

Changelog

Changes made in this version not seen in first lecture:

21 Feb 2019: correct mixup of AND and OR in reader/writer code
(writer-priority)

last time

counting semaphores
intuition: count of things, wait when 0

producer/consumer pattern with semaphores

started monitors

binary semaphores

binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores

exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

counting semaphores with binary semaphores

via Hemmendinger, “Comments on ‘A correect and unrestrictive impl itation of general

phores’ " (1989); Barz, “Implementing semaphores by binary
semaphores” (1983)

// assuming initialValue > 0

BinarySemaphore mutex(1);

int value = dinitialValue ;

BinarySemaphore gate(1 /* if initialValue >= 1 */);
/* gate = # threads that can Down() now */

void Down() { void Up() {

gate.Down(); mutex.Down () ;

// wait, i1f needed value += 1;

mutex.Down () ; if (value == 1) {

value -= 1; gate.Up();

if (value > 0) { // because down should finish now
gate.Up(); // but could not before
// because next down should finish }
// now (but not marked to before) mutex.Up();

}

mutex.Up();

gate intuition/pattern

gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

gate intuition/pattern

gate is open (value = 1): Down() can proceed

gate is closed (Value = 0): Down() waits

common pattern with semaphores:

allow threads one-by-one past ‘gate’
keep gate open forever? thread passing gate allows next in

monitors/condition variables

locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal /broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables 4+ shared data

Java: every object is a monitor (has instance variables, built-in lock,
cond. var)

pthreads: build your own: provides you locks + condition variables

monitor idea

a monitor

lock

shared data
condvar 1
condvar 2

operationl(...)
operation2(...)

monitor idea

a monitor
lock .
hared dats lock must be.acqwred
condvar 1 before accessing
f_ond"ar 2 any part of monitor’s stuff

operationl(...)
operation2(...)

monitor idea

a monitor

lock >|:|—>|:|—>D threads waiting for lock

shared data
condvar 1
condvar 2

operationl(...)
operation2(...)

monitor idea

a monitor

lock >|:|—>|:|—>D threads waiting for lock

shared data
condvar 1 S

condvar 2 \\"
D_>|:|_>D threads waiting for
P\

operationl(...) condition to be true

operation2(...) D_>D_>D about shared data

condvar operations

condvar operations:

Wait(cv, lock) — unlock lock, add current thread to cv queue
..and reacquire lock before returning

Broadcast(cv) — remove all from condvar queue

Signal(cv) — remove one from condvar queue

a monitor

lock

shared data

>|:|—>|:|—>D threads waiting for lock

condvar 1

3

condvar 2

operationl(..)

’\D D_>D threads waiting for
P\

condition to be true

operation2(...)

D_>|:|_>D about shared data

condvar operations

condvar operations:

Wait(cv, lock) — unlock lock, add current thread to cv queue
..and reacquire lock before returning

Broadcast(cv) — remove all from condvar queue

Signal(cv) — remove one from condvar queue

a monitor

lock

>|:|—>|:|—>D threads waiting for lock

shared data

,>. . callmg thread starts waiting

condvar 1

3
Q

condvar 2

D_,D#D threads waiting for

operationl(..)

condition to be true

operation2(...)

D_>|:|_>D about shared data

condvar operations

condvar operations:

Wait(cv, lock) — unlock lock, add current thread to cv queue
..and reacquire lock before returning

Broadcast(cv) — remove all from condvar queue

Signal(cv) — remove one from condvar queue

,-» unlock lock — allow thread from queue to go

a monitor

ock ——— }. J:I—»D tireDads waiting for lock

shared data

condvar 1 Mo /

condvar 2 ,

’\D D_>D threads waiting for
P\

operationl(...) condition to be true

operation2(...) D_>D_>D about shared data

condvar operations

condvar operations:

Wait(cv, lock) — unlock lock, add current thread to cv queue
..and reacquire lock before returning

Broadcast(cv) — remove all from condvar queue

Signal(cv) — remove one from condvar queue

a monitor

lock

>|:|—>|:|—>D threads waiting for lock

shared data

condvar1 | = Lemmeeeaol__.-

condvar 2 b _Y:

to start waiting for lock

N o 'threads waiting for

operationl(..)

