
1

Changelog

Changes made in this version not seen in first lecture:
21 Feb 2019: correct mixup of AND and OR in reader/writer code
(writer-priority)

1

last time

counting semaphores
intuition: count of things, wait when 0

producer/consumer pattern with semaphores

started monitors

2

binary semaphores

binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

3

counting semaphores with binary semaphores
via Hemmendinger, “Comments on ‘A correect and unrestrictive implementation of general semaphores’ ” (1989); Barz, “Implementing semaphores by binary

semaphores” (1983)

// assuming initialValue > 0
BinarySemaphore mutex(1);
int value = initialValue ;
BinarySemaphore gate(1 /* if initialValue >= 1 */);

/* gate = # threads that can Down() now */

void Down() {
gate.Down();
// wait, if needed
mutex.Down();
value -= 1;
if (value > 0) {

gate.Up();
// because next down should finish
// now (but not marked to before)

}
mutex.Up();

}

void Up() {
mutex.Down();
value += 1;
if (value == 1) {
gate.Up();
// because down should finish now
// but could not before

}
mutex.Up();

}

4

gate intuition/pattern

gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

common pattern with semaphores:

allow threads one-by-one past ‘gate’
keep gate open forever? thread passing gate allows next in

5

gate intuition/pattern

gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

common pattern with semaphores:

allow threads one-by-one past ‘gate’
keep gate open forever? thread passing gate allows next in

5

monitors/condition variables

locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables

6

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

7

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

7

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

7

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

7

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

8

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

8

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

8

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

8

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

8

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

9

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

9

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

9

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

9

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

9

WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock) 10

WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

11

why the loop

while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

12

why the loop

while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

12

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock

other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

13

Hoare versus Mesa monitors

Hoare-style monitors
signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style

14

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

15

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

15

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

15

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

15

monitor pattern

pthread_mutex_lock(&lock);
while (!condition A) {

pthread_cond_wait(&condvar_for_A, &lock);
}
... /* manipulate shared data, changing other conditions */
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
if (set condition C) {

pthread_cond_broadcast(&condvar_for_C);
/* or signal, if only one thread cares */

}
...
pthread_mutex_unlock(&lock)

16

monitors rules of thumb

never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X
broadcast/signal condition variable every time you change X

correct but slow to…
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

17

monitors rules of thumb

never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X
broadcast/signal condition variable every time you change X
correct but slow to…

broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

17

monitor exercise (1)

suppose we want producer/consumer, but…
but change to ConsumeTwo() which returns a pair of values

and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

18

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

19

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

19

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

19

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 19

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 19

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?

20

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?
20

exercise: why broadcast?
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

exercise: why can’t this be pthread_cond_signal?

hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in
21

broadcast problemThread 1 Thread 2 Thread 3 Thread 4
Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

woken up signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???
22

semaphores with monitors: no condition
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
pthread_cond_signal(

&count_is_positive_cv
);
pthread_mutex_unlock(&lock);

}

same as where we started…

23

semaphores with monitors: alt w/ signal
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
if (count > 0) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

24

on signal/broadcast generally

whenever using signal need to ask
what if more than one thread is waiting?

be concerned about “skipping” cases where thread would wake up

25

monitors with semaphores: locks

sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

26

monitors with semaphores: cvs

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

annoying: signal wakes up non-waiting threads (in the far future)

27

monitors with semaphores: cvs

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

annoying: signal wakes up non-waiting threads (in the far future)

27

monitors with semaphores: cvs (better)

condition variables are more challenging

start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

28

monitors with semaphores: broadcast

now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

29

monitors with semaphores: chosen order

if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

30

monitors with semaphores: chosen order

if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

30

reader/writer problem

some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

31

reader/writer problem

some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

31

reader/writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

32

reader/writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

32

pthread rwlocks

pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);
...

pthread_rwlock_rdlock(&rwlock);
... /* read shared data */
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
... /* read+write shared data */
pthread_rwlock_unlock(&rwlock);

...
pthread_rwlock_destroy(&rwlock);

33

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state

34

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers

34

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)

34

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers

34

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers

34

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

34

reader/writer-priority

policy question: writers first or readers first?
writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

35

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
36

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
36

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
36

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

37

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

37

choosing orderings?

can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now”
e.g. writer-priority: readers can go if no writer waiting

38

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)

...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

39

rwlock exercise

suppose there are multiple waiting writers

which one gets waken up first?
whichever gets signal’d or gets lock first

could instead keep in order they started waiting

exercise: what extra information should we track?
hint: we might need an array

mutex_t lock; cond_t ok_to_read_cv, ok_to_write_cv;
int readers, writers, waiting_writers;

40

rwlock exercise solution?

list of waiting writes?
struct WaitingWriter {

cond_t cv;
bool ready;

};
Queue<WaitingWriter*> waiting_writers;

WriteLock(...) {
...
if (need to wait) {
WaitingWriter self;
self.ready = false;
...
while(!self.ready) {

pthread_cond_wait(&self.cv, &lock);
}

}
...

}
41

rwlock exercise solution?

dedicated writing thread with queue
(DoWrite∼Produce; WritingThread∼Consume)

ThreadSafeQueue<WritingTask*> waiting_writes;
WritingThread() {

while (true) {
WritingTask* task = waiting_writer.Dequeue();
WriteLock();
DoWriteTask(task);
task.done = true;
cond_broadcast(&task.cv);

}
}
DoWrite(task) {

// instead of WriteLock(); DoWriteTask(...); WriteUnlock()
WritingTask task = ...;
waiting_writes.Enqueue(&task);
while (!task.done) { cond_wait(&task.cv); }

} 42

	fixed binary semaphores to semaphores
	monitors
	introduction
	unbounded queue with monitors
	Hoare scheduling note
	bounded producer/consumer with monitors
	general monitor pattern

	monitor exercise
	relating monitors and semaphores
	implementing semaphores with monitors
	semaphores with monitors: broadcast?
	implementing monitors with semaphores

	reader-writer
	reader/writer problem
	reader/writer locks
	implementing rwlocks with monitors
	reader/writer lock walkthrough
	reader/writer lock extensions???

