scheduler might run threads in any order
scheduler can switch threads at any time

worse with threads on multiple cores
cores not precisely synchronized (stalling for caches, etc., etc.)
different cores happen in different order each time

makes reliable testing very difficult

solution: correctness by design

28

example application: ATM server

commands: withdraw, deposit

one correctness goal: don’t lose money

29

ATM server
(pseudocode)
ServerLoop() {

while (true) {
ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}
Deposit(accountNumber, amount) {

account = GetAccount(accountId);
account−>balance += amount;
StoreAccount(account);

}

30

a threaded server?

Deposit(accountNumber, amount) {
account = GetAccount(accountId);
account−>balance += amount;
StoreAccount(account);

}

maybe Get/StoreAccount can be slow?
read/write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()
…

all reasons to handle multiple requests at once
→ many threads all running the server loop

31

multiple threads

main() {
for (int i = 0; i < NumberOfThreads; ++i) {

pthread_create(&server_loop_threads[i], NULL,
ServerLoop, NULL);

}
...

}

ServerLoop() {
while (true) {

ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}

32

a side note

why am I spending time justifying this?

multiple threads for something like this make things much trickier

we’ll be learning why…

33

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch

lost write to balance
“winner” of the race

lost track of thread A’s money

34

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race

lost track of thread A’s money

34

the lost write

account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race
lost track of thread A’s money

34

thinking about race conditions (1)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

35

thinking about race conditions (1)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

35

thinking about race conditions (2)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

1 or 3 or 5 (non-deterministic)

36

thinking about race conditions (2)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

1 or 3 or 5 (non-deterministic)

36

thinking about race conditions (3)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3? maybe each bit of x assigned seperately?

37

thinking about race conditions (3)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3? maybe each bit of x assigned seperately?

37

thinking about race conditions (3)

what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3? maybe each bit of x assigned seperately?

37

atomic operation

atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing words is atomic
so can’t get 3 from x← 1 and x← 2 running in parallel

but some instructions are not atomic
one example: normal x86 add constant to memory

38

lost adds (program)

.global update_loop
update_loop:

addl $1, the_value // the_value (global variable) += 1
dec %rdi // argument 1 -= 1
jg update_loop // if argument 1 >= 0 repeat
ret

int the_value;
extern void *update_loop(void *);
int main(void) {

the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL);
pthread_join(B, NULL);
// expected result: 1000000 + 1000000 = 2000000
printf("the_value␣=␣%d\n", the_value);

} 39

lost adds (results)

800000 1000000 1200000 1400000 1600000 1800000 2000000
0

1000

2000

3000

4000

5000

fre
qu

en
cy

the_value = ?

40

but how?

probably not possible on single core
exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

41

but how?

probably not possible on single core
exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

41

so, what is actually atomic

for now we’ll assume: load/stores of ‘words’
(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented

42

too much milk

roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

43

too much milk “solution” 1 (algorithm)

leave a note: “I am buying milk”
place before buying
remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

44

too much milk “solution” 1 (timeline)

if (no milk) {
if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
}

45

too much milk “solution” 2 (algorithm)

intuition: leave note when buying or checking if need to buy

leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;

46

too much milk: “solution” 2 (timeline)

leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

47

too much milk: “solution” 2 (timeline)

leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note

…will never buy milk (twice or once)

47

too much milk: “solution” 2 (timeline)

leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

47

“solution” 3: algorithm

intuition: label notes so Alice knows which is hers (and vice-versa)
computer equivalent: separate noteFromAlice and noteFromBob variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob

48

too much milk: “solution” 3 (timeline)

leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice

49

too much milk: is it possible

is there a solutions with writing/reading notes?
≈ loading/storing from shared memory

yes, but it’s not very elegant

50

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

51

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

51

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

51

too much milk: solution 4 (algorithm)

leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

51

Peterson’s algorithm

general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead

52

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

53

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

53

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

53

the lock primitive

locks: an object with (at least) two operations:
acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

Lock(MilkLock);
if (no milk) {

buy milk
}
Unlock(MilkLock);

54

pthread mutex

#include <pthread.h>

pthread_mutex_t MilkLock;
pthread_mutex_init(&MilkLock, NULL);
...
pthread_mutex_lock(&MilkLock);
if (no milk) {

buy milk
}
pthread_mutex_unlock(&MilkLock);

55

xv6 spinlocks

#include "spinlock.h"
...
struct spinlock MilkLock;
initlock(&MilkLock, "name␣for␣debugging");
...
acquire(&MilkLock);
if (no milk) {

buy milk
}
release(&MilkLock);

56

C++ containers and locking

can you use a vector from multiple threads?

…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not being resized?

57

C++ containers and locking

can you use a vector from multiple threads?

…question: how is it implemented?
dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not being resized?

57

C++ containers and locking

can you use a vector from multiple threads?

…question: how is it implemented?
dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not being resized?

57

C++ standard rules for containers

multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can only add/remove elements if no other threads are accessing
container

some exceptions, read documentation really carefully

58

implementing locks: single core

intuition: context switch only happens on interrupt
timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

59

implementing locks: single core

intuition: context switch only happens on interrupt
timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

59

naive interrupt enable/disable (1)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

60

naive interrupt enable/disable (1)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

60

naive interrupt enable/disable (1)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

60

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

61

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

61

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

61

naive interrupt enable/disable (2)

Lock() {
disable interrupts

}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

61

xv6 interrupt disabling (1)

...
acquire(struct spinlock *lk) {
pushcli(); // disable interrupts to avoid deadlock
... /* this part basically just for multicore */

}
release(struct spinlock *lk)
{
... /* this part basically just for multicore */
popcli();

}

62

xv6 push/popcli

pushcli / popcli — need to be in pairs

pushcli — disable interrupts if not already

popcli — enable interrupts if corresponding pushcli disabled them
don’t enable them if they were already disabled

63

	lottery assignment preview
	pthread create and join
	pthread create: passing data
	on thread resources, detached threads
	various ways of organizing thread sum
	on error checking

	introduction: correctness
	the lost write
	motivation: ATM server

	race conditions and atomicity
	thinking about simple races
	atomicity

	example: too much milk
	definitions: mutual exclusion, critical section
	locks
	aside: standard container rule
	disabling interrupts for locks
	xv6's push/popcli