" condition to be true

operation2(...) D_>D_>D about shared data

condvar operations

condvar operations:

Wait(cv, lock) — unlock lock, add current thread to cv queue
..and reacquire lock before returning

Broadcast(cv) — remove all from condvar queue

Signal(cv) — remove one from condvar queue

a monitor
lock >|:|—>|:|—>D threads waiting for lock
zgi':\?afita { ____," any one thread removed from cv queue
condvar 2 ‘:\‘ __'_ to start waiting for lock
s, D_ roo D threads waiting for
operation1(...) TTetiil--¥ T condition to be true
operation2(..) > > | about shared data g

pthread cv usage

// MISSING: init calls, etc.

pthread_mutex_t lock;

bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock) ;
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);
}
pthread_mutex_unlock(&lock) ;
h

void Finish() {
pthread_mutex_lock(&lock) ;
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock) ;

}

pthread cv usage

// MISSING: init calls, etc.
pthread_mutex_t lock;

bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {

pthread_mutex_lock(&lock) ;

while (!finished) {
pthread_cond_wait(&finished_cv, & 5

} .

pthread_mutex_unlock(&lock) ; vaL“reIOCk before

} reading or writing finished

void Finish() {
pthread_mutex_lock(&lock) ;
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock) ;

}

pthread cv usage

// MISSING: init calls, etc.
pthread_mutex_t lock;

bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {

Eﬁ?{ia?ﬂﬁ?zﬁlg;kg&}OCk); check whether we need to wait at all

pthread_cond_wait(&finished (why a loop? we'll explain later)

}
pthread_mutex_unlock(&lock) ;
}

void Finish() {
pthread_mutex_lock(&lock) ;
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock) ;

}

pthread cv usage

// MISSING: init calls, etc.

pthread_mutex_t lock;

bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock) ;
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);
i \

pthread_mutex_unlock (&lock) :
} know we need to wait

void Finish() { (finished can’t change while we have lock)
pthread_mutex_lock(&locK so wait, releasing lock...
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock) ;

}

pthread cv usage

// MISSING: init calls, etc.

pthread_mutex_t lock;

bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock) ;
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);
}
pthread_mutex_unlock(&lock) ; -
} allow all waiters to proceed

. (once we unlock the lock)
void Finish() {

pthread_mutex_lock(&lock) ;
finished = true;
pthread_cond_broadcast (&finished_cv);

pthread_mutex_unlock(&lock) ;
}

WaitForFinish timeline 1

WaitForFinish thread

\ Finish thread

mutex_lock(&lock)
(thread has lock)

mutex_lock (&lock)
(start waiting for lock)

while (!finished)
cond_wait(&finished_cv, &lock);
(start waiting for cv)

(done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)

(done waiting for lock)
while (!finished)
(finished now true, so return)
mutex_unlock (&lock)

10

WaitForFinish timeline 2

WaitForFinish thread

\ Finish thread

mutex_lock(&lock)

finished = true
cond_broadcast(&finished_cv)
mutex_unlock (&lock)

mutex_lock (&lock)
while (!finished)
(finished now true, so return)
mutex_unlock(&lock)

11

why the loop

while (!finished) {
pthread_cond_wait(&finished_cv, &lock);
}

we only broadcast if finished is true

so why check finished afterwards?

12

why the loop

while (!finished) {
pthread_cond_wait(&finished_cv, &lock);
}

we only broadcast if finished is true

so why check finished afterwards?

pthread__cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

12

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock) ;

}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock) ;

}

Consume() {
pthread_mutex_lock(&lock) ;
while (buffer.empty()) {

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

pthread_cond_wait(&data_ready, &lock);

}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {

}

Consume () {

pthread_mutex_lock(&lock) ;
buffer.enqueue(item);

pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock) ;

pthread_mutex_lock(&lock);

check if empty
if so, dequeue

okay because have lock

while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);

} < other threads

item = buffer.dequeue();

pthread_mutex_unlock(&lock) ;

return item;

cannot dequeue here

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {

}

EE2;2?%?:5?35}%2;?‘?“"); wake one Consume thread
. b

pthread_cond_signal(&data_ready) ; —— if any are Waiting
pthread_mutex_unlock(&lock) ;

Consume () {

pthread_mutex_lock(&lock);

while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);

}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) ;
return item;

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);

pthread_cond_signal(&data_ready

pthread_mutex_unlock(&lock) ;
}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

Thread 1 Thread 2

Produce()

..lock

..enqueue

..signal

..unlock
Consume()
..lock
..empty? no
..dequeue
...unlock
return

pthread_cond_wait(&data_ready, &lock);

}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) }
return item;

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or ..7

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);

pthread_cond_signal(&data_ready);

pthread_mutex_unlock(&lock) ;
}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

Thread 1 Thread 2

Consume()
..lock
..empty? yes
..unlock /start wait
Produce() waiting for
~.lock data_ready
..enqueue
..signal stop wait
..unlock lock
..empty? no
..dequeue
..unlock
return

pthread_cond_wait(&data_ready, &lock);

}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) }
return item;

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or ..7

13

unbounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
buffer.enqueue(item);

pthread_cond_signal(&data_red"

pthread_mutex_unlock(&lock) ;
}

Consume () {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_r
}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) }
return item;

Thread 1 Thread 2 Thread 3
Consume()
..lock
..empty? yes
..unlock /start wait
Produce() waiting for
..Jock data_ready Consume()
..enqueue B waiting for
.signal stop wait lock
..unlock . lock
waiting for —empty? no
lock ..dequeue
-..unlock
..lock return
..empty? yes

..unlock/start wait

0 iterations: Produce() called before Consume()

1 iteration: Produce() signalled, probably

2+ iterations: spurious wakeup or ..?

unbounded buffer producer/consumer

Thread 1 Thread 2 Thread 3
Consume
pthread_mutex_t lock; .Joc; 0
Rthreaq_qgnd_t gaté_ready; _empty? yes
in pthreads: signalled thread not produce() "-””|°Ck/_s_tartfwa't
teed to hold lock next ok — waiting for
gaurenteed to hold lock nex y —Tock data,_ ready Consurneg)
..enqueue waiting for
alternate design: 5 7 &-signal stop wait lock
signalled thread gets lock next |ck) ; ~.unlock i f lock
[- ” Waltlng Or ..empty? no
called “Hoare scheduling lock]
..dequeue
not done by pthreads, Java, .. —unlock
pthread_mutex_lock(&lock) ; .lock return
while (buffer.empty()) { ..empty? yes
pthread_cond_wait(&data_t ..unlock /start wait

}

item = buffer.dequeue();
pthread_mutex_unlock(&lock) }
return item;

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or ..?

Hoare versus Mesa monitors

Hoare-style monitors
signal ‘hands off’ lock to awoken thread

Mesa-style monitors

any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library | know of does Mesa-style

14

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);
}

Consume() {
pthread_mutex_lock(&lock) ;
while (buffer.empty()) {
pthread_cond_wait(&data_ready, &lock);
}

item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock) ;
return titem;

15

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);
}

Consume() {
pthread_mutex_lock(&lock) ;
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);

}
item = buffer.dequeue();
pthread_cond_signal (&space_ready);
pthread_mutex_unlock(&lock);
return titem;

15

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pfhrpnr‘l mutex 1unlock(&lack)

¥ correct (but slow?) to replace with:

Consun pthread_cond_broadcast(&space_ready);

P (just more “spurious wakeups"”)

pthread_cond_walt (&dlata_ready , &lock);

}
item = buffer.dequeue();
pthread_cond_signal (&space_ready);
pthread_mutex_unlock(&lock);
return titem;

15

bounded buffer producer/consumer

pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock) ;
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }

buffer.enqueue(item);

pthread_cond_signal(&data_ready) ; correct but slow to replace

pthread_mutex_unlock(&lock) ; data_ready and space_ready
¥ with ‘combined’ condvar ready
Consume () { and use broadcast

pthread_mutex_lock(&lock) ; (just more “spurious wakeups”)

while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);

}

item = buffer.dequeue();

pthread_cond_signal (&space_ready);

pthread_mutex_unlock(&lock) ;

return titem;
}

15

monitor pattern

pthread_mutex_lock(&lock) ;

while (!condition A) {
pthread_cond_wait(&condvar_for_A, &lock);

}

... /* manipulate shared data, changing other conditions */
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
if (set condition C) {

pthread_cond_broadcast(&condvar_for_C);
/* or signal, if only one thread cares */

}

pthread_mutex_unlock (&lock)

16

monitors rules of thumb

never touch shared data without holding the lock

keep lock held for entire operation:
verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X

broadcast /signal condition variable every time you change X

17

monitors rules of thumb

never touch shared data without holding the lock

keep lock held for entire operation:
verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X

broadcast /signal condition variable every time you change X

correct but slow to...
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

17

monitor exercise (1)

suppose we want producer/consumer, but..

but change to ConsumeTwo() which returns a pair of values
and don’t want two calls to ConsumeTwo() to wait...
with each getting one item

what should we change below?

pthread_mutex_t lock; Consume () {

pthread_cond_t data_ready; pthread_mutex_lock(&lock);

UnboundedQueue buffer; while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock;

Produce(item) { }
pthread_mutex_lock(&lock) ; item = buffer.dequeue();
buffer.enqueue(item); pthread_mutex_unlock(&lock) ;
pthread_cond_signal(&data_ready); return -ditem;
pthread_mutex_unlock(&lock) ; }

}

18

building semaphore with monitors

pthread_mutex_t Tock;]

lock to protect shared state

19

building semaphore with monitors

pthread_mutex_t lock;
unsigned int count;|

lock to protect shared state
shared state: semaphore tracks a count

19

building semaphore with monitors

pthread_mutex_t lock;

unsigned 1int count;

* condition, broadcast when becomes count > 0 *
pthread_cond_t count_1is_positive_cv;

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

19

building semaphore with monitors

pthread_mutex_t lock;
unsigned 1int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {
pthread_mutex_lock(&lock);
while (!(count > 0)) {
pthread_cond_wait(
&count_is_positive_cv,
&lock) ;

1
count -= 1;
pthread_mutex_unlock(&lock);

}

lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

19

building semaphore with monitors

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(/* count must now be
&count_is_positive_cv, positive, and at most
&lock) ; one thread can go per
} call to Up() */
count -= 1; pthread_cond_signal(
pthread_mutex_unlock(&lock) ; &count_is_positive_cv
})
pthread_mutex_unlock(&lock);
lock to protect shared state }

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 19

building semaphore with monitors (version B)

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(/* condition *just* became true *
&count_is_positive_cv, if (count == 1) {
&lock) ; pthread_cond_broadcast(
} &count_is_positive_cv
count -= 1;)
pthread_mutex_unlock(&lock) ; }
} pthread_mutex_unlock(&lock);
1

before: signal every time

can check if condition just became true instead?

building semaphore with monitors (version B)

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(/* condition *just* became true */
&count_is_positive_cv, if (count == 1) {
&lock) ; pthread_cond_broadcast(
} &count_is_positive_cv
count -= 1;)
pthread_mutex_unlock(&lock) ; }
} pthread_mutex_unlock(&lock) ;
}

before: signal every time
can check if condition just became true instead?

but do we really need to broadcast?

20

exercise: why broadcast?

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock);
while (!(count > 0)) { count += 1;
pthread_cond_wait(if (count == 1) { /* became > 0 */
&count_is_positive_cv, pthread_cond_broadcast(
&lock) ; &count_is_positive_cv
})
count -= 1; }
pthread_mutex_unlock(&lock) ; pthread_mutex_unlock(&lock) ;
} }

exercise: why can't this be pthread_cond_signal?
hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in

21

hevand~act nvahlAana

Thread 1 Thread 2 Thread 3 Thread 4
Down()
lock
count == 07 yes
unlock/wait
Down()
lock
count == 07 yes
unlock /wait
Up()
lock
count += 1 (now 1) Up()
woken up signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count !=1: don't signal
lock unlock
count == 07 no
count -= 1 (becomes 1)
unlock
still waiting?7?7?

semaphores with monitors: no condition

pthread_mutex_t lock;

unsigned 1int count;

/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;

void down() { void up() {
pthread_mutex_lock(&lock); pthread_mutex_lock(&lock) ;
while (!(count > 0)) { count += 1;
pthread_cond_wait(pthread_cond_signal(

&count_is_positive_cv, &count_is_positive_cv
&lock) ;)

} pthread_mutex_unlock(&lock);

count -= 1; 1

b
pthread_mutex_unlock(&lock) ;
}

same as where we started...

23

semaphores with monitors: alt w/ signal

pthread_mutex_t lock;
unsigned 1int count;

/* condition, broadcast when becomes count > 0 */

pthread_cond_t count_is_positive_cv;

void down() {
pthread_mutex_lock(&lock);
while (!(count > 0)) {
pthread_cond_wait(

&count_is_positive_cv,

&lock) ;
}
count -= 1;
if (count > 0) {
pthread_cond_signal(

)3

&count_is_positive_cv

}

pthread_mutex_unlock(&lock) ;

void up() {

pthread_mutex_lock(&lock) ;
count += 1;
if (count == 1) {
pthread_cond_signal(
&count_is_positive_cv
)
}

pthread_mutex_unlock(&lock) ;

24

on signal /broadcast generally

whenever using signal need to ask
what if more than one thread is waiting?

be concerned about “skipping” cases where thread would wake up

25

monitors with semaphores: locks

sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post (&semaphore) ;

}

26

monitors with semaphores: cvs

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
lock.Unlock();
sem_wait(&threads_to_wakeup) ;
lock.Lock();

}

Signal() {
sem_post(&threads_to_wakeup) ;

}

27

monitors with semaphores: cvs

condition variables are more challenging

start with only wait/signal:

sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
lock.Unlock();
sem_wait(&threads_to_wakeup) ;
lock.Lock();

}

Signal() {
sem_post(&threads_to_wakeup) ;

}

annoying: signal wakes up non-waiting threads (in the far future)

monitors with semaphores: cvs (better)

condition variables are more challenging

start with only wait/signal:

sem_t private_lock; // initially 1

int num_waiters;

sem_t threads_to_wakeup; // initially 0

Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {
sem_post (&threads_to_wakeup) ;
--num_waiters;
}
sem_post(&private_lock);

}

28

monitors with semaphores: broadcast

now allows broadcast:

sem_t private_lock; // initially 1

int num_waiters;

sem_t threads_to_wakeup; // initially 0

Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {
sem_post (&threads_to_wakeup) ;
--num_waiters;
}
sem_post(&private_lock);

}

29

monitors with semaphores: chosen order

if we want to make sure threads woken up in order

ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {
sem_t private_semaphore;
... /* init semaphore
with count 0 */ Signal() {
waiters.Enqueue (&semaphore) ; sem_t *next = waiters.DequeueOrNull();
lock.Unlock(); if (next != NULL) {
sem_post(private_semaphore); sem_post(next);
lock.Lock(); }

} }

monitors with semaphores: chosen order

if we want to make sure threads woken up in order

ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {
sem_t private_semaphore;
... /* init semaphore
with count 0 */ Signal() {
waiters.Enqueue (&semaphore) ; sem_t *next = waiters.DequeueOrNull();
lock.Unlock(); if (next != NULL) {

sem_post(private_semaphore); sem_post(next);
lock.Lock(); }

} }

(but now implement queue with semaphores...)

30

reader/writer problem

some shared data

only one thread modifying (read-+write) at a time

read-only access from multiple threads is safe

31

reader/writer problem

some shared data
only one thread modifying (read-+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

31

reader /writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

32

reader /writer locks

abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

32

pthread rwlocks

pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);

pthread_rwlock_rdlock(&rwlock) ;
.. /* read shared data */
pthread rwlock_unlock (&rwlock) ;

pthread_rwlock_wrlock (&rwlock) ;

.. /* read+write shared data */
pthread rwlock_unlock (&rwlock) ;

é%ﬁread_rwlock_destroy(&rwlock);

33

rwlocks with monitors (attempt 1)

lock to protect shared state

34

rwlocks with monitors (attempt 1)

mutex_t lock;
unsigned int readers, writers;

state: number of active readers, writers

34

rwlocks with monitors (attempt 1)

mutex_t lock;
unsigned int readers, writers;

* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;

* condition, signal when readers + writers becomes 0 *
cond_t ok_to_write_cv;

conditions to wait for (no readers or writers, no writers)

34

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

}

ReadLock () {

mutex_lock(&lock) ;

while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}

++readers;
mutex_unlock (&lock) ;

L
ReadUnlock() {

mutex_lock(&lock);

--readers;

if (readers == 0) {
cond_signal(&ok_to_write_cv);

1

mutex_unlock(&lock) ;

I

3

WriteLock() {

WriteUnlock() {

mutex_lock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

3

++writers;

mutex_unlock (&lock) ;

mutex_lock(&lock);

--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast (&ok_to_read_cv);
mutex_unlock (&lock);

roadcast — wakeup all readers when no writers

34

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;

/* condition, signal when writers becomes 0 */

cond_t ok_to_read_cv;

/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv);
}
t+readers; ++writers;
mutex_unlock(&lock); mutex_unlock(&lock);
} }
ReadUnlock() { WriteUnlock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
--readers; --writers;
if (readers == 0) { cond_signal(&ok_to_write_cv);
cond_signal(&ok_to_write_cv); cond_broadcast (&ok_to_read_cv);
} mutex_unlock(&lock) ;
mutex_unlock(&lock) ; }
}

wakeup a single writer when no readers or writers

34

rwlocks with monitors (attempt 1)

mutex_t lock;

unsigned int readers, writers;

/* condition, signal when writers becomes 0 */

cond_t ok_to_read_cv;

/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv);
}
t+readers; ++writers;
mutex_unlock(&lock); mutex_unlock(&lock);
} }
ReadUnlock() { WriteUnlock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
--readers; --writers;
if (readers == 0) { cond_signal (&ok_to_write_cv);
cond_signal(&ok_to_write_cv); cond_broadcast (&ok_to_read_cv);
} mutex_unlock(&lock) ;
mutex_unlock(&lock) ; }

3
problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

34

reader /writer-priority

policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens

writers signalled first, maybe gets lock first?
..but non-determinstic in pthreads

can make explicit decision

35

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
|| waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock) ; } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

36

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
|| waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock) ; ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock); } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

36

writer-priority (1)

mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;

ReadLock() { WriteLock() {
mutex_lock(&lock) ; mutex_lock(&lock) ;
while (writers != 0 ++waiting_writers;
|| waiting_writers != 0) { while (readers + writers != 0) {
cond_wait(&ok_to_read_cv, &lock); cond_wait(&ok_to_write_cv, &lock);
}
++readers; --waiting_writers;
mutex_unlock(&lock); ++writers;
} mutex_unlock (&lock) ;
}
ReadUnlock() {
mutex_lock(&lock) ; WriteUnlock() {
--readers; mutex_lock(&lock) ;
if (readers == 0) { --writers;
cond_signal(&ok_to_write_cv); if (waiting_writers != 0) {
} cond_signal(&ok_to_write_cv);
mutex_unlock(&lock) ; } else {
} cond_broadcast (&ok_to_read_cv);
}
mutex_unlock(&lock) ;
}

36

reader-priority (1)

int waiting_readers = 0;
ReadLock() {
mutex_lock (&lock);
++waiting_readers;
while (writers != 0) {

}

--waiting_readers;

++readers;

mutex_unlock(&lock) ;
}

ReadUnlock() {

cond_wait(&ok_to_read_cv, &lock);

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
}

}

WriteLock() {

mutex_lock (&lock) ;
while (waiting_readers +
readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock (&lock) ;

WriteUnlock() {

mutex_lock(&lock) ;

--writers;

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {

cond_broadcast (&ok_to_read_cv);

}
mutex_unlock (&lock) ;

37

reader-priority (1)

int waiting_readers = 0;
ReadLock() {
mutex_lock (&lock);
++waiting_readers;
while (writers != 0) {

}

--waiting_readers;

++readers;

mutex_unlock(&lock) ;
}

ReadUnlock() {

cond_wait(&ok_to_read_cv, &lock);

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);
}
}

WriteLock() {

mutex_lock (&lock) ;
while (waiting_readers +
readers + writers != 0) {
cond_wait(&ok_to_write_cv);

++writers;
mutex_unlock (&lock) ;

WriteUnlock() {

mutex_lock(&lock) ;

--writers;

if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast (&ok_to_read_cv);

}

mutex_unlock (&lock) ;

37

choosing orderings?

can use monitors to implement lots of lock policies

want X to go first/last — add extra variables
(number of waiters, even lists of items, etc.)

need way to write condition “you can go now"
e.g. writer-priority: readers can go if no writer waiting

38

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3

oD

O]

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3

oD

O]

39

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WW
0 0 0
[ReadLock 0] 1 0]

mutex_lock(&lock) ;

while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}

++readers;

mutex_unlock (&lock) ;

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R W
0 0 0

Readlock 0] 1 0]

(reading) ReadLock \ 0] 2 0]

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0 0 0
ReadLock 0] 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait | 0 2 1

|

}

mutex_lock(&lock) ;

++waiting_writers;

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0 0 0
ReadLock 0 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (reading) WriteLock wait |ReadLock wait |O 2 1

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0 0 0
ReadLock 0] 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (read| mutex_lock(&lock); |wait |ReadLock wait |0 2 1
ReadUnlock e ;;riiizzzf,s --) |wait |[ReadlLockwait |0 1 1

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
0] 0] 0]
ReadLock 0] 1 0]
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) Writet—! b Dol aal a0 2 1
ReadUnlock (reading) Write Tgtggalgg?(&lock); 1 1
ReadUnlock = if (readers == 0) 0 1

cond_signal(&ok_to_write_cv)
mutex_unlock (&lock) ;

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
Readlock while (readers + writers != 0) { 0 1 0
(reading) Read cond_wait(&ok_to_write_cv, &lock); 0 2 0
(reading) (rea 1'—wa‘i't'ing_wr‘i‘cers; ++writers; (0] 2 1
(reading) (rea mutex_unlock(&lock); it @ 2 1
ReadUnlock (reading) WriteLc\ [k wait |[ReadLock wait |[@ 1 1
ReadUnlock WriteLo\Ek wait |ReadLock wait |0 0] 1
WritelLock ReadlLock wait |1 0] 0]

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
ReadlLock 0 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (reading) WriteLock wait |ReadLock wait |O 2 1
ReadUnlock (reading) WriteLock wait |ReadLock wait |[@ 1 1
ReadUnlock WritelLock wait |ReadLock wait [0 0 1
WriteLock ReadlLock wait |1 0 0
(read+writing) |ReadLock wait |1 0] 0

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
ReadlLock 0 1 0
(reehins) Rzl mutex_loclk(&lock); 0 2 0
(reading) (read] if (waiting_writers != @) { 0 2 1
(reading) (read) 2222_?gnal(&ok_to_wr'lte_cv); vait |O 2 1
ReadUnlock (readl cond_broadcast(&ok_to_read_cv); pait |0 1 1
Readur } vait |[O 0] 1
Wr-iteLc\ [k ReadlLock wait |1 0] 0]
(read+w\f‘|t1’ ng) |[ReadLock wait |1 0] 0
WriteUnlock ReadLock wait |0 0] 0]

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WW
(0] 0] 0
ReadlLock 0 1 0
(reading) ReadlLock \ 0] 2 0
(reading) (reading) while (writers != 0 &% waiting_writers != @) {
(reading) (reading) cond_wait(&ok_to_read_cv, &lock);
ReadUnlock (reading) 1}:+readers; :
ReadUnlock mutex_unlock(&lock) ;
WritelLock ReadLod lwa'it 1 0] 0]
(read+writing) ReadLoc\Lwa'it 1 0] 0
WriteUnlock ReadLocV< wait |0 0 0
ReadlLock 0 1 0

39

simulation of reader/write lock

writer-priority version

W = writers, R = readers, WW = waiting_ writers

reader 1 reader 2 writer 1 reader 3 W R WWwW
(0] 0] 0
ReadlLock 0 1 0
(reading) ReadlLock 0] 2 0
(reading) (reading) WriteLock wait 0] 2 1
(reading) (reading) WriteLock wait |ReadLock wait |O 2 1
ReadUnlock (reading) WriteLock wait |ReadLock wait |[@ 1 1
ReadUnlock WritelLock wait |ReadLock wait [0 0 1
WriteLock ReadlLock wait |1 0 0
(read+writing) |ReadLock wait |1 0] 0
WriteUnlock ReadLock wait |0 0] 0]
ReadlLock 0 1 0

39

rwlock exercise

suppose there are multiple waiting writers

which one gets waken up first?
whichever gets signal'd or gets lock first

could instead keep in order they started waiting

exercise: what extra information should we track?
hint: we might need an array

mutex_t lock; cond_t ok_to_read_cv, ok_to_write_cv;
int readers, writers, waiting_writers;

40

rwlock exercise solution?

list of waiting writes?

struct WaitingWriter {
cond_t cv;
bool ready;

s

Queue<WaitingWriter*> waiting_writers;
WriteLock(...) {

%%.(need to wait) {
WaitingWriter self;
self.ready = false;

Wﬁ%le(!self.ready) {
pthread_cond_wait(&self.cv, &lock);
}

}

41

rwlock exercise solution?

dedicated writing thread with queue
(DoWrite~Produce; WritingThread~Consume)

ThreadSafeQueue<WritingTask*> waiting_writes;
WritingThread() {
while (true) {
WritingTask* task = waiting_writer.Dequeue();
WriteLock();
DoWriteTask(task);
task.done = true;
cond_broadcast(&task.cv);
}
}
DoWrite(task) {
// instead of WrtteLock(), DoWriteTask(...); WriteUnlock()
WritingTask task =
waiting_writes. Enqueue(&task),
while (!task.done) { cond_wait(&task.cv); }

	fixed binary semaphores to semaphores
	monitors
	introduction
	unbounded queue with monitors
	Hoare scheduling note
	bounded producer/consumer with monitors
	general monitor pattern

	monitor exercise
	relating monitors and semaphores
	implementing semaphores with monitors
	semaphores with monitors: broadcast?
	implementing monitors with semaphores

	reader-writer
	reader/writer problem
	reader/writer locks
	implementing rwlocks with monitors
	reader/writer lock walkthrough
	reader/writer lock extensions???

